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tion of (I 24), is"

(res fre ) 4 (r~Pu Pe )

Therefore s=i f—/4fsB, and the anomalous threshold

singularity appears at the correct position. Ke learn
from this example that the spatial extension of the
particle states is determined by the spurion, and that
the latter is not 6xed by the mass spectrum.

Some properties of this equation are:

A. The mass spectrum is

p,e4

(p' —u') =-
2M 2s2

'

where e has the discrete spectrum m=1, 2, 3, , and
a continuous spectrum 0&n'& —~. This is precisely
the spectrum of hydrogen, including bound states and
scattering states, and there are no unphysical solutions.

B. The spurion is

ts(k)"= (2pB) "'(ks —k, —(ks' —k' —2pB)'").
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Corrections to the Breit-Wigner shape of the N*(1236) resonance are calculated using analyticity and
inelastic unitarity incorporating the Nm and N*m channels in a propagator formalism. This method, which
includes only a right-hand cut and which evaluates the effect of bubble insertions in the propagator, is
motivated by the rigorous results which have been proved for the nucleon. It is argued that even though
background and left-hand cuts have been neglected, it is the inclusion of inelasticity that enables the P»
phase-shift data to be reproduced, even at energies well above resonance. The structureless-vertex decay
model with a Breit-Wigner propagator gives an N* shape too asymmetric, and inclusion of an inelastic
channel with an analytic propagator serves to correct this. Assuming N*m as the only inelastic channel,
the N*++N*++m. coupling is estimated as 170+50, where the unknown behavior of the vertices far oB the
mass shell causes the uncertainty. This estimate can be compared with about 75 from relativistic Sf7(6),
and 136 using Adler-Weissberger techniques. The P33 partial-wave amplitude constructed on this model
has a left-hand pole which simulates the effect of the neglected nucleon-exchange short cut, and which
tends to lie too far left and with too large a residue. The application of the method to other resonances and
bound states is discussed.

1. INTRODUCTION

'HE N*(1236) resonance is interpreted as the
J~=~+, I=-,'contribution to xX scattering, so

that the P» phase-shift analyses are the experimental
source of data. This is assuming that there is no
nonresonant background to the E*which has the same
quantum numbers. The intention is not to calculate
the resonance parameters, but to consider the detailed
consequences of the resonant behavior of the partial
wave from threshold to center-of-mass (c.m.) energies
of 1500 MeV or higher. The unstable particle will be
treated in a way motivated by the field-theoretic

behavior of an oG-mass-shell stable particle above
threshold. Thus we will try to treat the resonance as a
stable particle that has wandered above the threshold.

The general form for the partial-wave amplitude
ass(E), deduced from unitarity and the requirement of
a phase shift 6 of 90' at the real resonance mass m, is

e(E) sr t(E)
~as(E) = (1.1)

cotb (E) i G (E) (m E—) ;irr—(E)——

where E is the c.m. energy, e(E) is the elasticity, and
by definition G(m) =1, so that the total width at
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resonance is defined by I'z (nz) = 2(nz —E)/cotb(E) ss E
tends to nz. I'i(E) is the elastic width into the zrAr

channel.
The relativistic generalization of the Breit-Wigner

formula corresponds to (1.1) with G(E)=1 and the
threshold for a P-wave decay to Nx requires, non-
relativistically, I'i(E) q', where g is the zr momenta in
the N* rest frame or c.m. system. The energy variation
of I'(E) is discussed in detail in Sec. 3 using unitarity
and a model for the decay vertex amplitude. This
model, which is covariant and has the correct threshold
factors in all crossed channels, i.e., P-wave N~ —+ N~,
P-wave N —+ N*x, D-wave x —+ N*E, D-wave
0~ N*Evr, etc. , is a decay amplitude

Vy(E, q, Xr) = (g /nzo) U" (E,X)q„U(q, X ), (1.2)

where U~(E, X) is a Rarita-Schwinger spinor for a
spin--,' N* of mass Ji, spin projection X, at rest; and
U(q, X&) is a Dirac spinor for a nucleon of mass nzzz,

helicity 'Af, and momentum q. This expression is unique,
except for the energy dependence of the factol gi/nzo,
which will be taken as gi/E with a constant gi. This
leads to an expression for the decay width to N+~+ of

g i g (E+31)(E+rz1)
I'i(E) =— (1.3)

4~ 6E' E'

where ti ——nz~+nz, ai nz~ ——nz-
Using this model for I'i(E), G(E) is calculated in

Sec. 2 from the experimental data on e(E), 8(E), and nz:

G(E)=I'i(E) cotb(E)/2c(E) (nz —E) . (1.4)

The result is that G(E) is not a constant, so that the
Breit-Wigner model with a Born-model decay amplitude
is insufhcient to explain the shape of the N*, giving too
asymmetric an eGect. This has long been known' and
one explanation was to retain the Breit-Wigner approxi-
mation that G(E) =1 and to invoke a form factor or
structure eRect at the decay vertex. The alternative
method presented here is to keep the Born-model decay
vertex and to seek an explanation in the possibility that
an analytic expression for the propagator will determine
G(E). The inverse propagator P '(E), which is the
denominator of (1.1), is not analytic as it stands since
I'z(E) has a factor 0(E—zi) from the phase-space
integral. An analytic expression is deduced in Sec. 3
from a discussion motivated by the Lehmann spectral
representation' for the nucleon. The contribution of Nor

intermediate states in the nucleon propagator, with
Born pseudoscalar-vertex coupling, is evaluated and
leads to correction factors which are considerable and
in the direction required by experiment. These correc-
tions reduce the s-channel nucleon-pole contribution
by 1.24 and 6 at threshold in P~~ and S~~ partial waves,
respectively.

' M. Gell-Mann and K. Watson, Ann. Rev. Nucl. Sci. 4, 219
(1954).' H. Lehmann, Nuovo Cimento 11, 342 I'1954).

In extending these considerations to unstable
particles, one has no such specific guide although the
general method is the same. In particular, one must
assume that the type of corrections included in this
approach are the most important class and so neglect
any other singularities than those in the s channel.
The singularities retained are, in the E plane, the Ã*
resonant pole and the elastic and inelastic thresholds
and discontinuities in both P33 and the related D33
partial wave.

The simplest vertex amplitudes, as (1.2), that one
would write for each diRerent N* decay channel give
partial widths which have high-energy behavior worse
than in the field-theory-motivated nucleon case. This is
overcome by retaining the threshold dependences while
excluding high-spin contributions such as the P-wave
coupling of N* —+ N*7r, and choosing scaling masses as
in (1.3), so that each partial width increases asyrnptoti-
cally as E at most, as in the nucleon example. The
dependence of the final result on the method of ensuring
that the widths increase as E, far oR mass shell, is tested
and the final result is insensitive to the details.

The results are discussed in Sec. 4 and it is found
that including Nz states in the dispersion relation
makes very little difference and is even of the wrong
sign; however, the contribution of closed channels such
as N*x does not cancel and is of the correct sign. Then
one can constrain the inelastic spectrum coupled to
the resonance to fit the observed shape correction factor
G(E) near the resonance peak. Assuming that E*zr is
the dominant channel, the N*++N*++~' coupling is
estimated as about 170, which is compared with other
estimates. Furthermore, the inelasticity in the P»
amplitude so predicted is approximately correct.

The solutions that fit the experimental data all have
a zero of G(E) at about 800 to 900 MeV. This is con-
sistent with the analytic properties assumed for P '(E)
and corresponds to a pole in the partial-wave amplitude
which is simulating the t and I channel singularities
that have been omitted. The known short cut due to
nucleon exchange is situated nearer to the physical
region at 938 MeV and has a residue less than half that
of the pole predicted. It is instructive that only when
analyticity is included does a left-hand pole appear
and determine the nucleon exchange parameters.

In Sec. 5, the application of the method to other
resonances and bound states is discussed.

2. EXPERIMENTAL DATA

The data near resonance have been compiled by
Olsson, ' who subtracted the small partial waves from
the experimental total cross section to get the P33 data,
a procedure which should be particularly accurate for
zr+p where the background is very small near resonance.
Then he finds m = 3.236.0~0.5 MeV for Ã*++ and using

' M. G. Olsson, Phys. Rev. Letters 14, 118 (1965).
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3. ANALYTICITY AND UNITARITY FOR THE
RESONANCE PROPAGATOR

Before embarking on a discussion of propagators for
unstable particles it is necessary to recall the rigorous
results proved in field theory for stable particles, in
particular for the nucleon since the complication of
spin is present in that case. The notation of Jin and
MacDomell" will be followed and other references may
be found in their paper. The motivation is to discover

TALK I. The experimental Egg phase shifts 5, elasticities e, and
scattering length a from the references quoted are used at each
center-of-mass energy E to calculate the shape correction factor
G using (1.4).

~ iab
(MeV}

0
120
195
247.5
310
370
410
492

(MeV)

1078
1178
1236
1275
1320
1362
1390
1444

c=0.215&0.005
31.7&1
90

119.3~1.3
136 ~ 1

145 ~1
148 +1
157 ~1

Reference G

0.57~0.013
0.82a0.03
1.00~0.02
1.20&0.12
1.39+0.04
1.58~0.06
1.68+0.06
2.28+0.11

' J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737
(1963).

~A. Loria, P. Mittner, R. Santangelo, I. Scotoni, G. Zago,
B. Aubert, A. Brenner, Y. Goldschmitt-Clermont, F. Grard, G.
Macleod, A. Minguzzi-Rangi, and L. Montanet, Nuovo Cimento
22, 820 (1961).

'W. Troka, F. Betz, O. Chaimberlain, B. Dieterle, H. Dost,
C. Schultz, and G. Shapiro, Phys. Rev. 144, 1115 (1966).' O. T. Vik and H. R. Ruegge, Phys. Rev. 129, 2311 (1963).

P. Bareyre, C. Brickman, A. V. Stirling, and G. Villet, Phys.
Letters 18, 342 (1965).

9 W. Layson, Nuovo Cimento 27, 724 {1963).' V. S. Jin and S.W. MacDowell, Phys. Rev. 137, 8688 (1965).

the parametrization

r(E) =~Cs/(1+ PRs), (2.1)

where y and R are constants, he finds I'(m) =120&2
MeV and R=0.91m'. '. These values of m and I'(m)
are used and fix gts/4rr = 29 from (1.3).

Then G(E) may be calculated from the phase-shift
data using (1.4); the results are shown in Table I.' '

6 is plotted against the c.m. energy E in Fig. 1, and
the results from Table I are shown with the error bars.
The Breit-Wigner approximation is shown and the
expression (2.1) used by Olsson is also plotted with the
value E.=0.91. This parametrization is good near
resonance but leads to a scattering length of 0.276 and
310-MeV phase shift of 133', both of mhich are mell
outside the experimental errors. A phenomenological
form like (2.1) was used by Gell-Mann and Watson'
and revived by Layson, ' and has a theoretical justifica-
tion if the %*Ex interaction is assumed in a non-
relativistic-potential model to have a square-well
potential barrier of radius R when the factor 1+q'R'
comes from the barrier penetration of a P wave.

FIG. 1.G defined by (1.4) is plotted against the center-of-mass
energy E in MeV. G calculated as in Table I is shown by the error
bars, the Breit-Wigner approximation corresponds to G constant
at 1; the Olsson curve corresponds to (2.1), and the curves 8
and R correspond to (4.1) and (4.3), and are the best fit to the
experimental points with the two-channel model, having
gs'/47r =231 and 112, respectively.

suitable scalar functions for propagator and vertex
mhich can be generalized to the case of unstable
particles.

For a stable particle one has a Feynman-diagram
expansion and one can divide diagrams into two classes,
the first class containing those mith a pole at s=m',
and the second class containing those background
contributions with no single line corresponding to the
intermediate one-particle state in s. It is the sum of
diagrams of the first class that mill be discussed, and
for the nucleon one can include contributions from tmo-

body channels to which it is coupled in a straight-
forward manner. For the propagator, the corrections
due to bubble insertions are recalled and only mal states
mill be considered explicitly.

The sum of diagrams of the first class for 7rÃ elastic
scattering with a nucleon s-channel pole is"

Ngl'AFN, (3.1)

6= ((P+E)/2E) P (E)—((P—E)/2E)P (—E), (3.2)

P(E) =Eh, (s)+h, (s), (3.3)

where P(E) is a Herglotz function analytic in the
complex E plane cut along the segments (&)t, & ~)
and with a pole at E=m. t is the threshoM of the lowest
mass physical state coupled to the particle, and is Ew
for the nucleon in strong interaction.

where the proper vertex function I'= [Pl't(s)+I's(s)]ps
for pseudovector and pseudoscalar couplings. The
fermion propagator 6= Pht(s)+As(s) may be ex-
pressed, using the E=gs plane, in terms of one scalar
function
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Q u(p, X)u(p, X)= (P+E)/2E, (3.4)

Introducing Dirac spinors with spin component X,
normalized to 1, for the virtual intermediate nucleon
or antinucleon of momentum p and mass E which
satisfy

where dQ" is the Lorentz-invariant phase-space element
for the intermediate mX state. Now in the case of no
background, the 3f amplitudes are real and cancel
in (3.9), giving

p ~(p,) )e(p, )I)=—(P—E)/2E, (3.S)
ImP(E)=-', Q dQ"

j VI(E,q„,X„)P(E)i' (3.10)

Eq. (3.1) may be rewritten with the help of (3.2) as ImP-1(E)= —I g ~n-~V, (E,q.,~.)~s, (3.11)

Q ugru(p, X)P(E)u(p, X)gru and for a two-body channel with one spin-zero particle

+p ugr. (p,X)P(—E)V(p,z)gru. (3.6)

This expression enables one to define scalar vertex
functions which have a physical interpretation:

V)p" (E,q;,X;)=u(E,X)gru(q;, X;). (3.7)

where the D functions are the usual signer rotation
matrices.

Since the total angular momentum J and component
X are conserved, the unitarity equation for this contri-
bution to xS elastic scattering can be simplihed con-
siderably. Tile fll'st telili 111 (3.6) corresponds to 'tile

intermediate nucleon with J =2+ and the second
corresponds to an additional nucleon-antinucleon pair
which has negative intrinsic parity and so contributes
to J =

~ partial waves. These contributions separate
because of parity conservation, so that the unitarity
equation for the nucleon intermediate state with spin
component X is

In thc lest frRmc of thc intermediate state which ls
the over-all c.m. system, V is the amplitude from a
nucleon of spin —'„magnetic quantum number X, and
mass E, to a 7fE state with momentum along the
direction q; which can be specified by two spherical
polar angles tt, p relative to a fixed coordinate system
such as qf. This expression may be readily generalized
to other channels when (3.6) will factorize. The im-
portance of (3.7)& which allows a natural extension to
unstable particles, is that the virtual particle is repre-
sented as if it were a stable particle of ma, ss K The
angular distribution of the decay of a spin-J state into
a two-body final state with one spin-zero particle is
given by

27+1 '"
Vl(E,q;,4)= Dig, ~*(y,0,0)M(E,J,X;), (3.8)

4x

g 285
ImP '(E) ——-- Q ~M(E,J,X.)~'. (3.12)

8~E 4~ xn

P I(E)= (re —E)

ImP '(E')dE'

(III—E')'(E' —E)
(3.14)

However, P '(E) will only increase as E or less if

the coefficient of E in (3.14) is finite, ' and so a once-

subtl acted dlspcrslon relation cxlsts:

P-'(E) =Zs (nz E)—

Equation (3.11) can also be derived when the back-
ground is nonzero provided that the background itself
is unitary as well as the total amplitude. ""

For no background, the reality of the M amplitudes
allows the P~i partial wave amplitude to be constructed:

e" sinb= —ImP —'(E)/
I
ReP- (E)+' ImP-i(E) j, (3.13)

and for the 5~~ partial wave one could repeat the above
derivation and find, in agreement with MacDowell
symmetry, "that L~' must be replaced by E in (3.13)—.

Our intention is to calculate corrections to the Born
term (Irz E) for ReP—'(E). The expression for
ImP '(E) in (3.11) together with the analytic properties
of P(E) allow this. P '(E) will have no poles assuming
that P(E) had no zeros—this is the simplest case and
the alternatives have been discussed. ""The number
of subtractions needed in the dispersion relation for
P '(E) can be determined since the existence of un-

subtracted dispersion relations' for hi(s) and D&(s)

implies an unsubtracted relation for P(E) in the cut E
plane. Thus P '(E) increases less rapidly than E, and
two subtractions are suKcient and will be taken at m.

ImV), (E,qr, lip)P(E) Vl (E,q;,X;) (m —E) " ImP-'(E')dE'

(res —E') (E'—E)
(3.15)

dQ" VI (E,qr, lip)P (E)VI (E,q„,X„)

XV),*(E,q,X„)P*(E)Vl~(E,q;,X,), (3.9)

"' C. Michael, Phys. Letters 21, 93 i1966).
'2 S. %. MacDovrell, Phys. Rev. 116, 774 (1960).
13 I. S. Gerstein and N. G. Deshpande, Phys. Rev. 140, 31643

(1965}.
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where Z2 is the nucleon wave-function renormalization
co scient.

A similar relation has also been obtained for a stable
spin-zero particle" assuming no zeros of P(s);

P—'(s) =Zs(ms —s)

(rn' s) —" ImP '(s')ds'
(3.16)

(m' —s') (s' —s)

Now from a model for the vertex function V, one can
evaluate ImP ' from (3.11) and then ReP ' from (3.15)
or (3.16) and hence the partial-wave amplitude using
(3.13).For instance, treating the deuteron as a spin-zero
particle with an S-wave coupling to neutron-proton
leads to a result using (3.16) very similar to that
obtained by steinberg" in a nonrelativistic manner.

The existence of an unsubtracted dispersion relation
for P(E) and thus (3.15) means that ImP '(E) and
hence

~
M

~

' must increase less rapidly than E.However,
for the SXx Born pseudoscalar coupling with I'i(s) =0
and I' s(s) = 1, one finds from (3.7) and (3.8)

M(E;,',X )/f(2')'"= g((Ef ns)/—2m)'"2) flip f, (3.17)

where E~ is the final nucleon total energy. Therefore,
~M~' increases as E and the Born vertex model has
incorrect high-energy behavior. Moreover, I'(E)
=Ei'i(s)+I's(s) has the same cuts as P (E) and it obeys
an unsubtracted dispersion relation. Its discontinuity
across the cuts is proportional to the background, so
that if one neglects background, I'(E) is identically
zero unless I'(E) has a pole."However, within the spirit
of keeping only EE~ vertices, the background will
include nucleon exchange contributions from the I
channel.

For an unstable particle such as the Ã*(1236), the
division into two classes of Feynman diagrams discussed
for the nucleon cannot be proved, although the assump-
tion made is that the resonance contributes entirely by
an analog of the first class of diagram. In the approxi-
mation that the S*E~ vertex is negligible compared
to X*E*m, one mould treat the E* as a stable particle,
and so the propagator formulation for an unstable
particle is more likely to be a useful approach if closed
channels on aggregate have stronger couplings to the
resonant state than do open channels. The factorization
(3.6) is easily generalized to the unstable-particle case
since the vertex amplitudes are readily defined. That
the factorization is valid away from the resonance peak
is an assumption suggested by the virtual-stable-
particle result.

The singularities of P '(E) for an unstable fermion.
will include the cuts E&t, E(—t suggested by the
stable case and also ReP '(E) will have a zero at E=m,

~4 B.V. Geshk. enbein and B.L. los, Zh. Eksperim. i Teor. Piz.
44, 1211 (1963) LEnglish transl. : Soviet Phys. —JETP 17, 820
{19m)g."S. 'tvVeinberg, Phys. Rev. 137, 672 {1965).

where m is the real resonance mass defined in this
manner. Assuming again no zeros in P(E), one will
have the dispersion relation for P '(E) to evaluate the
real part from the imaginary part given by (3.12). The
model with no background imphes that P or V must
have all the known left-hand partial-wave singularities,
whereas in the stable-particle case they have only
right-hand cuts. In keeping with the approach of
treating the unstable particle as a stable one which has
wandered above a threshold, the dispersion relation
for P '(E) is approximated by retaining in case 8 both
cuts 8)t, 8&t or in case 8 keeping only the right-hand
particle cut E)t. In this latter case, diagrams with an
S*E*pair produced are also neglected, and this is
reasonable since these contributions have vertex func-
tions which are off mass shell by at least twice the
nucleon mass. In both cases the content is the E* s
channel resonance with all inelastic channels to which
it is coupled in an analytic and unitary model. "

The model for the decay vertices must now be con-
structed generalizing (3.7). The S* is described by a
Rarita-Schwinger spinor for spin —,

' and mass E nor-
malized to 1, in analogy with the nucleon spinor of
mass E used above. Thus the E* polarization sum
operator, o6 mass shell, has been constructed in such a
way that no spin--', contributions due to failure of the
Rarita-Schwinger subsidiary conditions off mass shell
will appear. Thus an irreducible spin-~ theory would
give the same results. The unstable particle spinor of
virtual energy E is represented as a stable-particle
spinor mith the same quantum numbers and, mass E,
just as the stable-particle spinor was represented when
the stable particle had a virtual energy above a thresh-
old and so could decay. This approach gives decay
amplitudes with the correct angular and threshold
properties.

These considerations give the motivation for writing
the resonance contribution to scattering in a vertex-
propagator-vertex formalism for which rules similar to
Feynman rules can be established. One must be careful
not to count twice since the Ã* direct-channel contribu-
tion includes the eQect of nucleon exchange, so that
the latter contribution must not be thought of as back-
ground. Now one has a formalism which is a relativistic
generalization of the Breit-signer formalism and which
applies even if the resonance width is comparable to
the energy of the resonance above the relevant
threshold.

The result (1.3) for the partial width to Xs. is ob-
tained by using (1.2) and (3.8) to calculate the reduced
matrix element M(E, s,X), and then using (3.12) to
obtain I't(E)= —2 ImP '(E). In order to have an
asymptotic behavior of 8 as in the nucleon case, the
scaling mass mo is put equal to E. This is at our disposal
since the vertex amplitude (1.1) was introduced only

I R. H. Dalitz and D. G. Suther1and, Phys. Rev. 146, 1180
{1966}.
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to give the correct thresholds and to be relativistically
invariant. The high-energy behavior is not to be trusted
since it corresponds to a derivative coupling; instead
one requires the high-energy behavior to be no worse
than tha, t in the pseudo scalar-coupling case. The
dispersion relation (3.14) that will be used will then
converge and the high-energy behavior will not be
dominant. This is particularly so in case 8, since both
cuts have the same discontinuity asymptotically and.
the cancellation improves the convergence by an extra
power of E.

The propagator model has the advantage that any
number of inelastic channels can be included in (3.14)
which is still a single integral. In an X/D approach,
inelasticity may be incorporated, '~ but explicit many-
chann. el calculations are dificult. The result (3.14) in
an E/D channel matrix notation is obtained by
approximating E;;= V~V;/(m E) whi—ch has no other
singularities than a simple pole at the resonant or
bound-state mass. Then if D,, =5,,D(E), one identifies
P-'(E) = (m E)D(E) a—nd therefore G(E) =Re D(E).

Among the closed channels which are coupled to the
resonance, one might expect the E*z channel to be
dominant. Another possible channel is nucleon with
S-wave mz interaction, which has a low threshold but
a D-wave coupling and is less tractable in any case.
The E*E~m vertex has a I'- and F-wave coupling, and
the former is expected to be the more important and is
retained. Then for the P-wave E*++%*++a'vertex,

Vy(E, q, hi) =ggU('(E, X)y(,U„(q,Xr). (3.18)

This corresponds" to a partial decay width of
S*++—+ S*z of

r, (E)= (-;pi)——
4~ E' (E+&,) (E+ a,)

(2Er—miv+ '
X 1+~, (3.19)

3m~*

where t&, a& are ns~*~m, and E~ is the total energy,
in the decay rest frame, of the decay product E*which
has been assumed to have a 8-function mass distribu-
tion. This expression has too 1arge a high-energy limit
because of the last factor, which corresponds to the
crossed threshold for x —+ N*S~ having S- a.nd D-wave
parts. This D-wave component is neglected, so that the
factor is replaced by its value at threshold, E= t2..

5 gg' qg' 10 E'
I' (E)=———X— . (3.20)

9 (E+i,)(E+a,)
In order to test the sensitivity to the high-energy
behavior, the last factor in (3.20), which now corre-
sponds to the 5-wave threshold for S*E*xproduction

' P. AV. Coulter and G. L. Shor, Phys. Rev. 141, 1419 (1966).
Is

y G. Ruthbrooke, I hys, Rev. 143, 1345 E,'1966).

from vacuum, may also be put equal to its threshold
value.

The alternatives to employing a twice-subtracted
dispersion relation for P '(E), and truncating the
unstable-particle Born terms to converge, are to modify
the Born terms either by a straight cuto8, or by a
structure factor such as that introduced in Sec. 2. Then
one could use the once-subtra, cted relation (3.15) and
discuss the value of Z needed to 6t the data. The
structure factors for the inelastic channels would
introduce too many parameters, however.

(I—
E)(

—-'r (E')dE'
(4.1)

(m —E')'(E' —E)

where there is a principal value at Z&'=E if ~E~ )3,
where t is the lowest thresho1d, and for unstable particles
there is a double principal value at A'=m, which is
interpreted by

j(x)dx

(m —x)'

f(~)d* f(~)=I' (4 2)

In case E, mentioned above, one has only the pa, rticle
cut) and

(E—m) "
—,'-rr(E')dE'

G(E) = I+- or, (m —E')'(E' —E)
(4.3)

The effect of including the Sm contributions given
by (1.3) is small and of the wrong sign; however,
including X*~ contributions given by (3.20) one has a
further effect which depends on g~. In each of the cases
8 and E, m and g~ were 6xed as in Sec. 2 and g2 was
adjusted to give a value of G(E) that fitted the experi-
mental scattering length at threshoM. The resulting
expressions for G(E) a,re shown in Fig. 1 and compare
favorably with the data over a wide region. The
%*++%~++a' couplings so obtained were 231 and 112,
respectively for 8 and E.. As a check, the last factor in
(3.20) was set equal to its threshold value and values of
225 and 192 were obtained. . Furthermore, a dispersion
relation in the s plane with a cut s&t', which weighted
the high-energy contributions differently again, gave
results similar to case E. The results in case 8 are less
dependent on the high-energy behavior, since there is
an extra power of convergence due to the cancellation
between the cuts. However, the effect of the anti-
particle cut at twice threshold energy below the physical
region for F33 is not significant, since the intervening
cuts due to m- and t-channel exchange have not been
included. The conclusion is that, assuming the vertex

4. COMPAMSON OF RESULTS

From (3.14) the correction factor G(E) due to bubble
insertions in the propagator is, in case 8,
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model which has Born-term threshold factors and
diverges as E, and assuming S*x as the dominant
closed channel, the 1V*++1V"++s' coupling gs'/4rr will

be about 170.
Including the SU(3) analog channels, which are

X+X+, 1V"++js, Ft+*(1385)E+ with SU(3) coupling
constants but physical thresholds, would necessitate a
reduction of gss/4s. from 170 to 130. Sakita and Wali's"
relativistic SU(6) scheme predicts gs/4rr=75, while
Sutherland" using Adler %eisberger techniques finds a
result gss/47r=136»+4'

The inelasticity p above the iV~7t- threshold in the P»
partial-wave amplitude is also predicted on this
resonant-dominated model:

2i
(4..4)

( —E)G(E)—s(-', r,+-',-r,)

(I't —Ps)'+4G'(m —E)'

(I' t+Ps)'+ 4G'(m —E)'
(4 5)

Using the values for g~ obtained by fitting G to the
shape of the real part of the phase shift near the resonant
region, one can calculate rl by (4.5) and it is compared
in Fig. 2 with the experimental data from the phase-
shift analysis of Bareyre et al. The agreement is
approximately correct and the phase-shift data could
have had even more generous errors. The removal of
some of the inelasticity to higher threshold channels
would improve the prediction, but the data do not
warrant this precision. In principle, the nature of the
inelasticity in the P3~ partial wave could be investigated
experimentally to check if it were A*x.

The phase shift 8' increases anticlockwise by 180' on
this mode1, as experiment suggests; however this does
not imply a Castillejo-Dalitz-Dyson (CDD) pole since
the phase shift 5 returns to zero. It is e and 6 that are
significant in this resonance model. For the single-
channel cases, E~ Xm or equivalently E~ ~ E*m.,
G(E) decreases and changes sign at an energy of several
GeV and this corresponds to a phase shift decreasing
bv s.. In the 1V*~ 1Vs. case, G(E) changes sign similarly
and corresponds to a phase shift which returns to zero
asymptotically. However, in the two-channel model
one has a superposition of the two types of behavior
and 6' increases by 180' while 8 does not. This model
circumvents the usual difficulty with a no CDD pole
solution, namely that 6 turns back too soon, since in
our case the second channel pulls it round. The CDD
ambiguity arises in the propagator formalism by the
possibility of zeros of the propagator which require
poles of the inverse. The simplest assumption of no
such poles has been assumed in writing (3.14).

As Fig. 1 shows, G(E) has a zero below threshold
which &vill correspond to a pole of a». This is consistent

» B. Sakita and K. C. %Vali, Phys. Rev. 139, B1355 (1965)."D. G. Sutherland, Nuovo Cimento 68A, 188 (1967).
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FIG. 2. The inelasticity from Bareyre et al. (Ref. 8) is shown by
the error bars against pion lab kinetic energy in MeV, and the
smooth curves 8 and R correspond to (4.5) with gss/4s =231 or
112 and G(E) calculated according to (4.1) or (4.3), respectively.

with the analytic properties assumed for P '(E) and
is simulating the neglected t- and I-channel singularities.
The dominant left-hand singularity is thought to be
the nucleon-exchange short cut, which in the Chew-Low
model contributes a pole"

g' gs/4rr
833=-

E' 3 (E—mrs)
(4.6)

where g'/4s- is the 1V1Vs' coupling. Equating position
and residue of this pole with that predicted corresponds
to a ÃXx coupling of 60 or 29 and nucleon mass of 812
or 905, respectively, for cases 8 and R. These poles
have too large a residue and are too far left, but the
effect of the other known singularities would be in this
direction. It is particularly interesting that without
including inelastic e6'ects no such left-hand poles would
have been predicted.

Part of the original reason for considering resonant
propagators in this manner was to calculate the eGect
of the correction G(E) on the exchange diagrams. Form
factors at the vertices, or absorption corrections, are
needed but if G(E) were between 3 and 10 for the
u-channel region this would reduce baryon exchange
contributions to the magnitude required. However, as
can be seen from Fig. 1, the value of G(E) is not tied
down at all accurately except near the s-chaInnel

physical region.

5, DISCUSSION

The propagator formalism discussed for the 1V"(1236)
and nucleon in Sec. 3 can be generalized in a natural
way to boson and fermion resonances of any spin. The
resulting expression factorizes into the incoming and
outgoing vertex amplitude and the part common to all
channels, the propagator. The spin and threshold
dependence of the vertex is most easily accounted for
by using the pseudo-Lagrangian method with the
spinor or polarization tensor for the resonance con-
structed as if it were a stable state of mass E. Then the
width of the resonance as a function of energy is related

"S.C. Frautschi and J. D. 7Valecka, Phys. R.ev. 120, 1494
(1960).
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by unitarity to the coupling constant and vertex
amplitude. The uncorrected real part of the inverse
propagator will be m —E for fermions, and m' —s for
bosons, since the particle and antiparticle contributions
to the partial wave have the same parity and can be
added in the latter case.

There will be corrections duc to background. , struc-
ture at the decay vertices, and the requirement of an
analytic propagator. It is this last correction that will
bc dlscusscd fol dlff ercnt I'csonRnccs Rnd bound
states.

The most straightforward generalization is to the
other members of the baryon decuplet. Using SU'(3)
coupling-constant relations, the effect of channels of
the type BE and B*Eon the asymmetries in I"q~(1385)
and *(1530) an.d the correction to the 0 bound state
pole in "Z scattering were obtained. These cannot be
checked because elastic-scattering data do not exist;
however, one point of interest is that this model is

analytic and predicts the position and residue of the
complex pole in the lower half-plane. One can then
check whether the Gell-Mann —Qkubo mass formula is
as well satisfied by these predicted pole parameters as

by the mass and. width defined in Sec. 1."Furthermore,
left-hand poles are obtained for each state and may be
compared with expected contributions. Thus the pole
at 1340 MeV in the 0 propagator can be identified
with Z exchange and leads to a '2'IP coupling of 8,
to be compared with 15 since SU(3) equates this to the
EE7r' coupling irrespective of the DjF ratio.

For the nucleon, the method of Sec. 3 gives the
coI'I'cctlons duc to 3 'Ir lntcl Incdlatc stRtcs ln th. c
propagator and these amount to a reduction by a factor
of 1.24 at threshoM in I'gg and by a factor of 6 in Sip.
The 6rst-order perturbation theory gives scattering
lengths respectively 2.1 and —16 times the observed

values, so that the disagreement is reduced substan-

~' The author thanks R. H. Dalitz for drawing this point to his
attention. I&'or a symmetric E*resonance, the complex pole would
be at 1236—60i MeV on the unphysical sheet of the energy plane;
however, the analytic propagator model accounts for the observed
asymmetry and positions the pole at 1214—52i MeV. This decrease
of 22 MeV in the real part of the energy is much larger than the
corresponding predicted decreases of 5, 1, and 0 MeV for the F*,

*„and stable Q . The equal-spacing rule for the decuplet, which
agrees satisfactorily for the masses defined as in Sec. 1, is thus
some 15 MeV out of agreement using the complex pole positions.
This highlights the dif6culty in de6ning unambiguously the
parameters of a broad resonance.

tially by the inclusion of E7r states in the unitarity
relation. Exact agreement is not anticipated, since
there will be large background effects due to diagrams
of the second class. It would be interesting, however,
to calculate the nucleon s-channel pole contribution
with the effect of all inelastic channels included, since
then by subtraction from the observed I'~~ data the
resonant structure of this wave could be investigated.

Sufhcient data do not exist on other resonant states
to check the asymmetries calculated. When e+e

colliding-beam experiments are performed, the p-meson

shape shouM be well determined and one might usefully
relate this to the spectrum of closed channels coupled
to this resonance. This would be particularly interesting
since the p phase shift off mass shell has many applica-
tions. In general, the g2t+' factor for the l-wave decay
of a resonance does not seem to be supported experi-
mentally, so that we must introduce a structure factor
or the propagator correction factor, or even both.

The propagator formalism also provides an alterna-
tive method to effective-range theory for discussing
5-wave bound states and resonances in an ana]ytic
framework. One uses a once-subtracted dispersion
relation for I ' with Z=0, and as input only the mass
and branching ratios Rre needed since the over-all.

coupling constant is determined. from these. For the
deuteron with an 5-wave coupling to ep, the predicted
scattering length is 4.45 F and effective range 0.27 F.
The large (1.73 F) experimental effective range pre-
sumably comes from the m-exchange contribution.

For the FP(1405) with 8-wave couplings to Z~ and

KiV, the results are again an effective-range prediction
for EE 5-wave scattering. A width of 35 MCV for the
Fo~ gives a scattering length of 1.51—i 0.51 F and effec-

tive range of 0.39 F. Thus, compared to effective-range

theory, one has the bonus of the predicted small positive
effective range which is indicated experimentally. "
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