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Section I of this report deals with attempts to construct infinite-component wave equations with mass
spectra that are free of unphysical features. An example is given of a second-order relativistic wave equation
whose mass spectrum, both the discrete and the continuous part, is precisely the same as that of the non-
relativistic hydrogen atom. Section II deals with the nonrelativistic hydrogen atom, without any approxi-
mations. It is shown that the Schrodinger equation is equivalent to a nonrelativistic analog of Majorana-
Nambu wave equations. The Hilbert space of all the states, including the continuum, is profitably and
economically used as a representation space for a unitary, irreducible representation of the group SO(4,2).
The dipole operator is an SO(4,2) generator. The theory is generalized to arbitrary frames of reference by
application of Galilei transformations. The generators of Galilei transformations also belong to the SO(4,2)
algebra. What results is a field theory of the hydrogen atom. The exact electromagnetic interaction, in-
cluding all multipoles, takes the form of a local interaction between the electromagnetic field and the
infinite-component hydrogen field. In Sec. III the significance of all this for hadron physics is discussed.

INTRODUCTION AND SUMMARY

'ANY physical ideas that are being applied to
- ~ elementary-particle physics have been borrowed

from the theory of atomic systems, in spite of both
conceptual and technical diKculties. Perhaps the most
extreme example is the idea' that baryons are made up
of three quarks, bound together by virtue of a quark-
quark "potential, " the main difhculty of which is the
necessity of postulating a tremendously strong, and
completely unknown, potential. In view of the fact
that the triton withstood successful theoretical analysis
until recently, although the nucleon-nucleon potential
was known to a considerable accuracy, one has to admire
the power of positive thinking that makes it possible
to cull experimental predictions from the quark picture. '
Conversely, some ideas that have originated in strong
interaction physics could pro6tably be applied to atomic
systems, not because of the intrinsic interest of atomic
physics, but for the purpose of testing and sharpening
the ideas. The Gell-Mann —Okubo mass formula' 4 has
been applied to comparatively small multiplets of
elementary particles, and for this reason the precise
analytic form of the formula cannot yet be obtained
from experiment; thus it is a matter of controversy
whether the mass, or the square of the mass, is to be
represented by the formula. If it could be shown that
the infinite multiplet of levels of the hydrogen atom
satis6es a version of the Gell-Mann —Okubo formula,
then this would probably be instructive. Another
example, about which the same comments can be made,
is the notion that weak and electromagnetic currents

* Supported in part by the National Science Foundation.' M. Gell-Mann, Phys. Letters 8, 214 (1964); G. Zweig, CERN
Report Nos. Th. 401 and 412, 1964 (unpublished).

'For a recent summary of many applications of the quark
picture, see the talk by R. H. Dalitz, in Proceedings of the XIIIth
International Conference on High-Energy Physics, Berkeley, 1966
(University of California Press, Berkeley, 1967).' M. Gell-Mann, California Institute of Technology Synchrotron
Laboratory Report No. CTSL-20, 1961 (unpublished).

S. Okubo, Progr. Theoret. Phys. {Kyoto) 27, 949 (1962).
~ M. Gell-Mann, Phys. Rev. 125, 1067 {1962);Physics 1, 63

(1964); Phys. Letters 8, 214 (1964).

satisfy certain local commutation relations, ' or that
they are matrix elements of generators of Lie al-
gebras. '

The suggestion that elementary-particle theory be
tested on atomic systems became particularly attractive
when the close analogy between the SU(6) theory of
Gursey and Radicati, ' and Sakita, ' on the one hand, and
the SO(4) symmetry of the nonrelativistic hydrogen
atom' on the other, was appreciated. ""However,
initial attempts to implement this program failed be-
cause of the great contrasts that appeared to distinghish
atomic from hadronic physics. First, the "mass formula"
for hydrogen does not betray a close relationship to the
Gell-Mann —Okubo formula. Second, the idea that elec-
tromagnetic currents are somehow associated with
generators of a Lie algebra seemed to be contradicted
by the facts. According to the original phenomenological
approach" to the SO(4,1) group of the hydrogen atom,
the generators have the property of connecting states
with principal quantum numbers e, e' that differ by at
most one unit, while the experimental transition ampli-
tudes are appreciable for very large values of e—e'."

' The electromagnetic charge was associated with a generator of
isospin PW. Heisenberg, Z. Physik 77, 1 (1932)j.The strangeness-
nonchanging weak currents were associated with the other genera-
tors of isospin t R. P. Feynmanand M. Gell-Mann, Phys. Rev.
109, 193 (1958)J. Other weak currents have been associated with
generators of higher symmetry groups LR. E. Behrends and A.
Sirlin, ibid 121, 324 (1961);.and M. Gell-Mann, Ref. 3). Finally,
magnetic moments have been related to SU(6) generators PM. A.
B.Beg, B.W. Lee, and A. Pais, Phys. Rev. Letters 13,314 (1964)J.

7 F. Gursey and L A. Radicati, Phys. Rev. Letters 13, 299
(1964).

B. Sakita, Phys. Rev. 136, B1756 (1964); Phys. Rev. Letters
13, 643 (1964).' V. Fock, Z. Physik 98, 145 (1935).

~o Y. Dothan, M. Gell-Mann, and Y. Ne'eman, Phys. Letters
17, 148 (1965)."C. Fronsdal, in ProceeCings of the Seminar on High-Energy
Physics and Elementary Particles, Trieste, 1964 (International
Atomic Energy Agency, Vienna, 1964)."A. O. Barut, P. Budini, and C. Fronsdal, Proc. Roy. Soc.
(London) A291, 106 (1966)."See, e.g., the review article by H. A. Bethe and E. E. Salpeter,
in Handblch der Physik, edited by S. Fliigge (Springer-Verlag,
Berlin, 1957), Vol. XXXV, p. 8.
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It is our intention to show that the great obstacles
that confront attempts to apply theoretical atomic
physics to experimental hadron physics, or vice versa,
can be overcome by recasting both atomic and hadronic
physics into the formalism of infinite-component local
Gelds.

Section I of this report deals with attempts to con-
struct infinite-component wave equations with mass
spectra that are free of the unphysical features that
characterize the first example of such equations: the
Majorana theory" of 1932. In this theory the mass spec-
trum has a discrete part, consisting of an infinite number
of points that accumulate at p'=0, and a continuous
part that is entirely unphysical since for this part
p'(0."The discrete part of the spectrum has been im-

proved by Nambu, "who obtained hydrogenlike bound-
state spectra. An example is given (in Part I, Sec. 4) of a
second-order relativistic wave equation whose mass
spectrum, both the discrete and the continuous part, is

precisely the same as that of the nonrelativistic hydro-
gen atom. '7

Section II deals with the nonrelativistic hydrogen
atom, without any approximations. It is shown that the
Schrodinger equation is equivalent to a nonrelativistic
analog of the wave equations studied in Sec. I, and
that the methods used there to find the discrete arid
continuous parts of the mass spectrum yield, respec-
tively, the bound states and the scattering states of the
hydrogen atom. The Hilbert space of all the states, in-

cluding the continuum, is profitably and economically
used as a representation space for a unitary, irreducible
representation of the group SO(4,2)."It turns out that
the dipole operator is a generator of the SO(4,2) algebra.
The theory, Grst treated in the hydrogen-atom rest
frame, is generalized to arbitrary frames of reference by
the application of G-alilei transformations. The genera-
tors of Galilei transformations also belong to the SO(4,2)
algebra. What results is a Geld theory of the hydrogen
atom. It is found that the exact electromagnetic inter-
action, including all multipoles, takes the form of a
local interaction between the electromagnetic field and
the infinite-component hydrogen Geld.

In Sec. III the significance of all this for hadron

"E.Majorana, Xuovo Cimento 9, 335 (1932). See also D. M.
I radkin, Am. J. Phys. 34, 314 (1966). The Majorana theory was
rediscovered and generalized by I. M. Gel'fand, A. M. Yaglom,
and M. A. Naimark; the work of this group is summarized by M.
A. Naimark, in Linear Representations of the Lorents Group (Perga-
mon Press Ltd. , London, 1964).

"The existence of the continuous part, with its unphysical
spacelike momenta, was pointed out by E. Majorana (Ref. 14)
and V. Bargmann )Math. Rev. 10, 583 (1949)).

I6 Y. Nambu, University of Chicago Report No. EFINS 66—65,
July, 1966 (unpublished); and in Proceedings of the XIIIth
International Conference on EIigh-Energy Physics, Berkeley, 1966
(University of California Press, Berkeley, 1967}.

"A. 0. Barut and H. Kleinert )Phys. Rev. {to be published) j
have considered an equation that, besides the hydrogen-like
solutions considered by the authors, has additional unphysical
solutions.

"The role that this group is found to play diBers considerably
from that assigned to it in Ref. 10.

physics is discussed. It is shown that the quark picture
can be transformed into a relativistic theory of infi»ite-
component local fields, and that results derived from the
quark picture can be justified even if quarks do not exist.
The mass spectrum of the 35-piet of mesons is accounted
for by means of a second-order relativistic wave equa-
tion. The relevance of the hydrogen atom for the under-
standing of current algebras is discussed. It is shown
that the methods that have been developed for the cal-
culation of hadron from factors in relativistic SU(6)
theory" can be applied to the hydrogen atom, providing
a very short and direct calculation of atomic transition
form factors. Finally a relativistic wave equation is
presented that, in addition to an entirely physical mass
spectrum that coincides with that of the nonrelativistic
hydrogen atom, gives hydrogenlike form factors
with the correct position of the anomalous threshoM
singularities, and reduces to the Schrodinger equation
in the nonrelativistic limit.

L SEARCH FOR EQUATIONS WITH
Rm LISTIC MaSS SIECTRA.

1. The Internal Symmetry Group

Investigations of first- and second-order wave equa-
tions for multiplets that transform irreducibly under
the spin group SJ.(2,C) have shown that unphysical
mass spectra always result" "" hence it becomes
necessary to consider reducible representations. If
SL(2,C) is embedded in a larger symmetry group S, and
if the fields are associated with an irreducible representa-
tion of S, then the reduction with respect to the SL(2,C)
subgroup will usually yield an infinite number of ir-
reducible SL(2,C) multiplets, and the 6elds will trans-
form reducibly with respect to SL(2,C). The reducible
representations that are constructed in this way are, of
course, of a highly specia1. ized sort. It is worth emphasiz-

ing, however, that the level structure of important
physical systems are precisely of this nature. This is
true of the harmonic oscillator, " and it is true of the
hydrogen atom. '0 "

The simplest nontrivial choice of the group S is the
4+1 Lorentz group, SO(4,1). Because the study of
representations of this group is greatly facilitated by the
use of a Gve-dimensional notation, it is perhaps neces-

sary to emphasize that the system under discussion is
an entirely physical one, confined to a four-dimensional
space time. The infinitesimal generators sg~= —spy,
A, 8= 0, 1, 2, 3, 4 of SO(4, 1) satisfy the following com-
mutation relations:

[SAB)SCD] $(gACSBB+ gBDSAC gBCSADgADSBC)q.
"G. Cocho, C. Fronsdal, H. Ar-Rashid, and R. White, Phys.

Rev. Letters 17, 275 (1966); and Trieste Report No. IC/66j8&
(unpublished).

"C. Fronsdal, preceding paper, Phys. Rev.-156, 1653 (1967).
I"or reasons that are explained in that paper, our search for wave
equations is always restricted to di6'erential equations."A. O. Barut, Phys. Rev. 139, 31433 (1965).
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The subalgebra spanned by s,~, a, b = 1, 2, 3, 4 generates
the maximal compact subgroup SO(4); this group will

be loosely associated with the degeneracy group of the
nonrelativistic hydrogen atom. Common to both of
these subalgebras is the subalgebra of the three-dimen-
sional rotation group; it is spanned by s;,, i, j= 1, 2, 3.

2. Some Representations of 80(p, l)
The representations of the group SO(4,1) have been

studied by many authors, "but a short description of a
special series of representations must be included here
for completeness. In order to facilitate comparison with
the more familiar representations of SO(3,1) and
SO(2,1), it will be convenient to study SO(p, 1) for
arbitrary (positive integer) values of p, although the
value p= 4 is the only one that has actual interest.

An irreducible representation of SO(p, 1), suitable for
describing the hydrogen atom, belongs to a family of
particularly simple representations that may be labeled
D(E), where S is a complex number. These representa-
tions are unitary if either

X=—s(p —1)+ip, p= real
ol

—(p—1)&X&0. (I 2)

The irreducible representation D(X), with X in the
range (I 1), may be described analytically as follows. Let
sg denote a set of p+1 real variables that are restricted
to the cone

u

s —sg —sp ~ sg —0 ~
2 — 2—Y 2 —0

a=1
(I 3)

These variables have nothing whatever to do with space-
time coordinates. The carrier space for D(Ã) is the
Hilbert space H~ of all functions f(s) that satisfy the
condition of homo gemei ty

where the metric tensor g~~ is a diagonal matrix with

gpp= 1, ggy= ' ' =g44= —1. The subalgebra spanned by
the generators s„„, p, v=0, 1, 2, 3, is the algebra of
SL(2,C); and the generators of Lorentz transformations
are2p, 22

/ 8 8
L„„=il x„-—x„+s„„.

Bx" Bx"

It is easy to verify that (I 4) and (I 5) are compatible if
and only if X is in the range (I 1)."Let g be an element
of SO(p, 1); that is, g is a real, unimodular, (p+1)-
dimensional square matrix with the property that
s = sg implies s"=s' for all s. Then a unitary irreducible
representation of SO(p, 1) is obtained by associating
with every g in SO(p, 1) the linear operator T, in B~,
where

2'. :f(s) ~ f(sg). (I 7)

The unitarity of this representation is ensured by the
invariance and positive definiteness of the inner product
(I 6); irreducibility will become obvious later.

An algebraic description of D($) may be obtained by
introducing a basis in II~. A complete orthogonal set of
basis functions in B~ is provided by the functions

f~, =ss" 'I'~, (sr, . ,s,),

8 8 )
s =i s —s I, W,a, =0,1,",p. (I9)

as~ rls"I

Application of one of these operators to one of the basis
functions (I 8) yields a finite linear combination of
the basis functions, and hence an algebraic representa-
tion of the Lie algebra. Examination of this algebraic
representation shows that the representatives of sg~ are
Hermitian" not only when S lies in the range (I 1),but
for real S in the range (I 2) as well.

In order to exhibit this algebraic structure in some
detail, it is convenient to introduce an alternative
description of D(E). The following method has already
been applied to other Lie algebras. " Consider the
symmetric and traceless tensor

where the p-dimensional spherical polynomials F~, are
homogeneous of degree l in the P variables. For each
fj.xed value of t, the Fg, span a 6nite-dimensional
subspace that carries an irreducible representation of
the compact subgroup SO(p). In the case p=4, n is
identi6ed with the pair l, nz of angular-momentum
quantum numbers, with the range m= —l, —l+1,~, l; and t=0, 1, t. The in6nitesimal generators
s~s of the transformations (I7) are

f(Xs) =Hf(s), (I 4) 4'Ag "Ay sAg' ' '4@pi Ag, . =0,1, p. (I 10)

and of eormalisability

where the inner product in H~ is denfied by

(f,g) = f*(s)g(s) ~(s') ds— (I 6)

"P. Budini and C. Fronsdal, Phys. Rev. I etters 14, 968 (1965).
23 L. H. Thomas, Ann. Math. 42, 113 (1940); T. D. Newton,

&b~. 51, 730 (1949). J. Dixmier, Bull. Soc. Math. France 89, 9
(1961).

For every positive integer value of S this tensor pro-
vides a basis for an irreducible, 6nite-dimensional repre-
senation of SO(p, 1). The reduction of this representa-

'4 C. Fronsdal, Lectures given at the NATO Advanced Study
Institute held in Istanbul, 1966 t %. H. Freeman and Company,
San Francisco, California (to be published) j.

2' lt would be more accurate to say that the s~z can be made
Hermitian by appropriate normalization of the basis vectors. The
simplest way to see that this is possible only when E is in the range
(I 1) or (I 2) is to examine the invariant (I 15). The requirement
is that all the coeKcients must 'be positive."C. Fronsdal, Trieste Report No. IC/66/51 (unpublishedl.
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tion with respect to the subgroup SO(p) is given by

A] « ~ «Ag

(2N+& —tt+ p —3)!!=S
t=o, i," a=t, t+2." (N+t+p 2)!—

XQ(N, f,S)gAt+tAt+2' ' gA„ tA

X4„+,' ttAN', (I 11)

a(1V,t, t2)=s
1 ol,=" , n t, t+2="(g+f+p 2)!!—

X HAt+tAt+2 OA«-1A«~A«+1 AN 1 ( 12)

where S stands for symmetrization in the indices,

OAB gAB OA OB

(2!+p —2)!!N!
u(N, f,tt) = (—1)&" '&'2

!!(n —t)!!(N —tt)!

and tPA, ...A, is the traceless projection of

—O~ &I. . . O~ & ~I.
A1« ~ At, OAq ' ' 'OAq .y'BI" B&0 "0.

From (I 9), (I 10), and the deinition of gA, ...A„ it
follows that the generators sA~ act on these tensors as
follows (c)b= 11 ',p):

2SabtPAt ~ At Q ('!t A tPAta5tAt 3~ OA~ 441 "a At) 1 (I "13)

with the result"

(3 N*—1)!—(2t+p —2)!!
(4,!t")= 2—

1-o (t+N+ p 2)—! t!
XPAt "Aty'

A (I 15)
PAt At- (!I, )tt

Hermiticity of the operators (I 13) and (I 14) is seen to
be satisfied if and only if N is in the range (I 1) or in the
range (I 2). Irreducibility of these representations is now
obvious. Finally it may be noted that D(N) is equivalent
to D(N') if N+N'= —(p —1).

Of special interest in connection with wave equations
is the question of the existence of a set of p+1 matrices
FA that transform among themselves in the same way
as the sA (generalized Dirac matrices, or more properly
generalized Majorana matrices). At 6rst sight it may
appear that the sA themselves can be interpreted as
operators in B~, and hence represented by matrices.
This is not the case, however, because sAf(z) has a
different degree of homogeneity, namely N+1; thus
sAf(s) is an element of EN+i. A special situation arises,
however, when N= —p/2, for D(—p/2) is equivalent
to D(—P/2+1). In this case, matrices I'A exist and may
be determined as follows. From (I 9) and (I 14) the result
of applying s,o to so!tA, ...A, is calculated. If N= —P/2,
then there exists, because of the equivalence just
referred to, a numerical function I'o(t) such that the
tensors I'o(/)pA, ...A, transform among themselves like
the tensors sotPA, ...A„and a short calculation shows that
this function is determined up to a constant factor to be

I"o=1+2p 1. —
The other I' matrices may be computed in a similar way,
or they may be determined by means of their trans-
formation properties:

t(N+&+ p—2)
ZSa Ott'A1 ~ ~ A t (N !)tea A1 ~ ~ A t+

ts o, ro]=$1, 9=1 ' p.
The result is

I atpAt" At (~+2p)4'«A1 "At

(I 17)

~gA1 A2 ~ ~ A g ~AIA3 aA3 ~ ~ 'A $

2&+p —4

These formulas provide an irreducible representation of
SO(p, 1) for almost every complex value of N, although
the derivation is strictly valid for positive integer values
only. For positive integer values of S, the range of t
is from 0 to E, but for other values of E there is no
upper limit on t. The meaning of the number t is exactly
the same here as in (I 8); each tensor pA, ...A, carries an
irreducible representation of the SO(p) subalgebra, and
the components of this tensor are the spherical functions
Vg, .

The invariant inner product may be determined in
the manner described previously" for the case p=3,

[IAt IB1= ZSAB
A (I 19)

that is, the operators sA~ and I"A realize a unitary,
irreducible representation of SO(p, 2). (Thus, it would
be quite appropriate to write sAo instead of I'A. )

"The tensor p*"&"' & transforms like z"& ~ z N, and p* 1 "
corresponds to z0N 'z~& .z~&. Consequently, the relationship
between the function f{z) that transforms according to (I 7), and
the tensors P»...p„ is given by

(t—E —1) t (2t+p —2}t t

(~+@+

23+p 4 — t 1—
+-,'&s ftaAttpAO "At tA, AAl' A, A,)2k+ p —2 23+p —2

(I 18)
It may be noted that
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3. First-Order Wave Equations

The first example of a soluble model, with a mass
spectrum that is more reasonable than that of the
Majorana theory, '4 was given by Nambu. "The equa-
tion is"

(I'~p~ &0)$—=0. (I 20)

Here pg=(p„pi, p2, p„p,) is a set of five real numbers,
the first four of which is the energy-momentum four-
vector; the number p4 is a fixed constant. The number zo

is another real constant.
I.et mz be any timelike five-vector of unit length

(no' —ei' —e2'—na' —e4' ——1 and eo) 0), and let

p~ = (p' p4')'"—~~,
(I 21)

p pv po pi p2 p3 ~

Let e~' be another timelike vector of unit length, then
there exists a unitary transformation, namely the
representative T, of a rotation g in the (e~,e~') plane,
such that

T,e'er'gT, '= mz'~z.

Consequently, the eigenvalue spectrum of e&I'& is the
same for any two timelike e~, and is the same as that of
I'0. According to (I 16), with p=4, the eigenvalues of
rp are the natural numbers, and one concludes that the
positive eigenvalues of p' —p4' are given by"

p'= p4'+so'/n' n = 1,2 ("bound states") . (I 22)

A similar analysis may be applied to the case of space-
like as'. ["Spacelike" in this context means only that
np' —es' —n2' —ns' —e4 &0, which does not imply that
the four-vector n„=(no,ei,em, ls) is spacelike. j In this
case a~I'~ has the same spectrum as I'~, namely, the
entire real line. The result is formally the same expres-
sion (I 22), except that now n' is negative,

0)m') —m ("scattering states") . (I 23)

For integer e, the degeneracy of each mass level is
I', which reflects the fact that p~i'~ is invariant under
the subgroup of SO(4, 1) of rotations in the four-dimen-
sional plane that is orthogonal to p~. This group is
isomorphic to the compact rotation group SO(4), and
each set of degenerate states forms an irreducible repre-
sentation of this group. In the case of "spacelike" eg,
the stability group of p~l'~ is isomorphic to the non-

compact group SO(3,1), and each level is in6nitely
degenerate.

The spectrum (I 22) is "hydrogenlike"; it is the same
as the spectrum of the nonrelativistic hydrogen atom,
except for the sign of the last term. However, a complete
set of solutions of (I 20) includes the "scattering states"
(I 23), and for some of these the momentum p„ is space-
like. It is not possible to exclude these unphysical states

by fiat, for any interesting local interaction, e.g., the
minimal electromagnetic coupling, mill cause transitions
from states of timelike momentum to states of spacelike
momentum. In this respect, (I 20) has the same short-
comings as the Majorana theory. ""In addition, if
the equation is considered as an attempt to describe the
hydrogen atom, then it has another defect. Nambu'
calculated the electric form factor in this theory and
found that it has an anomalous threshold singularity
at t= 8MB, where 8 is the binding energy and 3f is the
total mass (i.e., the mass of the hydrogen atom). This
is incorrect; the anomalous threshold of hydrogen is at
t=8pj3, where p is the reduced mass. This question is
discussed in Sec. III.4.

The method we used to solve (I 20) is due to Nambu. "
It will be applied to a number of similar wave equations
whose mass spectra are characterized by an SO(4)
degeneracy. It is possible to write down equations that
do not possess this syxnmetry, but not so easy to solve
them.

4. Second-Order Wave Equations

Nambu, " noticing that Eq. (I 20) gave a hydrogen-
like spectrum for the bound states, except for the sign
of the last term in (I 22), has constructed another ex-
ample in which the sign is reversed. In order to ac-
complish this with a first-order wave equation, he
introduced a considerable expansion of the multiplet
structure. Although this can be justified, at least in
part, by reference to the spinning electron, it is un-
natural to expect that the spin of the electron is an
essential ingredient of a theory of the hydrogen atom.
In fact it is possible to eliminate all reference to the spin
by "squaring" the first-order wave operator, and obtain
a second-order wave equation with the same mass
spectrum as the first-order wave equation.

Consider an irreducible representation of SO(4, 1) as
before, and the second-order equation

([p„i'„(I'4+~) ']'—x'p'+Ko )|p=0, (I 24)

where 0., x', and Kp are real constants. To find the spec-
trum of the mass is the same as finding the spectrum of
the operator

v=—p„r„(r,y )- .

Thus, let y be a pure number and ask under what condi-
tions there exist solutions of the equation

p„r„—yr4= y.

Iiut this is the same as Eq. (I 20), with p4 replaced by y
and Kp replaced by O.y; therefore,

~ Notation: From now on, p 4. Indices A, B, ~ ~ ~ =0, 1, 2, 3, 4;
p s ~ ~ ~ =0 1, 2, 3; a, b, ~ ~ ~ =2, 2, 3, 4; i, j, ~ ~ ~ =1, 2, 3. The
mass po —

p&
—pq —p3 is @written p&~ or p .

and
(p2 y2)N2 y2~2

y2 p2~2(g2+~2)-i
(I 25)
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with
"bound states"

n= (I 26)
pure imaginary, "scattering states".

Substitution of (I 25) into (I 24) gives the mass spec-
trum

p2 ~ 2(1+n2/~2) (g2 1+n2g2/~2) —1

which agrees with Nambu's result, ' and which closely
approximates the hydrogen bound-states spectrum if
x'& 1 and n'((j. , Unfortunately, this improved spectrum
still contains states with spacelike momentum.

A second-order wave equation that yields a positive
definite spectrum for p' is

(2p' —[I'4 '{p„l'„—n) j'—sop)p= 0. (I 27)

This may be solved in the same way as the preceding
example, with the following exact result:

p'= ho' —n'/n'. (I 28)

The range of the quantum number m is the same as be-

fore, as given by (I 26). The anomalies of the Majorana
theory have here been purged completely, but closer
examination reveals a fresh one. To diagonalize the mass
operator defined by (I 27) is to diagonalize the operator

I'—= r4-i(p I n) . —

II. REFQRMULATIQ5 OF THE
SCHRODINGER THEORY OF

THE H ATOM

E qg=
d q v(q)

(q
—q')'

where p is the reduced mass. Pock' brought out the
hidden SO(4) symmetry of this equation by making
the following change of variables:

2gog g
—

go
H= — N4=- )

q'+ qo' q'+ qo'
(II 2)

where go' ———2pE. The operator qo is here treated as a
pure number, so that the following is valid when applied
to a set of wave functions associated with a fixed,
negative value of E. The four-vector u=(u, u4) is of
unit length":

S =SO =f.
The inverse transformation is

1. The SO(4) Symmetry

The Schrodinger equation for the hydrogen atom in
momentum space is'o

p„r„—yr =n. (I 29)

I.et y be a pure number and ask under what conditions
there exist solutions to the equation =go—

1—Q4

1+Q4
g2 g

2

1—s4

Certainly it is necessary that (p' —y')e'=n', which,
when inserted into (I 27) gives the result (I 28). The
solutions of (I 29), for positive po, account for both the
bound states and the scattering states of the hydrogen
atom in a inost precise and complete fashion. However,
provided p' —y'(0, solutions exist for negative po as
well. This means that, to every scattering state with

positive energy, there is associated a similar state with

negative energy. But if p' —y'&0, then (I 29) implies

that po has the same sign as n. Thus scattering states
have antistates, but bound states do not—a very droll

state of affairs indeed. '9

Up to now the search for a relativistic wave equation
that can be applied to the hydrogen atom has not been

completely successful. Nevertheless, it has been demon-

strated that the occurrence of solutions with spacelike
momentum can be avoided. The continuum in the mass

spectrum remains, however, and it is therefore necessary
to show that these "scattering states" do in fact have
that interpretation. We now proceed to that task. The
defect of the wrong position of the anomalous threshold,
noted above for Eq. (I 20), is present in the instance of

(I 24) as well. The cure for this, and hence the closest

approach to a relativistic theory of hydrogen that we

have discovered so far, is given in Sec. III.4.

"Y.Nambu has suggested that the extra states may be inter-
preted as proton-positron hole-states (private communication).

and the Jacobian of the transformation is given by

d'q = -,'qo '(q'+ qo') '8(u' —1)d4u. (II 4)

Instead of the Schrodinger wave function y(q), Fock'
studied the function

P(~)=.-'qo "'(qo'+q')'~(q)

P(~)
P(u) = 8(v' —1)d'v.

qo~' (v —I)'
(II 6)

The correct normalization is given invariantly by

1=
i
q(q)i'd'q=2

i
&P(u) i'8(u' —1)d'u. (II 7)

Equation (II 6) is soluble if and only if

m=—pe'/qo

is a positive integer. For each value of m, a complete set
of solutions is given by the four-dimensional spherical

"In this section we follow closely the notation of M. Bander and
C. Itzykson, Rev. Mod. Phys. 38, 330 (1966); 38, 346 (1966).

in terms of which the Schrodinger equation takes a
form that clearly exhibits its four-dimensional symmetry
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2. The Role of the Group 80(4,1)

The wave functions I'&, &, , for fixed t, carry a repre-
sentation of SO(4). The totality of all the bound-state
wave functions carry a representation of SO(4,1)."
This is an entirely trivial observation that depends
solely on the fact that t has the range 0, ]., 2, ~ . For
it was shown in Sec. I.2 that the P&, ~, , for 6xed
t, are the components of a tensor P~,...~„and that a
family of irreducible, unitary representations of SO(4,1)
could be defined algebraically on these tensors. In fact
it is only necessary to know that SO(4,1) has a repre-
sentation whose reduction according to the compact
subgroup contains precisely those representations of
SO(4) that are realized by the bound states of the
hydrogen atom. However, this phenomenological,
"spectrum-generating" interpretation of the role of the
SO(4, 1) group is not the most interesting one.

It is convenient to return to the discussion of Sec. I.2,
specializing to the case p=4. For every function f(z),
s= (sb,si, ,s4), introduce a new funcion Ib ($) by writing

f(s) = sp"h($),

($4' ' ' k4) k s /s&

(II 10)

(II 11)

The new functions h($) form a Hilbert space P~', with
an inner product that may be calculated by direct sub-
stitution of (II 10) into (I 6)":

harmonics F&,i, (u), where t=u 1—=0, 1, . The
eigenvalues of F. are given by (II 8):

E= —
q '/2p, = u—e'/2u' . (II 9)

The set I', , i,„(u) of wave functions associated with a
single value of F. (that is, a fixed, integral value of t)
form the basis for an irreducible (t+1)' dimensional
representation of SO(4). Naturally, this symmetry is
a property of the original form of the Schrodinger
equation; it was studied in that form by Bargmann. "

For a pure SO(4) transformation gb, =g,b=0, gbp=1,
and the expression on the right simpli6es to h()g).

A purely phenomenological approach would suggest
that the four variables $, be identified with the Fock
variables u, . In that case the spherical harmonics
F, , i, ($), which for each value of 3 carry an irreducible
representation of the compact subgroup SO(4), would
be directly associated with the eigenstates of the
Hamiltonian. The most important item of new insight
that has been gained recently is that this phenomeno-
logical approach is not the most profitable one. The cor-
rect approach is indicated by a number of independent
considerations that will be discussed in Sec. III. In
the present context the most relevant point is this. If
the $, are identified with the u„ then the relationship
between q and j is not just a change of variables, but
rather an operator relationship, because it depends on
the operator E.This has the practical disadvantage that
the observables of the Schrodinger theory, and the
rules for evaluating their matrix elements, become ex-
tremely involved. In addition, it would be necessary to
give a completely separate treatment of the scattering
states, since the Hilbert space B~ would be exhausted
by the bound states. This is one reason for exploring the
possibility of a direct geometrical relationship between
pand f,

In (II 2), which defines the Fock variables in terms of
q, replace qb by a constant, and relate $, to il as follows:

or

$,=2aq, /(q'+a') i=1,2,3

4= (q' —~')/(q'+o'),
(II 15)

At the same time, in analogy with (II 5), we introduce
the function

so that h($) transforms according to the "multiplier
representation":

7b(() ~ (&bgbo+ ebb) "7b(&*g) (II 14)

(h, k) = 2 h*($)k($)8(P—1)d4$. (II 12)
0(&)=4~ "'(o'+q')'V (q) . (II 17)

To find the action of the operators

T. : f(s) ~ f(sg)

on the functions h($), notice that the transformation"

The simplest way to find the functions f(&) that cor-
responds to the physical eigenfunction I'&, i, (u) is to
notice that the relationship between u and $ can be
written [compare Kq. (II 13))

~A + ~BgBA
u= (*g(qo), (II 18)

is the same as"
hbgba+ gub —= (&+g). ,
bgbO+gOO (II 13)

where the operation indicated by the asterisk was de-
fined by Kq. (II 13), and g(qb) is a rotation in the (0,4)
plane by the hyperbolic angle

so ~ so($bgbo+goo), ~(qo) =h (qo/~). (II 19)
"V.Bargmann, Z. Physik. 99, 576 {].936)."This form of the inner product is valid when lV is in the range

{I1) only.
Therefore, the physical states are related to the basis
states F, , i, ($) by this rotation.
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The F'~, ~,~($) are eigenstates of

egF~, eg= (1,0,0)0,0).

Similarly, the physical states are eigenstates oI

eg(qa) Fg, mg(qp) =—(eq(qp))g, (II 20)

3. Transformation of the Schrodinger Equation
to Algebraic Form

In configuration space, the Schrodinger equation for
the hydrogen atom is"

t E+(1/2p) V'+ (e'/r) jp(r) =0. (II 23)

where g(qe) is the rotation in the (0,4) plane that relates
the physical states to I'~, t, (f). Using (II 19) we find
that the rotated vector is

The kinetic term is transformed as follows":

-~'=q'="(1+~ )/(1- ~.)
=a'(Fo—F4) '(Fo+F4). (II 24)

~~(qo) = (2aqe) '(qo'+a', o, o, 0, qo' —a'). (1121) The operator r, , when applied to the function (II 17), is

Consider now the e' states with principal quantum
number e; they all have the same energy, so the hyper-
bolic angle 8(qa) is the same for all of them. These states
form the basis for an irreducible representation of the
subgroup of SO(4,1) that leaves the five-vector (II 21)
invariant. This group, the stability group of n&(q, ), is
isomorphic to SO(4), and may therefore be called

SO(4)„.The subscript is a reminder of the fact that it is

a different subgroup of SO(4,1) for a different value of e,
although all the SO(4)„are isomorphic to each other.

This description of the bound states of the hydrogen
atom, in terms of a family of equivalent compact sub-

groups, has already been noted. ""However, the
physical relevance of this point of view, as an alternative
to the purely phenomenological one, 6rst became clear
to us when we noticed exactly the same features in the
Nambu theory (Sec. I.3). In fact, it may be noted
that the five-vector e~(qe) plays exactly the same role
here as the five-vector ez defined by Eq. (I 21).

The operator (II 20) is the principal quantum number
I=1, 2, . Thus, using (II 21) and (II 8), we obtain

(2aqo) 'L(q '+a')F —(qo' —a')F l=w '/qo

(LE—(a'/2y)]F [oE+(a'/2p)]F4+ac }/=0 (II 22).

This is a nonrelativistic analog of the relativistic wave
equations studied in Sec. I. It is completely equivalent
to the Schrodinger equation, not only for the bound
states, for which the above derivation is valid, but for
the scattering states as well. In the next section we

give a direct transmutation of the Schrodinger equation,
from the usual form as a differential equation in con-
figuration space, to the algebraic form (II 22).

~ H. Bacry, CERN Report No. THS79, 196S (unpublished);
E. C. G. Sudarshan, N. Mukunda, and L. O'Raifeartaigh, Phys.
Letters 19, 322 (1965).In the use of a five-dimensional representa-
tion space we have been anticipated by P. Budini LNuovo Cimento
44, 363 (1966)g.

'4 Notation: The letter y is used to designate the Schrodinger
wave function, whether expressed in terms of the space coordinates
r, the internal momentum coordinates q, or Pock coordinates.
The letter P, or f(x) or p (x) may mean the same thing physically,
but is used to denote an infinite column vector. The argument of q
is always an internal coordinate. The argument of P is always an
external coordinate, center-of-mass position, or total momentum,
the internal degree of freedom being relegated to the index.

.= L(~/~q;) —(2/ )S],
l9 8

+ (54—1) +4 +24
ta - 8gg 8$; 8)4

8 8
is,4+$, $.—+2 ——

ia 8$.

When X= —ai p= —2, this reduces to

gro $00~$04 (II 25)

Next, one may verify that

[spy, sgoJ +t F,Fef =(2—p)g, (II 26)

and thus obtain
ar = I'0—I'4. (1127)

Inserting (II 24) and (II 27) into (II 23), and multiply-

ing by Fe—F4, one gets (II 22). Note that in this new

derivation it was not necessary to give a separate treat-
ment of the scattering states.

It may be instructive to solve (II 22) by the method

that was used in Sec. II. In fact, if E(0, then a rota-
tion in the (0,4) plane brings (II 22) to the form

—(LE—(a'/2~)3' —P+(a'/2~) j') "'Fe+ae'= o

or E=—pe4/2e', x=1, 2, Similarly, if E&0, then
another rotation in the (0,4) plane brings (II 22) to the
form

"Notation: The letters r (r; or r) and q (q; or q) always denote
internal variables. The letters x (or x„) and p (or p„) always denote
external variables. The letter k is used to denote momentum
transfer.

36 It is evident from the definition and the calculation of the I'
matrices in Sec. I.2, that Fg 'I'~ commutes with I'q 'I'~.

&LE+(a'/2u)1' —t:E—(a'/2~) j')"'Fi+«'= o,

or E= —pe'/2e', n'(0 These ,are th. e scattering states.
The electric-dipole interaction may easily be included.

Adding the term eA q/p to the wave operator in (II 23)
one obtains, instead of (II 22),

a2) a2 ae
E ~F,—E+—F +ae'+—A I' /=0 (II28).

2@i 2p
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Thus it is seen that in this formalism the compo-
nents of the electric d,ipole current are the matrix ele-
ments of generators of the group SO(4,2)! This fact
was first discovered by Barut and Kleinert (private
communication).

Finally it may be noted that. the inner product

derivative interaction

(ae/p))p*(x)r A(x))p(x), (II 33)

where )P,(x) is the Fourier transform of )P,(P) and x„ is
the external position coordinate (center-of-mass system)
of the atom. In momentum space this is

(( (").h"= v *4')~'4')d'S (II 29) (ae/I )y*(p)r A(k)y(p+k) (II 34)

takes the form"

(v, w') .= " (h)l' '(I'e —I' ) "(t)d"

(II 30)

Let p= 0; then (II 32) means that)P(P+k) = U(k))P, and
(II 34) becomes

(ae/~)P. *Lr A(k) U(k)]...P,. (II 35)

Naturally this gives the right dipole transitions, for in
the dipole approximation U(k) is replaced by 1.In order
that (II 35) agree exactly with the Schrodinger theory,
including all the higher multipoles, it is necessary to put

where the volume element on the unit four-sphere is

dQe= 2!!(P—1)d'$.

This is the physical inner product, which can be inter-
preted as a probability amplitude, and with respect to
which the Hamiltonian is a self-adjoint operator. It is
Not the same as the SO(4,1) group-invariant inner
product, which is given by (I 15) and with respect to
which the I' matrices are Hermitian. The relationship is

(v, ("),~..= (4A)'- (II 31)

a.(p) U..-V. (p+k). (II 32)

The operators U(k) satisfy the structure relations of the
Galilei group, e.g. , U(k) U(k') = U(k+k'), but are other-
wise arbitrary. In order to obtain a local 6eld theory it
is crucial to choose these operators correctly.

The interaction of the atom with an external elec-
tromagnetic radia, tion 6eld, in the dipole approximation,
is given by the term (ae/p)A. F in (II 28). The formal
similarity of this interaction with the Dirac theory sug-
gests that it represents the dipole part of the local, non-

4. Galilei Transformations: Locality

The foregoing treatment of the hydrogen atom in its
rest system must be generalized to moving reference
frames. From now on the internal degree of freedom will
be denoted by an index o. (often suppressed), and the
argument p in )p, (p) will mean the external, or total,
energy-momentum four-vector of the entire atom. In
particular, )p, is the same as )p, (p) when p=0 and
po m~+rrl, ,+E. Thus, ——in the absence of any external
field )P, satisfies (II 22); the problem is to find the equa-
tion for )P,(P) when p&0.

Consider a Galilei transformation that has the eGect
of changing the total momentum" from p to p+k. This
transformation of coordinates is represented by a trans-
formation of the wave function

U(k) e-Qr. r e-(ile) kq (e~ re~ 4)''-'(1»6)

The internal part (spin part) of the Galilei group is
therefore seen to be generated by a subalgebra of
SO(4, 1), namely, the subalgebra spanned by s;,, i, j
=1) 2) 3 and

r = (1/a)(e'o —e'4) ~

"E.P. Wigner, Ann. Math. 40, 149 (1.939)-"L.Foldy and S. Wouthuysen, Phys. Rev. 78, 29 (19&0)."P. A. M. Dirac, The Principles of Quanta' Mechunics
(Clarendon Press, Oxford, England, 1947).

A prior there were two reasonable def(nitions of
U(k). If r is interpreted as the distance between the
proton and the electron, then r and q are invariant under
Galilei transformations, and U(k)=1. On the other
hand, if r is interpreted as the absolute position co-
ordinate of the electron, which comes to the same so
long as only one frame of reference is considered, then
under a Galilei transformation q-+q+k and U(k)
=e~)& t ~))=e '+'. The 6rst picture, in which g is
invariant, may be compared to signer's invariant
de6nition of spin. "If the index on the wave function
corresponds to this quantity, then one is in the Foldy-
Kouthuysen representation, "and the electromagnetic
interaction is nonlocal and very complicated. The second
picture, in which q —+ q+k under Galilei transforma-
tions, may be compared with Dirac's" definition of the
spin. The quantity is directly related to the index on the
Dirac four-spinor. In the Dirac representation the
electromagnetic interaction is local, nonderivative, and
very simple. It is clear that signer's definition of the
spin is the more convenient phenomenological parame-
ter, and perhaps the interpretation of r as the inter-
atomic distance is the more physical one, but these are
not the variables in terms of which local field. theory is
local.

From (II 32) and (II 36), we can now obtain the wave
equation of )P,(P). An intermediary step in the calcula-
tion is the determination of the transformation law of
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the I' matrices:

e-'i"F;e'i"= F,+ (1/a) P, (Fp—F4),

o
—' 'F,e' "=I'4+(1/a)y r+(p'/2a')(Fo —I'4),

e
—'i"Foe'i"= I"0+(1/a)y r+ (p'/2a') (Fp—F4) .

The final result is'4 "

(II 38)

(II 39)

(1140)

III. SIGNIFICANCE FOR ELEMENTARY
PARTICLES

1. In6nite Multiplets Versus Bound States

It has been seen that the theory of the hydrogen
atom can be recast into the form of a theory of an
infinite-component field P (x), where x is the center-
of-mass coordinate and 0.=1, 2, . enumerates the
"internal" states. This field satisfies the field equa, tion
(II41) or, in the absence of external electromagnetic
fmlds35:

p2 8 8
Z——(F,—F,)—(F,+F,)—-y r+ae'

2p 2p p

&&4(p) =0, (III 1)

where p is the tota/ momentum of the hydrogen atom, ti
is the reduced mass, and a is an arbitrary constant. It is
expected that (III 1) represents an approximation to a
relativistic field equation. Attempts to construct a
relativistic SU(6) theory of elementary particles" also
lead to the description of physical states by the com-
ponents of infinite-component fields, with 6eld equations
and local interactions. ""Under what circumstances
can the formalism of multicomponent local fields be
interpreted as a formal description of a bound-states
system? 4'

Consider a system of two particles; presuma, bly, it can
be described by a bilocal field P(xi,x~). Introduce the
center-of-mass coordinate x and the relative coordinate
y. The internal degree of freedom, represented by the
coordinate y, can obviously be replaced by a discrete

' Ideas that are very close to those expressed here have been
put forward in a series of papers by T. Takabayashi LProgr.
Theoret. Phys. (Kyoto) 32, 981 (1964); 36, 185 (1966); 36, 187
(1966), and other references given therej.

{[Z (p2/2„)](F, F,) (a~/2„)(F,yF, ) (a/„)y. r
+«'+(e/~)A [«+y(Fo- F4)]}0(p)=o.

If the quadratic term (e'/2p)A' is included, then this
may be rearranged to

{[E—(1/2ti) (y—eA) '](Fo—F )—(a'/2ti) (I'o+ I' )
—(a/p)(y —eA)I'+ae'}ip(p) =0 (II 41)

This equation is the final result of our metamorphosis
of the Schrodinger theory. Nothing has been added;
Eq. (II41) is precisely equivalent to the Schrodinger
equation.

index by introducing a basis

(III 2)

where the f,(y) are a fixed set of basis functions. There-
fore, a system of bound states can always be described
as a multicomponent field. The generators of the Lorentz
group

V ~ ~P, ~V ~ PP PV

take the form

L„„=i[x„(a/Bx") x„(il/a—x~)]+s„„, (III 3)

where s„„is a set of constant matrices. Conversely, let
a multicomponent field iP,(x) be given that forms a
basis for a representation of P S, where I'* is the
orbital pa, rt of the Poincare group and 5 contains
SL(2,C) as a subgroup. Then, if 5 is not too large, it js
possible to represent the generators of 5 as differential
operators on a space of functions of a real variable y.
Each component of iso(x) becomes associated with a,

function of y, and every linear superposition of P, (x)
is represented by a bilocal field ip(x, y).

A most important question is that of disassociation.
A bilocal field lt(x, y), that transforms according to a
unitary representation of the Lorentz group, always
gives rise to an infinite-component field, since the s„„
in (III 3) must be Hermitian and hence infinite. This
does not necessarily imply that there is an infinite num-
ber of discrete bound states. If the dynamics of the
theory, including the mass spectrum, is provided by a
field equation, then it is possible to envisage three dis-
parate cases.

A. The mass operator has a discrete spectrum with a
finite number of states. Completeness requires the exist-
ence of a continuum, which can only be interpreted as
multiparticle states, and disassociation must occur.

B. The mass spectrum has a discrete part with an
infinite number of states, as well as a continuum. This
is realized by the hydrogen atom.

C. The spectrum of the mass operator consists of an
infinite set of discrete points, and there is no continuum.
In this case disassociation is impossible; in fact, it is
meaningless to inquire into the nature of the con-
stituents of the bound system. A remark with similar
content is often made: if the potential that binds
"quarks" is similar to the potential of a harmonic oscil-
lator, then these objects can never be produced in
collisions between ordinary particles, and there is no
need to postulate that they are very massive.

If quarks exist, then the formalism of infinite-
component local 6elds offers a description of elementary
particles as strongly bound systems, without the need
to introduce any nonrelativistic notions or other
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unjustifiable approximations. If they don't exist, then
the possibility of a formulation of elementary-particle
physics in terms of in6nite-component local. 6elds
remains, and the close relationship of this formulation
to the bound-state picture helps to explain why the
"quark picture" has been successful in accounting for
some properties of strong interactions.

2. The Mass Spectrum

In view of the apparent contrast between the mass
spectra of elementary particles (Gell-Mann —Okubo
formula) and that of hydrogen, it is pertinent to recall
a, successful attempt to describe the mass spectrum of
the 35 negative-parity mesons with the aid of a rela-
tivistic wave equation. " Suppose that these mesons
are described by a 35-component field g(x), that satisfies
a, second-order wave equation:

Here m' is a constant and the matrices I'&" transform
among themselves under I,orentz transformations in the
manner implied by the vector indices. This gives the
mass spectrum p'= (I") 'm'. Furthermore, suppose
that r" is a function of the generators of SU(6). The
physical reason for this postulate is to guarantee that
the mass operator contain no mixing between different
SU(6) multiplets. Within the framework of static SU(6)
theory, there is no way to determine whether a function
of SU(6) generators is the (0,0) component of a rela-
tivistic tensor, and for this reason it is necessary tc.
appeal to a relativistic generalization of SU(6). Assum-

ing that SU(6) is embedded in the group SL(6,C), which
is the smallest group that contains both SU(6) and the
spin-group SI.(2,C), but making no assumption concern-
ing the representation of SL(2,C) to which the mesons

belong, it was found that the most general form of I'
contains five arbitrary parameters. Since there are
eight masses to account for—when splittings of isospin
multiplets are ignored —this leads to three sum rules.
If r" is expanded as a sum of irreducible SU(6) tensors
in the manner of Beg and Singh, 4' then the requirement
of relativistic invariance is that the three phenomenolo-
gical parameters associated with the (405)i,8,27 tensors
must be equal to the parameters of the (189)i,8,~7

tensors. The experimental values of the three ratios are
Rg=1.001, 88= 1.007, E2;——0.950. We feel that this
agreement is excellent and that the success of this
approach is an encouragement to further exploration of
the idea that masses are determined by relativistic wave
equations.

3. Currents and Generators

If the stationary states of the hydrogen atom were
labeled by the eigenvalue of the SO(4,2) generator ro,

4' G. Bisiacchi and C. I'ronsdal, Acta Phys. Austriaca, Suppl.
3 (1966).

4' M. A. H. Beg and V. Singh, Phys. Rev. Letters 13, 418 (1964).

that is, if the eigenvalues of Fo were identihed with the
principal quantum number ts, then no SO(4,2) generator
could connect states with principal quantum numbers

n, n' differing by more than one unit. This would rule
out the notion that the matrix elements of some of
the generators coincide with the dipole transition
matrix elements. However, if the states of the atom are
defined by the solutions of the wave equation (II 22),
which means that the principal quantum number is
related to the operator (II 20), then it was found )see
(II 28)] that the dipole current can be written

(III 5)

That is, the dipole-current matrix elements are pre-
cisely the matrix elements of the SO(4,2) generators I';.

Thus it is seen that the simple suggestion of associat-
ing currents with generators needs amplification in two
respects if it is to be valid for the hydrogen atom. As a
direct consequence of the imperfect degeneracy, the
physical states must be defined by diagonalizing the
mass "operator, " and not as eigenstates of some Axed

operator such as I'0. If attention is limited to a small
number of adjacent levels, then this "representation
mixing" is small, especially in a region of fairly large
principal quantum numbers. (If the constant a is chosen
so that qo/a=1 for the level with principal quantum
number no, then the nearby physical states are nearly
exact eigenstates of ro.) If representation mixing were
the only symmetry-breaking eGect, then the dipole
currents would form a current algebra with commuta-
tion relations Ld;, d;]= —iL;;.However, there is another
aspect to symmetry breaking, namely, the difference
between the two inner products. The physical prob-
ability amplitude (Q,P')~h~, is not invariant under the
transformations of SO(4,2). The representation of
SO(4, 2) is therefore not unitary with respect to the
inner product de6ned by the probability amplitude,
although it is equivalent to a unitary representation.
The physical normalization is given by

(1116)

and the dipole currents commute":

As a "current algebra" the dipole currents of hydrogen
are a rather trivial case.

This description of the dipole currents of hydrogen
finds a close analogy in the relativistic wave equations
that we considered in Sec. I of this report. A simple
and instructive example, though it is quite unphysical
in some respects, is given by Eq. (I 20). An electro-
magnetic interaction may be introduced into this
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theory through the replacement of p„by p„—eA!„,
14=0, 1, 2, 3. The electric current is then /*I'„P. This
does not mean that transition amplitudes are precisely
the matrix elements (I 18) of the I' matrices, which
would have implied that he=+1. First, transition
amplitudes are de6ned as matrix elements evaluated
between physical (i.e., stationary) states. While these
form $0(4) multiplets, each multiplet is defined relative
to its own $0(4)„subgroup, exactly as in the non-
relativistic theory of hydrogen. Second, the physical
inner product is not the invariant tt ~f, but!P*I'ptP. Here
Fo takes the place of its nonrelativistic analog F,—r, .
The current operators, referred to a physical basis, are
therefore not F„but I'0 'I'„, and these commute with
each other. '6

Thus it is seen that, despite appearances, currents in
atomic physics are closely related to generators of the
algebras, and that the nature of the relationship is Lie,
as in the relativistic infinite-component Geld theory.
The application of this new insight to the theory of
weak and electromagnetic interactions of the strongly
interacting particles in the framework of relativistic
SU(6) theory is straightforward.

Inserting (III 9) and (III 10) into (III 8) one obtains
complete results for the atomic form factors. 4'

The final expression for p, (k) depends, essentially,
only on the inner product

pp(k) AeA =s (—say) (III 12)

of the boosted and the unboosted spurions. Thus, the
form factor of the ground state is

pi(k) =4(s+1) '. (III 13)

The other tensor may be expanded with the aid of (I 12),

f +(k)Ay ~ Am

—2m/pgP'At ~ ~ As-z

I ~a+,2" ~, (i+n) !!(i n—) !!
X ( O~AnAn —&). . . ( O~A4-pA4 —

&)

Xn(k)A* 44(k)», (III 10)

where the "boosted" spurion is [see (III 1)j
n(k)A= (2ggp) (gp +g +k

&
2gk& g —gp —k ) (III 11)

4. Local Interactions, Form Factors, and
the Anomalous Threshold

The exact current was found to be [Eq. (II 41)j:

From (III 11) and (III 12),

s=1+k'/41AB (III 14)

J;(x)= (e/p)P*(x) [gi', ,'i 8;(—I',-I' )—
—eA!;(x)(I'0—I'4)j!P(x). (III 7)

The Yukawa interaction between the hydrogen atom
and an external electromagnetic field is therefore a
local interaction. That is, the nonrelativistic hydrogen
atom is a living example of a type of 6eld theory that
has recently been investigated in connection with rela-
tivistic SU(6) theory. " In fact, it is possible to apply
the methods developed there to the calculation of the
form factors of the hydrogen atom. To illustrate, we
shall evaluate the "atomic factor, " that is, the form
factor that governs the Coulomb transitions from the
ground state to an excited state. If k is the momentum
transfer, then this function is

p (k) =!p *(k)" " A&(rp —I 4)t!'0(0)A,...A„, (III 8)

where $0(0) is the tensor for the state n= 1, at rest, and
+ (k) is the tensor for the state (n, l,m) =pp, with momen-
tum k. Using (I 11), with the tensor 8A0 replaced by
[see (II 21)]

44A
——(2ggp) &(g 0+gp Q 0 Q gpp —gp)

and (I 18), we easily obtain (leaving out terms that
involve gAs, since p.*(k)"4"' & is traceless)

(I 0 I 4)$0(0)A " A

-g(0)$(8A, p bA, 4)44A, ppA„.—(III 9)

where 8=—,'pe4 is the binding energy. Inserting this
into (III 13), we notice the anomalous threshold sin-

gularity at k'= —8IJ,B.
The same technique may be used to calculate form

factors in the relativistic theories described by the wave
equations of Sec. I. In fact, it is possible to take over
the results of the nonrelativistic calculation, merely
inserting the appropriate spurions. The spurion as-
sociated with (I 20) is

pp(k)" = (23IIB)—"'
X(kp, —Ir —(k '—k' —2MB)' ') (III 15)

where B=kp —P4 is the "binding energy, "and M is the
total mass of the system, defined by 2MB = kp' —k' —P40

Thus, in this theory (III 14) is replaced by

s= ', t/4MB, t= (k-,——M)' —k'= —kP (III 16)

Inserting this into (III13) we find a singularity at
t= 8MB,44 instead of the correct value of 8IJB.

our 6nal contribution is a relativistic wave equation
that has both the mass spectrum and the form factors
of the hydrogen atom, including the correct position of
the anomalous threshold. The equation, a modi6ca-

4'The calculation is tremendously shortened, and the form of
the answer is more convenient, in comparison with the classical
calculation. However, in this day of reliance on computers this is
probably not interesting. For the classical calculation see H. S. W.
Massey and C. 3. O. Mohr, Proc. Roy. Soc. (London) A132, 605
(&93&).

'4 This result was 6rst obtained in Ref. 16.
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tion of (I 24), is"

(res fre ) 4 (r~Pu Pe )

Therefore s=i f—/4fsB, and the anomalous threshold

singularity appears at the correct position. Ke learn
from this example that the spatial extension of the
particle states is determined by the spurion, and that
the latter is not 6xed by the mass spectrum.

Some properties of this equation are:

A. The mass spectrum is

p,e4

(p' —u') =-
2M 2s2

'

where e has the discrete spectrum m=1, 2, 3, , and
a continuous spectrum 0&n'& —~. This is precisely
the spectrum of hydrogen, including bound states and
scattering states, and there are no unphysical solutions.

B. The spurion is

ts(k)"= (2pB) "'(ks —k, —(ks' —k' —2pB)'").
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Corrections to the Breit-Wigner shape of the N*(1236) resonance are calculated using analyticity and
inelastic unitarity incorporating the Nm and N*m channels in a propagator formalism. This method, which
includes only a right-hand cut and which evaluates the effect of bubble insertions in the propagator, is
motivated by the rigorous results which have been proved for the nucleon. It is argued that even though
background and left-hand cuts have been neglected, it is the inclusion of inelasticity that enables the P»
phase-shift data to be reproduced, even at energies well above resonance. The structureless-vertex decay
model with a Breit-Wigner propagator gives an N* shape too asymmetric, and inclusion of an inelastic
channel with an analytic propagator serves to correct this. Assuming N*m as the only inelastic channel,
the N*++N*++m. coupling is estimated as 170+50, where the unknown behavior of the vertices far oB the
mass shell causes the uncertainty. This estimate can be compared with about 75 from relativistic Sf7(6),
and 136 using Adler-Weissberger techniques. The P33 partial-wave amplitude constructed on this model
has a left-hand pole which simulates the effect of the neglected nucleon-exchange short cut, and which
tends to lie too far left and with too large a residue. The application of the method to other resonances and
bound states is discussed.

1. INTRODUCTION

'HE N*(1236) resonance is interpreted as the
J~=~+, I=-,'contribution to xX scattering, so

that the P» phase-shift analyses are the experimental
source of data. This is assuming that there is no
nonresonant background to the E*which has the same
quantum numbers. The intention is not to calculate
the resonance parameters, but to consider the detailed
consequences of the resonant behavior of the partial
wave from threshold to center-of-mass (c.m.) energies
of 1500 MeV or higher. The unstable particle will be
treated in a way motivated by the field-theoretic

behavior of an oG-mass-shell stable particle above
threshold. Thus we will try to treat the resonance as a
stable particle that has wandered above the threshold.

The general form for the partial-wave amplitude
ass(E), deduced from unitarity and the requirement of
a phase shift 6 of 90' at the real resonance mass m, is

e(E) sr t(E)
~as(E) = (1.1)

cotb (E) i G (E) (m E—) ;irr—(E)——

where E is the c.m. energy, e(E) is the elasticity, and
by definition G(m) =1, so that the total width at


