
1624 Y. F RISHMAN 156

same physical consequences, ' it follows that if the
symmetry-breaking condition (6) leads to the appear-
ance of massless excitations, ' such excitations are
also present in the case of the sharp-particle number
representation. It is thus convenient to And an analog of
condition (6) for the latter case. Such an analog may
be achieved by use of the translationally invariant state
Ins), defined by'

1
In,)= Lt,'(s)]-' lii» — yt(x)yt(~+ s)der In) . (10)

fi'~oo

Here, IQs) is orthogonal to IQ), and may be equally
acceptable as a ground state. The representation of the
sharp-particle number is a reducible representation of

' For additional conditions needed to guarantee their appear-
ance, see Ref. 3. Let us mention here the condition LS,H$=0,
where II is the Hamiltonian. This does not necessarily follow from
the invariance of H under 6nite phase transformations.

the operator algebra. ' Here,

&()
I [&,0(~)0(*+a)3I

(is) =—2(f) I4 (o)4(s) I()s)&o. (11)

Equation (11)now replaces the usual symmetry-break-
ing condition (6) in proofs of the Goldstone theorem. m "

Fruitful discussions with Professor A. Katz and
comments on the manuscript by Dr. S. Srodsky are
gratefully acknowledged. The author would also like
to thank the U. S. Educational Foundation in Israel
for a Fulbright travel grant.

"iXote that although E is the generator of phase transforma-
tions on 6eid operators, the states [02„),I=1,2, ~ are not
eigenstates of E. See Ref. 7."Reducible representations of the operator algebra were
considered in the literature in relation with the Goldstone theorem.
However, only ground-state expectation values of the form of
Eq. {4}were discussed. The other translationally invariant states
appeared only as intermediate states via the completeness relation.
See, e.g., A. Klein and B. W. Lee, Phys. Rev. Letters 12, 266
(1964);%.Gilbert, ibid. 12, 713 (1964);A. Katz and Y. Frishman,
i%novo Cimento 42, A1009 (1966).
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A criterion for internal symmetry in an S-matrix framework is formulated and a method to determine
permitted internal symmetries by a rigorous application of unitarity and crossing is developed. Applying
this method to particular cases, one finds amplitude relations that are usually obtained by assuming in-
variance under certain Lie groups. For example, applications are made to isotopic-spin invariance in the
coup]ed pion-kaon system and to SU (3) invariance in the scattering of the 8 pseudoscalar mesons. Other
higher symmetries are discussed. By clarifying the essential assumptions which go into dynamical deriva-
tions of symmetries, our method permits more general derivations from weaker assumptions. It is shown

that the usual dynamical schemes used to derive internal symmetries essentially assume most of their
results and in addition contain many inessential assumptions. For example, the bootstrap approach requires
the existence of poles and the bootstrap conditions, whereas our apporach requires neither.

I. INTRODUCTION

'HERE have been several attempts to derive in-

ternal symmetries within the S matrix frame-

work. '—~ A common feature of these derivations is that
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they use unitarity, crossing relations and some highly
questionable approximations. In addition, the existence
of vector and (pseudo)scalar mesons with the experi-
mental quantum numbers is assumed. These derivations
then proceed to show that the I'I'V coupling constants
are in the ratios predicted by an internal symmetry.
Therefore, they do rot derive the most important rela-
tions given by such a symmetry which are the energy-
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independent linear relations among the various scat-
tering amplitudes.

In this paper, our 6rst object is to formulate a criterion
for internal symmetry in a purely S-matrix framework
and explore its rigorous consequences. In the cases we
have examined, we find that this internal symmetry
criterion via unitarity and crossing yields the predictions
conventionally obtained by assuming invariance under
certain Lie groups. This rather striking property of
crossing and unitarity may make knowledge of Lie
groups inessential (but perhaps convenient) in dealing
with strong interactions. Also, the necessity for invoking
the bootstrap hypothesis to pick out internal symmetries
will be removed.

As we shall see, most of the approximations made in
bootstrap derivations of symmetries are not needed and
have nothing to do with the result. Our second purpose
is therefore to clarify the previous approximate calcula-
tions. For example, how could such poor calculations
derive exact relations among coupling constants' This
happy accident will be explained.

Ke find the consequences of unitarity and crossing for
possible internal symmetries without making any ap-
proximations. That is, the conservation of charge and
strangeness will be assumed and then the possible linear
relations among scattering amplitudes will be derived.
For example, by considering all two-particle scattering
amplitudes between 7t-+, m, and x, it will be shown below
that the only possible nontrivial internal symmetry is
the one corresponding to isotopic spin. A similar situa-
tion obtains for the coupled x, E system. Then, the
more interesting case of higher internal symmetries
will be examined.

In the physically interesting case of SU(3), it will

be shown that the essential elements in a dynamical
model are the number of (equal-mass) pseudoscalar
mesons and the form of the force. The existence of
vector mesons is not required.

In Sec. II, the definition of an internal symmetry is
proposed for S matrix theory and its consequences are
examined. Some theorems necessary for the later discus-
sion are proven. In Sec. III, the example of isotopic spin
is given in some detail to explain our approach. In Sec.
IV, unitary symmetry is discussed and in Sec. V, the
possibility of other higher symmetries is brieRy dis-
cussed. In Sec. VI, the relation of our approach to the
bootstrap calculations is considered in detail. Finally,
some concluding remarks are made in Sec. VII.

II. MEANING OF INTERNAL SYMMETRY
IN S-MATRIX THEORY

As a prelude, we brieRy mention the consequences of
an internal symmetry in 6eld theory for the S-matrix
elements. An internal symmetry in conventional field
theory means that there exist one or more operators
acting in the internal quantum number space (like
charge, hypercharge, etc.) which commute with the

Hamiltonian. It then follows that these operators also
commute with the S matrix. Hence, in a basis of the
simultaneous eigenfunctions of a complete set of com-
muting operators chosen from these, the S matrix will
be diagonal. The transformation needed to go to this
basis is a matrix in the internal quantum-number
space and hence independent of the space-time variables.
Further, since the Hamiltonian will have the same eigen-
value for every state in a multiplet of such an internal
symmetry, the particles corresponding to these states
will have the same mass.

We shall now formulate a criterion for internal sym-
metry based entirely on physically measurable S
matrix elements with no reference to field operators.
The S matrix for a multichannel scattering process of
the type

p1+p9 ~ p8+p4 (2.1)

for particles with masses m~, m2, ms, and m4 can be
written in the form

S=1+2ip'~2Mp'~2 (2 2)

where M is the invariant-amplitude matrix, and p a
diagonal kinematic matrix with diagonal elements

p, = g,/(32~'gs) (2.3)

and we have de6ned

s= (p~+p2)', —t= —(p~—p3)', n= —
(p& p4)' (24)

and q; is the c.m. momentum in the ith channel. Since
the matrix S is unitary and symmetric (assuming time-
reversal invariance), there exists a real orthogonal
matrix that diagonalizes it.' We then see from Kq. (2.2)
that the same matrix must diagonalize p'"Mp'"
scattering system witt be said to possess an internal sym
metry if the real orthogonal matrix diagonalising the S
matrix is independent of energy and angle of scattering.
This is not meant to be a precise or complete de6nition.
For convenience of reference, a symmetry in which
none of the amplitudes introduced in the beginning are
found to vanish identically will be called "nontrivial. "
In some problems no nontrivial symmetry exists. A
symmetry in which the least number of amplitudes is
required to vanish will be called "least-trivial. "

It may be noted that while this definition is very
close to the field-theory result stated above, it has in
its own right the direct physical meaning of a conserva-
tion law. We shall also note here another point of simi-
larity with internal symmetry in the 6eld-theory ap-
proach. For the examples considered in this paper, the
different channels in the scattering matrices which are
required to exhibit internal symmetry can be proved to
be kinematically identicaJ by using analyticity, crossing,
and unitarity. This is analogous to the 6eld-theory

8See, for example E. P. signer, Group Theory {Academic
Press inc. , New York, 1959), p. 29.
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or

cos8 sin8

—sin8 cos8
(2.5) or

result that particles in the same multiplet have the
same mass.

The conditions that an n Xn scattering matrix
p ~ Hap ~ be diagonalized by a constant real orthogonal
matrix U yield —2'n(42 —1) relations between the elements
of M and the parameters of the transformation. For a
2)(2 matrix, a convenient parametrization of U is

@=0, (2.11)

M 12 (st12u12) 0

pl($)M11(st1ul) P2($)M 2(2ts2u)2)

1/x=0

(2.12)

This, together with Kq. (2.6), would imply ($1~$2)

M'12(st12u12) =0

There is no loss of generality in taking detU = 1, because
for every diagonalizing U with detU= —1, there is a
diagonalizing U with detU=+1 which simply inter-
changes the eigenstates. The diagonalization condition is

M»(st»u12) = xt h($)M11(stiul)
—h '(s)M22(st2u2) j, (2.6)

where

pi(s)M»(stiui) =p2(s)M22(stiu2), (2.13)

The only way to avoid having M12 ——0 when 1/@~0 is
to have s» ——s2, Similar considerations can be applied
at the point s= ~». We can then conclude that 6» must
equal 62 for 1/x/0 in order that M»&0.

For 1/x=0, we examine Kq. (2.13) noting that

and
h (s) =p (s)/p (s)

x= ~ tan28.

(2.7)

(2 8) (s—si) (s—61) (s—s2) (s—62)
(2.14)

Kquatjon (2.6) is a relation between amplitudes evalu-
ated at the same s and scattering angle. When the two
channels are kinematically identical the three t's and
the three u's are respectively equal and h(s) =1. For
higher-dimensional matrices we do not yet have any
convenient form of the diagonalization conditions like

(2.6); however, we will describe in Sec. IU a relatively
simple way of handling the case of a 3X3 matrix which

can be generalized to any number of channels.

Internal Symmetry and Mass Degeneracy

We shall prove here that for a 2&&2 scattering matrix,
Kq. (2.6), unitarity, crossing, real analyticity of the
amplitudes, and the requirement that M» be nonzero

(M» ——0 means that the matrix is already diagonal)

imply that the two channels must be kinematically
identical so that h(s) =1.

The expression for h(s) is

8$» —823 ~ 822 8$4 ~ (2.15)

h(s) =1.

Eigenamylitude Theorems

(2 16)

e now state two theorems which have appllcatlon
in virtually every problem where the symmetry postu-
late is applied, and which will be referred to as eigen-
amplitude theorems.

If three eigeuarriPlitudes A, satisfy the lirwar relation:

g c,A;=0, (2.17)

As t» circles any given branch point of 3EI»» associated
with a threshold in the t channel, s can be chosen so that
t2 will not circle a branch point of %~2 except when s» ——s2
and 6» ——6&. Therefore, if we are to have a symmetry
with 1/x=0 and not forbid t-channel thresholds we must
have si ——s2 and &1——&2 as was the case for 1/x/0. Thus,
we conclude that

h(s) =
-(s—si)(s —61) '"

7

(S $2) (S 62)—
(2.9) where

where
si ——(2421+ rr42)2, ~i= (rr41 —rr42)',

$2=(~2+~4), ~,=(~ ~2)', 4

(2.10)

and particle labels are chosen so that m»&m2 and
m~&m4. If the amplitudes M»», M»~, and 35~2 are real

analytic functions of s, then unitarity implies that they
have second-order branch points at s». Continuing the
amplitudes (for a fixed scattering angle) and h(s) twice

around their branch points at s» without circling any
other branch points of the amplitudes or h(s), leaves the
amplitudes unchanged whereas

h(s) ~ —h(s).

(2.18)

used lhe c; are rjoMero corjstarlts, thee )he three eigee-
a221plitudes are equal. The theorem is proved by ex-
pressing A 1 in terms of A 2 and A 2 using (2.17) and substi-
tuting this expression in the (elastic) unitarity equation
for Ai. It is then seen that (2.18) plus unitarity for A2
and As imply A2=A2. U»ng (2.17) and unitarity again,
one sees that A»=A2=A3.

If I ei geriarriplitudes A, satisfy the li riear relatior4:

(2.19)
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where

g c;=0 (2.20)

and the c; are nonsero constants, and if alt the c; except one
ha~e the same sigo, thee at/ the A, are eqleL Any other
possibility for the signs of the c; will not force all the A;
to be equal, even though it is obvious that having all A;
equal will always satisfy Eqs. (2.19) and (2.20).

III. ISOTOPIC-SPIN EXAMPLE

In this section, we examine the possible symmetries
in x-vr elastic scattering as a simple example of our
general method and then extend the problem to include
scattering of pions and kaons. Before applying the
symmetry postulate, we will demonstrate that the con-
sequences of Bose statistics, charge-conjugation invari-
ance and time-reversal invariance for m--x elastic ampli-
tudes are already contained in the crossing relations for
these amplitudes. Table I contains a list of the crossing
relations. Amplitudes which are odd(even) under
exchange of the last two kinematic invariants appearing
as arguments have odd(even) indices.

Identical particle factors of 2(V2) are introduced
when particles in both (either) the incoming and (or)
outgoing states are identical. In summing over inter-
mediate states in unitarity relations, we must sum only
over distinct physical states and this introduces factors
of —, into the angular integration over intermediate
states with identical particles. The amplitudes A; are
defined so that they will satisfy the usual two-particle
unitarity equations with no extra factors of -', .

Consider the first t-channel crossing relation in the
table. The amplitude for the process m+x+~ m+x+ is
related by crossing to the amplitude for the process
m+z ~ m m.+, which in turn is related by a 180'rotation
of the outgoing ~ and ~+ to the amplitude for the
process x+x —+ x+x . The 180' rotation is responsible
for the minus sign in front of the odd part (A p) of the
amplitude in the t channel. Similar considerations apply
to the rest of the table.

The first I-channel crossing relation reads

2 (A,+Ap) (stu) = (A p+Ap) (uts) . (3.1)

Ag+Ap=Agp+Ag4 (3 5)

Exchanging t and I yiekls

2(A~+Ap) (sut) = (A p+Ap) (tus), (3.2)

and by dehnition of odd and even amplitudes

2(—Ai+Ap)(stu) = ( A, +A p)(tsu). —(3.3)

However, the first t-channel crossing relation says that

2(Ag+Ap) (stu) = (—A p+Ag) (tsu) . (3.4)

Therefore, A ~=0 as it should, since the pions are bosons.
From the t-channel crossing relations, we see by inspec-
tion that

TABLE I. Amplitudes and crossing relations for the elastic
scattering of pions. Factors of 2 and V2 are included so that all the
A; will satisfy the usual two-particle unitarity relations. The last
three processes are related to the others by charge conjugation
and time reversal. It is pointed out in the text that the crossing
relations contain all the consequences of Bose statistics and invari-
ance under charge conjugation and time reversaL.

elm+ ~ m'+m'+

%+7r —+ 7r+Ã

7r+7r —+ moÃ'

m vr0-+m. 2r0~ m' 2r.
~0'' ~ x+m

(sag) (tsN) (its)

2(Ag+Ag) = (—Ag+A, ) = (A,+A,)
(A3+A4) =@2(AV+Ag) = {Ag+A4)
(A5+A6) = (A6+A6) =2(A1+A2)

V2(Ay+As) = (A3+A4) = (—A 3+A4)
2 (Ag+A 10) = 2 (Ag+Alg) = 2 (Ag+Alg)

{A]y+A12)=42(—Av+Ag) = (A11+A12)
2 (A],3+A &4) = (—A5+A6) = (A5+A6)

K&(A1g+A16) = {A11+A12) = (—A3+A4)

A2=Ag4, (3.6)

which is an expression of invariance under charge conju-
gation. Proceeding similarly, one can find all the conse-
quences of Bose statistics, charge-conjugation invari-
ance, and time-reversal invariance for these reactions.

The crossing relations for the remaining independent
amplitudes are

2A p(stu) = ( Ap+A p) (ts—u), (3 7)

(A 3+A 4) (stu) =%2A p(tsu) = (A p+A 4) (uts), (3.8)

(A p+A p) (stu) = (A p+A p) (tsu) = 2A p(uts), (3.9)

vs p(stu) = (A p+A, ) (tsu), (3.10)

2A gp(stu) = 2A g p(tsu) . (3.11)

The I-channel relations which provide no extra informa-
tion have been omitted.

To search for possible symmetries, we apply the
symmetry postulate (2.6) to the zero-charge, even-
parity, 2X2 matrix involving A6, Aa, and Ayp. For a
nontrivial internal symmetry, the masses of the m+

and the x' must be the same. The diagonalization condi-
tion (2.6) therefore becomes

Ap(stu) =x(A,—A ~p) (stu) . (3.12)

Using the same manipulations as in Eqs. (3.1)—(3.4),
we find

A, (stu) = (-', A p+-', A,+A,) (tsu),

Ap(stu) =-,'v2(Ap+A4)(tsu),

(3.13)

(3.14)
and

A g p(stu) =A gp(tsu) . (3.15)

Substituting (3.13)—(3.15) in Eq. (3.12), exchanging s
and t, and separating odd and even parts yields

A p(stu) = (x/v2) A p(stu),

A4(stu) =xv2(-,'Ap+Ap —Agp)(stu).

(3.16)

(3.17)

or, since odd and even parts must be separately equal,

Ag=Ag3
and
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Equation (3.16) relates two amplitudes which satisfy
clastic unltallty lQ R finite encl gy legion. If Qclthcl
amplitude is to be zero, then the constant relating them
must be unity. This leads to x=42, and is the erst of
foul possibilities:

g=o, 33=0, Ag/0,

1jx=0, As=0, As80,

s undetermined ~

(3.20)

Equation (3.22) now becomes

(3.25)

which meets the requirements of the three eigenampji-
tude theorem (Sec. II). Therefore,

This equality of eigenamplitudes is just that which

results from invariancc under rotations in isotopic-spjn
space. The three amplitudes in Eq. (3.26) are the I=2,
I,=2, 1, 0 amplitudes. Also, from Eq. (3.18), we have
the equality of the I= i, I,= j., 0 amplitudes. The cigen-
amplitude Xe which appeared in the same 2&2 matxiz
with X~0 is the I=0 amplitude, and wc 6nd no relation
between this eigcnamplitude and any of the others. I'ur-

thermore, since we know the diagonalizing matrix (to
within certain phases), we know what states form the
basis in which the scattering matrix is diagonal. This j.s
equivalent to Mowing thc lsotoplc-spin signer
coeS.cicnts,

Thus, all the predictions of invariancc und. er rotations
in isotopic-spin space for elastic scattering of pions have
been found.

It should bc noted that ln older to 6x s, all wc needed
was that the elastic unitarity relations apply in some
Mite energy region near threshold. Because of this, thc
calculation performed here remains the same so long as
any additional inelastic channels have threshoM. s above
the elastic threshold. Since amplitudes are analytic
functions, the amplitude relations calculated ig. the
elastic region can bc continued. and hence will be the
same above the inelastic threshoMS.

Thus, we see that crossing and. unitarity have 6xed
the value of x for the least trivial cases.

Ill the first ol' llolltllvlal case 111 whlcll x=&2) Eq.
(3.17) becomes

(3.22)

Since R knowledge of x ls equivalent to a knowlcdgc of
the matrix which diagonalizcs the scattering matrix,
the eigenamplitudcs are easily seen to be

If we look for amplitude relations corresponding to a
nontrlvlal lntcI"nal symmetry ln thc clastic scRttcx'lng of
kaons, neglecting coupling to other particles, we get
only R few of the isotopic-spin predictions. However,
kaons are coupled to pions (as well as other particles),
Rnd. since the pion is less massive, the unitarity relations
for EE amplitudes should include xx channels below
the EE threshold. It will be assumed, for simplicity,
that EK is the 6rst inelastic channel to open up in mw

scattering, and that Bose statistics, charge conjugation
invariance and time-reversal invariance are valid. Then
possible symmctrlcs lQ the pion-kRon system will bc
found. In addition to the seven xm —+ m- amplitudes„
wc now have the m.m —+ KK, LL—+EL, ~~EX,
and the Ex —+ Em amplitudes plus their crossing rela-
tions as listed in Table II. The equality of pion masses
among themselves and the equality of kaon masses
follow immediately from the diagone3ization postulate
via the arguments in Sec. II.

%e will now show that the existence of an internal
sy~etry ln the arm-xx and E+-Em amplitudes leads
to amplitude relations given by isotopic spin sy~etry
for the whole xE system. ' %c will sec that the sym-
metries in the mw and E~ channels 6x the symmetry
in the EE Rnd EE channels without further symmetry
postUlatcs. Thc secret, of coux'sc, ls cx'osslng, and thc UQl-

tarity relations involving coupled-channel amplitudes.
The'internal symmetry or diagonalization conditions

wc RssUmc Rrc

As ——gl(gs —its), (3 27)

En'-Em: Ds gs (Ds—Dv),—— (3 28)

De= ~s(D4 —Ds), (3.29)

all=*4(as —Dls), (3.30)

Dls=~s(ate —D14). (3.31)

The lmphcatlons of Eq. (3.2~) have already been found.
%c note that for m~gm the amplitudes with o(M
(even) indices are odd (even) with respect to cosH~
—cosH bu't riot wl'tll respect to $ ~ N. Equatloll (3.28)
yields via the crossing relations

L
—a,+a,—*,(vs,+a,—as) j(sag)

=
t all+ale

sod sod—x, (D,+o —D„—D„)j(s+; e—,t, (3.32)

where
a= (mx —tts, )' and ss ——(m)r+m. )'.

The discontinuity with respect to s (for any given
value of t) of each side of the equation must be separately
equal to zero because of the Unequal-mass factors
appearing in the arguments. From the odd partial-wave
projection of the discontinuity of the left-hand side of

OThe only reservation is the difBculty of separation of Kq.
(3.64) discussed st the end of this section.
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Tax.z II. Amplitudes and necessary crossing relations
fOr the zl-, E Syatem.

(330) and (3.31), if B,W0,

E+E~ -+ w+zt'
E+E -+%-+Ã
E+E —+ zf-0zf

EoKo ~ ~+~-
E0g0 ~ ~0' 0

E+E+~ E+E+
E+IP —+ E+E
E0IP -+ E0E0
X+K~ -+ E+E0
E+E ~E+L&
E+E —+ E0E0
E0E0~ E0E0
E+m-+ ~ E+zf+
E+m ~ E+m'
E+vf -+ E0m+
E x+ ~ X0zt+
E+vf ~ E+m
E+vr -+ E'zf-'

E0zf-0 ~ E0zf0
E0vf ~ E0zf

Bl+B2
B8+B4

42B6
Bv+Bs

~B10
2C2 C9+C10

C8+C4 =—Cll+C12
2CS = —C18+C14

Cv+ C8 Cl1+C12
C9+C10 C9+C10
Cl1+C12 Cz+ CS
C13+C14 C13+C14
Dl+D2 = —B8+B4
D8+D4 =~Be
D8+Bs = —Bl+B2
Dz+Ds =—Bv+B8
D9+D10 B8+B4
Dll+&12= Bl+B2
D18+D14 ~B10
D16+Dle= Bz+B8

C9+C10
Cv+Cs
C18+C14
C8+C4

2C2—C8+C4
2C6
D9+D10
D8+D4
Dl1+D12
+15+D16
Dl+D2
DS+D0
D18+D14
Dv+E'8

BI=X4BI,

D4 *4(D1 Dl())

$5—X4 ~

B2 744(B——4 42B—IO),

D4 ——X4(D1—D14) .

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

VVe will now find a solution with No other amplitude
equal to zero. Equations (3.39), (3.44), and (3.46)
then imply

88——&286,

84 %28$Q ~

(3.4V)

(3.48)

The unitarity relations for the m+m+-+m+m+ and
&+zt-'~ w+zi-' amplitudeS giVe, uSing A2=A4,

(3.46)

Assuming the previously derived internal symmetry
relations between the m.m ~ mvt- amplitudes and assum-
ing a8/0, the unitarity relations for the partial-wave
amplitudes b6 and bs applied below the EE threshold
yield

Eq. (3.32), we obtain

Pl(f)l 444+&if 7 o4) (3.33)

But we have already derived the relation us=as, and
since a3/0, we obtain 84—88 ~

BI+zmB7=0.

Ke repeat that we frequently use analyticity to con-
tinue any relation between analytic functions valid over
a 6nite region of the right-hand cut into the whole
complex plane. Using crossing on the diagonalization
Eq. (3.29), we obtain

DI =DI4, D4 D14, DI —————', (D7+Dl,),
D4———', (Ds+D14), DI ——-', (DI+D9),

(3.49)

(334) Applying the crossing relations to Eqs. (3.46)—(3.49),
we deduce that

Uslllg tllc sanlc arguIllcllt wlllcll lcd to Eq. (3.34) we
find that

BI+7(IB7 0. ——(3.36)

Assuming B7/0, Eq. (3.34) and (3.36) yield

But then, the left-hand sides of the Eqs. (3.32) and
(3.35) become identical, and the right-hand sides be-
come negatives of each other. Hence, both sides of the
two equations are equal to zero. Setting odd and even
parts separately equal to zero we obtain

Dll z2(DI D14)

Bs x2 (V2B4 Bs), —— —

DII Xm(D4 D14) . —— —
(3.39)

(3.40)

Sy entirely analogous arguments we obtain from Eqs.

L
—BI+B,—x4 (V2B()+BI—B8)j(s/44)

= —LDII+DI2
spk spk

x, (D,+D D D—)](s+,w———,—t . (3.35)

D4= k(DI+Dlo), Ds= —DII, D4= —DI4. (3.50)

Use of Eqs. (3.28) and (3.42) and the relation D3=D13
leads to

(Xg+X4)DI= X4DI+X2D7. (3.51)

Defining D8" and Dv&' to be the eigenamplitudes
obtained by diagonalizing the amplitude matrix with
elements D3, D5, and D7, and defining 02 to be the mixing
angle of the diagonalizing matrix we have

(zm+z4) (D()(' cos'84+D7'& sin'82)

=&4DI+&1(DI sill 8s+D7 cos 82) ~ (3.52)

Ke note that the conditions for validity of the eigen-
amplitude theorem are satisded. Ruling out the alterna-
tive D~(') =Dv(') =D& which requires D5 =0, we conclude
that the coe6.cients of at least one of the eigenamplitudes
D, ('& and D7('& must be zero when Eq. (3.52) is written
in the standard form of the eigenamplj. tude theorem.
Hence,

(x2+x4) cos'82 —xm sin'82= 0, D7'& =Dl (3.53)

(F4+@4) sin'82 —xm cos'8l ——0, D4('& =Dl. (3.54)
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From (3.50) we also have

D15=2D3—Dv

=2[D3 ' cos'8 +Dr ' s&n'8 $
—[Da&'& sin282+D7~'& cos'8sj. (3.55)

TAszz III. Amplitude relations which result from the sym-
metry postulates made in the text. The two relations in heavy
brackets ([ ]) are the only isotopic-spin relations which do not
follow rigorously from the postulates. It is reasonable to expect
that inclusion of more channels will pick out the [relations for
reasons stated in the text.

Using the eigenamplitude theorem arid D5/0, we
obtain

Similarly, from
x2 ——A%2. (3.56)

x4——+%2. (3.58)

From (3.56), tarP82 can be 2 or -', . Hence, from (3.53)
and (3.54)& (x2+x4)/x2 can be 2 or —', ; but for (3.5g)
also to be true, we must have

x2 ——x4——+V2. (3.59)

The ambiguity in sign in Eq. (3.59) corresponds to the
fact that we have not specified the phase of the E+7t'
state with respect to the E'sr+ state and not to any real
ambiguity in the physical predictions. We now turn to
derive the relations between the EE-EE and the
EE-EK amplitudes. Looking at the unitarity relations
for„.jthe mw-EE amplitudes above the EK threshold
and imposing our previous relations (3.36), (3.41),
(3.46)—(3.49) we deduce that

C7 C13 C11 7

C7= Cg —C11,

C1o=C14.

(3.60)

(3.61)

(3.62)

Using the crossing relations on the equation Cg ——C13
obtained from (3.60) and (3.61) we obtain

D1——2D3—Dg

=2D13 Dg
= 2[D9~~& sin'84+D$3&~& cos'847

—[D9&~& cos'84+D~3&~& sin'84j (3 57)
we obtain

Ag=A4 ——2A1p —A6
A3=A5
As ——-', %2I (2A6 —&io) —(2Aio —&6)]
g7 ——+3—W, &281
82=0
+8=+4=2~6= ~~10

C11=Cg —C7
C13=Cg
C6——[Cg ——C4]

C14=Cip
[C12=C1p —C8]
D11= —D5 =+g~2(DI —D3)
Dg =Dv =2D3 —D1

D13 D3
D15 D1
D12 ———D6~-', V2 (D2 —D4)
D10=Ds =2D4 —D2
D14 D4
D16=D2

points corresponding to the threshoMs of the afore-
mentioned types of channels must cancel. An obviously
consistent possibility is

C2—C4= C1P—C12—C8= 0. (3.65)

Inclusion of further inelastic channels might help in
picking out the above possibility which is the isotopic-
spin prediction.

However, with the number of channels included here,
we cannot go further than Eq. (3.64), which is consistent
with, but a little less than, the isotopic-spin prediction.
Except for Eq. (3.65), we find all the predictions of
isotopic-spin symmetry.

Finally, we remark that the amplitude relations
(Table III) are independent of whether we assume the
mass of the pion to be greater than or less than the mass
of the kaon.

C2= C6. (3.63) IV. UNITARY SYMMETRY

Equation (3.61) and the crossing relations yield

2 (C2 C4) = (Clo C12) C8. (3.64)

This is a relation between four eigenamplitudes C2, C4,
Cs, and (Cqo —C&2). That the last one of these is also an
eigenamplitude can be easily verified by using the
unitarity relations. The left-hand side of Eq. (3.64)
has only strangeness equal to two amplitudes, and the
right-hand side only strangeness equal to zero ampli-
tudes. There are many channels of strangeness equal
to two (for example, "X) corresponding to which there
are no zero-strangeness channels of equal ma, ss, and
conversely there are many channels of zero strangeness
(for example, multipion states, nucleon-antinucleon
states, etc.) corresponding to which there are no
channels of strangeness equal to two; since the two
sides must have the same branch points, all the branch

We have already seen that isotopic spin emerges as
the least trivial internal symmetry when we consider
diagonalization of scattering matrices with channels of
various charge states. In the present section, we will
therefore accept the fact that the particles break up
into isotopic-spin multiplets and derive the more inter-
esting relations corresponding to higher symmetries.
We will discuss the scattering of the eight pseudo-
scalar (8) mesons (~,q,X) from each other and allow
the masses to be arbitrary but nonzero. If we require
that each of the scattering matrices listed in Table IV
be diagonalized by a constant real orthogonal matrix
U, we conclude that the mesons must have equal mass
and that the only nontrivial amplitude relations are
precisely those given by SUB. The results of truncating
the diagonalization assumptions will be discussed in
Sec. V.
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Ag=-2%2(As —A8), (4 6)

A 6
=xa(43/242) (A ~+A to—2A 9) (4.7)

A 6
= x4xs(8AS —3A7—5A s) . (4.8)

Unlike most of the attempts to derive SU3 from a

In Table V, we have listed the t-channel crossing
relations and those I-channel crossing relations which
give additional information. Identical particle factors of
2 and V2 multiply some of the amplitudes so that they
satisfy the usual two-particle unitarity equations.
Using both the t- and I-channel crossing relations, it is
straightforward to express each of the A;(stu) in terms
of the A;(tsu). Table IV shows the four 2X2 amplitude
matrices and one 3)&3 amplitude matrix in the pxoblem.
The diagonalization conditions for the four 2X2
matrices can be expressed as

A3(stu) =xt[ht(s)A, (stu) —ht-'(s)A4(stu)], (4.1)

A, ( t ) = Ch ( )A ( t )—h -'( )A (stu)], (4.2)

A t8(stu) =xtt h3(s)A tv(stu) —h~ '(s)A t9(stu)], (4.3)

A ~2(stu) = x4I h, (s)A „(stu)—h2
—'(s)A 23(stu)], (4.4)

where none of the constant x s are zero.
The expressions for A;(stu) obtained from crossing

can now be substituted into these equations and then
the interchange of t and s will yield s-channel relations.
The physical cut structure of the amplitudes in these
relations imply, by arguments mentioned in Sec. II,
that for all amplitudes to be nonzero, the masses of the
zt-, g, and E must be equal. Therefore, all the h; are
unity. The odd-amplitude relations derived as above are

A t(stu) =3A 2(stu) 2A9(stu—), (4.5)

TA33LE IV. List of the 25 odd- and even-parity pseudoscalar
amplitudes. Subscripts denote isotopic spins. Note that there are
four 2)(2 and one 3)&3 amplitude matrices indicated by brackets.
The numbers correspond to subscripts for amplitudes used in
the text.

Odd amplitudes

1. (EK I EE)0
2. (EZ I EZ)i
3. (EKI~~)&
4.
5. (~EI E)„,
6. (HEI qE.)zt2

7. &gE ICE)yt2
8. (wEImE)atu
9. (ZE IZE)0

10. (g~lgm)g

Even amplitudes

11. (EZ I EK)0 '
12. (EZlmw)o
18. (~~I~~)o
14. (nn I m)0
15. (ng I ~w)0
16. (qq IZZ)0
17. (EK I EE6),
18. (EZ

I
gm. )&

19. (gm I gg)g
20. (EE I EIi),
21. (~E

I ~E),t,
22. O'Z

I IE)v~
(&E ICE)v2

24. (vrE
I srZ) gt2

25. (~~l w),

~11 ~12 ~16
~12 ~13 ~15 ~

215 A,4,

(4.9)

dynamical framework, we will not assume anything
about the existence or otherwise of resonances jn the p I
amplitudes corresponding to the eight known vector
mesons. However, we remark that if we do make this
assumption, the relations between the amplitudes can
be deduced very simply already at this primitive stage
of our actual calculation.

%e must now consider the consequences of the
diagonalization conditions on the 3&3 matrix 3f:

TABLE V. The t- and u-channel crossing relations for the pseudoscalar-pseudoscalar amplitudes used in Secs. IV and V.
Identical particle factors of V2 and 2 multiply some of the amplitudes.

A

2+Ariz

—' —' As+A 1z

+A {stu) = ~' ~

A +A

V2A)2 4/Q6 2/g6 A5+A2t

2A 18 g i 5/3 2A 13

2A 4 (stu) = $ —', —-', 2A 4 (tstt)

2A25 2A25

AS+A s4 —' -', Q6 v2A 3

A +A 1 -'Q6 V2A

(A 6+A 2Q) (sttt) = (+~2)A $8 (tsu)

{Az+A28) (stu) = —&%(~2A16) (tsu)

2A 2p ~s ~
—A 2+A1z+

2A,
' " —-'; —A&+Au J

(A1p+A19) (stu) = —3%3 (2A1q) (tsu)

(2A 14) (stu) = (2A 14) (tsu)

(2A 15) (stu} = —V3 (A ~p+A $9) (tsu}

(v2A 1p) {stu) = —vs{Az+A23) (tsu)

A 18(stu) = (g-', ) (A6+A2~) (tsu)

2A2P
(uts)

S 9

A 8+A 24
(uts)

A5+A21
= (A6+A22) (uts)

= (A z+A23) (uts)



1632 BLANKENBECLER, COON, AND ROY

Since the transformation U can be formed from the
normalized eigenvectors of M, the eigenvectors them-
selves must have constant elements. We denote an
energy-independent eigenvector of M by

e'

(4.10)

yields

xg ———V2q. (4.20)

P—= (16/+6)(x«/x, )g(1—r) '=1 or 4. (4.21)

Equation (4.17) is a quadratic equation which gives
two solutions for the quantity

We consider erst the alternative P=1. Equations
For the case e=0, the eigenvalue condition on M and (412) snd (4, 13) now become
crossing yield

~3(g2 f2)A—qo
—2gfA «= 0. (4.11) a, (v3y' —ys —v3)

It can be shown, using crossing and unitarity, that this
condition requires either A3 or A g to vanish identically.
This case is therefore ruled out. For the case e&0, let
y= f/e and s—=g/e.

The eigenvalue condition on 3' and crossing yield for
the odd amplitudes the two relations

y(-,'A o+-,'A x+-„'Ap)+y'(3 V3A s+-,'v3A «) —ysA 7

+ (-', v3zA go
—-',V3A s——,'V3A g

—yA «) =0, (4.12)

+a2 ——,'y —-',v3py'+ys
x2 16

3v3-
+-',K3g+-', y

— s (4.22)

g6 2x«y= a, —',i&3gy' — ys ——,'VSg+-+ -«'vSs

16 x2 2

2+Reg(16/-', ) (x«/xs) (1—r) '+ (64/3) (x«/xa)'(1 —r) '
—(8/v3) (x«/x«) (1—r) '(1/xg) 0, (4.17)

where

r=x«/x2— (4.18)

The unitarity relation for a8, Eq. (4.15), shows that
x2/x«. Combining Eqs. (4.14) and (4.15), we obtain

r(1—r) '= —-'+(s8)x«'(1 —r) '. (4.19)

Equation (4.17) implies that Reg(s) is energy-independ-
ent; hence Imp(s) is also. But since ar, a2, and g3 are
real analytic functions, g=+1. Unitarity for ua then

s(-';A g+ «A g+ «A g)+ys(-,'V3A8+ sVBA «)
—s'A 7+ (A p+-,'V3yA &p) =0. (4.13)

The object now is to determine the parameters x~, x2,
x3, and x4 and the three eigenvectors. The restrictions
due to unitarity are simple to express if we use the
partial-wave projections of the A;, denoted by a;(s).
Using the previous equations, it is possible to express
all the odd amplitudes in terms of u~, a2, u3, and u5.
The unitarity relations for c6 Q8 Qg, and ago yield,
respectively,

4v2x«(1 r) 'R—e[u&~(a2 —u&)]=p~a«~2(1 —r) ~

X [2&2(x«/x&)+8x«r (1—r) '], (4.14)

(3/&2) Re[a«*(a2 ««5)1=p~8~

&&[—9/8+3/(2v2xg)+8x«'(1 —r) '], (4.15)

aa—=~(e) (~~—~2)/~2,
I ~ I

=1 (4.16)

+62xn g6 2x«
u, (ways —s'+1) =a, +-«'V3y+-', V3pys — s'

16 x2 16 x2

16 x2
«3&3y ——,'s—-',V3gys+ s'

x2 16

(4.23)

vSs= —y, y= +-',V3'. (4.24)

For y=-,'lS, the coefficients of uq and u2 are found to be
proportional to x&/x2, and hence x3/x2 must vanish.
Equations (4.19) and (4.21) then yield the values of
xs and x4. The solution y= ——,'V3 is ruled out because
it yields an imaginary value for x«(xP= —3/16). The
solutions with coefhcients of a5, u~, and. a2 not equal to
zero are similarly worked out.

We And that for P=1, g=1, and a nontrivial set of
amplitude relations, the diagonalizing matrices are
given by

xg= —V2, x2 ——~, xa ——A+6, x« ——+-,', (4.25)

We note first that a2= constant times a~(s) implies via
unitarity, either a2 ——a~ or a~ ——a~/3 which correspond to
23=0 or Ag=0, respectively. We therefore assume that
an(s) and u~(s) are linearly independent amplitudes in
order to derive the least trivial symmetry. In Eqs.
(4.22) and (4.23), the linear independence of ar and a2

implies that either the coefficients of a5, a~, and a2 are
all. zero, or we obtain two expressions for u5 in terms of
a~ and a2 in which the coeS.cients of a~ and u2 can be
separately equated. Consider first the case p= i. For
the coeKcients of a« in Eqs. (4.22) and (4.23) to vanish,
we must have
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A 11 sAls+sA14 s~A12 sA16 (4.29)

Crossing these relations we obtain two new relations
between the odd-parity amplitudes

and the three normalized eigenvectors of M are

1/K2 VS/+10
f =& %3/(2%2), + —1/(2+10)

,g. .—1/(2&2) . .3&3/(2+10)

1/+5-
—3/+5 . (4.26).—1/+5,

A somewhat tedious calculation along the lines indi-
cated above shows that for the cases p=1, ri= —1, and
P=4, re= +1 there are only trivial solutions.

With the eigenvectors given by (4.26), the conditions
such that U diagonalizes M now read

NBA rr —sV3A rs —stjA r4+A rs+-', A rs+&BA rs ——0 ) (4.27)

KBA rr+-,'v3A rs —-',VBA r4——,'A rs

—4A rs+-', NBA rs =0, (4.28)

three independent even-parity eigenamplitudes we 6nd
are, in group-theoretic language, the odd-parity ampli-
tudes (8&~ 8&), (10-+ 10) and the even-parity ampli-
tudes (1—+ 1), (8s~ 8s), (27 —+ 2 "/) in SU(3) symmetry.

. rirl —+ KK riri ~ s.s.

A 11

12A
Are I Are
A13 ! Ale (5 1)

.Ars Ars I Ar4.

V. OTHER HIGHER SYMMETRIES

In this section, we look for possible higher sym-
metries" which allow one of the pseudoscalar masses
(m„,m, or mrr) to be different from the other two
(m =mx, m„=m&, or m„=m,) It. is easy to see what
kind of diagonalization postulates are needed. First,
we take the case m„Wm =m~. In the 3/3 matrix with
even spatial parity

KK ~ KK KK ~ s-vr ! KK ~ rig
s.s ~ KK s-s. -+ s-s.

! ss —+ riri

A s ——2v2 (A4—As),

V2A3 ——A4—As.
we postulate diagonalization for that 2 by 2 sub-

(4 31) matrix which involves kinematically identical channels.
Therefore,

TABLE UI. Odd- and even-amplitude relations that follow under
diagonalization assumptions for all the amplitude matrices in
Table IV. These are identical with the SU3 predictions.

Odd

A2=-', (A 1+2A 9)
A3=-', VZ(A I —A g)

A 4 ——~~ (2A 1+Ag)

A5= ~s (Al+Ag)
~A 6

————,'(Al —A,)
AV=A5
As=Ag=Alp

Even

A14 2A ll 3A 12 A13
A 15 3A 11 3A 12+3+A 13

A 16 3A 11 {5/9)~3A 12 gA 13

A 17 ——A 11—-'343A 12

~A 18
———-', (+6)A 11+-'3V2A 12+-', (+6)A 13

A ]9
——5j3A 11—7/9V3A 12—3A 13

A20 =3A 11—V3A 12—2A13

A 21 gA 12+A 13

~A 22 —A ll 6~3A 12 A 13

&23=3/3& 11 1&/13&A i2 6/3A 13

A 24 =A 25 =A 2a

Now all the odd-parity amplitudes can be expressed in
terms of two of them (say A& and As). An entirely
similar procedure enables us to express all the even-
parity amplitudes in terms of three of them (say Arr,
Ars, and Ars). These amplitude relations are listed in
Table VI. The (+) signs in front of the amplitudes
A6, A1s, and A2~ correspond to the fact that these
amplitudes reverse sign if the relative phase of the
states g and m is reversed, and do not therefore corre-
spond to any physical ambiguity in our answer.

Finally we observe that the amplitude relations in
Table VI are precisely those obtained by assigning the
pseudoscalars to an octet representation of SU(3). The
two independent odd-parity eigenamplitudes and the

Ars=yr(Au —Ars) (5.2)

The only other matrix in which we invoke the symmetry
postulate is the matrix involving A ~, A ~, and A4. Hence,
we write

As ——x(As —A4). (5.3)

'P R. K. Behrends and A. Sirlin, Phys. Rev. 121, 324 (1961};
R. K. Behrends, J. Dreitlein, C. Fronsdal, and N. Lee, Rev.
Mod. Phys. 34, 1 (1962);P. G. O. Freund, H. Ruegg, D. Speiser,
and A. Morales, Nuovo Cimento 25, 307 (1962); R. K. Behrends
and L. F. Landovitz, Phys. Rev. Letters 11, 296 (1963).

Any further diagonalization postulates would force all
three masses to be equal and this case has already been
treated.

It should be noted that m =m~ is in accord with the
assignment of pions and kaons to a seven-dimensional
representation of G2. The amplitude relations which
follow from the symmetry postulates are consistent
with the predictions of G2. However, not all of the G2
amplitude relations are found. This is similar to the situ-
ation concerning isotopic spin and the relation (3.64).
In any event, it is found that three amplitudes must be
zero and since G2 predicts the same three amplitudes
to be zero, G2 must be one of the least trivial symmetries.

When all the techniques at our disposal are applied
in working out the consequences of (5.2) and (5.3), we
6nd four eigenamplitude relations that are not of the
type which decompose via the eigenamplitude theorem
(Sec. II) into further linear relations among amplitudes.
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where A ~5, 4A ~3
—3A ~y, 32~, and 2 ~4 are eigenamplitudes

and the coeKcients obviously meet the requirement
(2.20) of the eigenamplitude theorem. Therefore, values
of x for which the coefficients on the right-hand, side of
(5.4) are all positive correspond to

325 ——4A gg
—3A gg

——32(
——324. (5.5)

However, this equation via crossing and unitarity
implies that x= —V2 which is not in the set of values of
x being considered. Therefore, we exclude the values of
x for which Eq. (5.4) implies Eq. (5.5).

It is worthwhile to note that with Eq. (5.4) and the
unitarity relations for the eigenamplitudes we have
somewhat more than an expression for one independent
function A23 (or its eigen phase shift) in terms of three
other functions and the parameter x. Using Eq. (5.4)
and the unitarity relation for 3~5, one can eliminate
225. Thus, one obtains a nonlinear relation expressing
one function (e.g. , an eigen phase shift) in terms of two
independent functions and the parameter x. This non-
linearity is allowed by our approach but certainly does
not correspond to what is usually meant by an internal
symmetry.

Even for those values of x for which the eigenampli-
tude theorem does not imply (5.5), it is obvious that
(5.5) is a solution of Eq. (5.4) which is consistent with
unitarity. VVhen linear relations between eigenampli-
tudes, such as (5.5), are arbitrarily chosen for all the
eigenamplitude relations in the problem, the results are
precisely the amplitude relations of G2. Inclusion of
inelastic states frequently picks out such "obvious"
linear relations. Indeed, inclusion of the P, a singlet
vector meson, does help pick out more G2 relations,
including x= —V2, but it still does not yield all the G2

relations. It seems reasonable to expect that enlarging
the problem to include more inelastic states would
select G& as the least trivial symmetry.

Now consider the case m /m~= m„.Here, diagonali-
zation of the appropriate 2)(2 submatrix of the 3)&3
matrix yields

~16 $2(~11 +14) ~ (5.6)

This case involves an eigenamplitude relation which

decomposes so that one arrives at a full set of amplitude
relations with no diS.culty. It seems consistent to assign
the E's and the g to the five-dimensional representation
of C2. We observe that the amplitude relations calculated

by our procedure correspond to the 10+ iOQ+14 reduction
of the direct product of two 6ve-dimensional representa-
tions of C~.

For example, one of the four relations is

5A 23——2 (4213—3211)

6v2 av2
+~ &+ &21+ 2— ~24, (54)

x g
we arrive at a set of amplitude relations with as much
ease as in the mw isotopic-spin treatment. This case cor-
responds to putting the pions and the g in the same
multiplet. If one has invariance under the group
SU2XSU~, where the SU2's act on quark and antiquark
spaces, it is a simple consequence that the pions and
the g, as nonstrange quark-antiquark states, will belong
to the same (four-dimensional) multiplet. The relations
among amplitudes involving x's and g which follow
from Eq. (5.7) are the same as those which follow from
invariance under SU2&SU2.

VI. RELATION TO BOOTSTRAP CALCULATIONS

There have been many calculations based on the
bootstrap hypothesis and some questionable dynamical
approximations that advocate "bootstrap" as the
dynamical mechanism responsible for induction of
symmetries in strong interactions, and then suggest
that a particular symmetry like SU3 is selected by a
bootstrap calculation. A natural question to ask at this

point concerns the relation between our assumptions
and those made by bootstrappers.

The first case to be considered is the class of calcula-
tions which start with multiplets of equal-mass particles
(e.g., eight pseudoscalars of equal mass and eight
vectors of equal mass). The partial-wave scattering
matrix is written in the form

(6.1)

where the discontinuity of M across the left-hand cut is
defined to be e=n', and

N= [nDjL„,
D = 1—[PN)12,

(6.2)

(6.3)

where [ ]L,12 means a dispersion integral over the left-

and right-hand cuts, respectively. The phase-space
factor p is a multiple of the unit matrix because of the
equal-mass assumption. For definiteness, we consider

the scattering of pseudoscalars by pseudoscalars. In
the odd partial waves, there are at most only two

coupled channels. For these cases, one can always write

~12 x(~11 1l-'I22) y
(6.4)

where x in general depends on the energy gs. Using the

previous expressions for 3f in terms of E over D, it is

straightforward to disperse x and to see that

[4212d]L/[(4211 4222) djL p
(6 5)

where d is the determinant of D.
In our approach to internal symmetries as applied to

partial-wave amplitudes, besides assuming some sacred

conditions such as crossing, unitarity, etc., it is further

The third possibility is mz/m =m, . If we take the
diagonalization postulate

+15 $3(~13 ~14) I



S-MATRIX APP ROACH TO INTERNAL SYM M ETRI ES

n(s) =Nu(s), (6.6)

where u(s) is a scalar function of the energy and e is a
constant symmetric matrix with nonzero elements be-
tween states that have the same strangeness and isotopic
spin. Bootstrap derivations of internal symmetry are
usually conlned to a single partial-wave amplitude.
However, if the justification for the assumption of
single-particle-exchange dominance of the force is taken
to be a "nearest-singularity"-type argument, it should

apply to all partial waves in a certain energy region.
Then, an equation of the form (6.6), with the same
matrix m, would be valid for all partial waves. Indeed,
bootstrap calculations' would have to make such
hypotheses to derive consequences of an internal sym-
metry for all partial waves. The mathematical state-
ment (6.6) satisfies our criteria and is enough by itself
to derive the symmetry by our method without making
any further assumptions or approximations. A constant
e corresponds to case b discussed above.

It is amusing to note that this is not the most general
n which leads to an internal symmetry. For example, if
0. can be written in the form

(6.7)

where the term involving e to the ith power is due to the
exchange of i particles, then an internal symmetry
exists and is the same as that found by neglecting all
terms except the one with i=1. This form for n will
follow, for example, if one uses the model of the force

assumed that x is independent of energy and angular
momentum. The energy independence will follow if the
dynamics forces the n's to obey the conditions

Case a, nii(s) =n2s(s). The mixing angle is then 45'
for all energies.

Case b, ni2(s) is proportional to (nii(s) —u, m(s)).

In our approach, it is further assumed that no reaction
amplitudes are zero. In the case of the scattering of
pions, kaons, and g's, the SU(3) results then follow

uniquely whether or not there are vector rnesons.
Bootstrap calculations usually proceed under the

following set of assumptions (or some equivalent set).
The 6rst assumption is to restrict the form of the force
by assuming only certain exchanged particles contribute
(for example, equal-mass vector mesons, nucleons, iso-

bars, etc.). The second assumption is to invoke the
bootstrap hypothesis and to require that the exchanged
particles show up in the direct amplitude at the correct
place with the correct residue (or slope). This second
requirement is only an approximate and certainly crude
statement of crossing. It will be incorporated correctly
in any scheme which satisfies crossing exactly.

The erst assumption usually corresponds to the state-
ment that the left-hand cut has the structure

n~(s) =mus(s) (6.8)

for odd J and a similar expression for even J. The
symmetric matrix e has nonzero elements as before.
Since the force can be diagonalized by an energy and
J-independent transformation, the total scattering
amplitude can also. Knowing this fact, one can proceed
by our method and prove that the only symmetry
possible is SU(3). Note that we get the complete con-
tent of SU(3) symmetry for these amplitudes. The usual
assumptions involving vector mesons are not only un-
necessary, they lead to the predictions that there is zero
scattering in the 10 and 10~ channels [which SU(3)
does not require at all]. See, however, Ref. 3 for at-
tempts to rectify this inadequacy which unfortunately
lead to the introduction of unconfirmed low-mass scalar
mes ons.

An alert reader at this juncture may ask himself
how any bootstrap calculation which treats crossing so
crudely can compute the exact relative values of the
SU(3) coupling constants. One reason for this wonderful
accident can be seen from the dispersion relation for x,
Eq. (6.5). It has been noted many times before that the
left-hand cut due to the exchange of a particle is
logarithmically in6nite at the beginning of the cut.
Since x is actually independent of the energy, one can
compute it by evaluating it at some convenient value

which leads to Eq. (6.6), but instead uses it to define

an effective relativistic potential. Iteration of this
potential will then lead to the form (6.7).

The pion-nucleon bootstrap models of Abers, Zachari-
asen, and Zemach' and Franklin' correspond to case a
and hence are different in details from most other calcu-
lations. However, all of these approaches require the
presence of poles which we see are not really necessary.

The bootstrap hypothesis does serve to connect
models and symmetries. For example, in the case of the
above scalar- and vector-meson models as applied to
G2, one can show that the force due to p and E*exchange
is repulsive in the T= -', state of Eg scattering and hence
the E~ cannot bootstrap itself. However, other physi-
cally reasonable dynamical models will produce sym-
metries other than SU(3).

The point we wish to stress here is that most boot-
strap "derivations" of symmetries start oG by assuming
most of their results and the details of the calculation
must be done only to see if the forces are attractive in
the correct states. In order to illustrate this point, let
us examine a nonbootstrap derivation of SU(3). The
model assumes that there is some sort of four-point
interaction between the usual eight mesons which can
be ignored in the calculation of the force but will be
computed later from the complete amplitude. This is
essentially a no-subtraction hypothesis. Equal masses
will be assumed and the force will be taken to be given

by the two-particle-exchange bubble diagram. The force
input can be written in the form
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of the energy. If one evaluates it at the beginning of the
left-hand cut, both numerator and denominator are
infinite and are given exactly by one-particle exchange.
Thus, x is computed exactly from the Born approxima-
tion. Now if x is also evaluated from its definition (6.4)
at the position of the vector-meson poles, one gets an
exact relation between coupling constants.

The second important property of bootstrap calcula-
tions is that there are few parameters. Thus, if the 8
vector-meson masses are forced to have the same value,
then the various eigenamplitudes which have these poles
are, in fact, identical. Since x is known exactly, all the
SU(3) coupling-constant ratios then follow even though
the eigenamplitude itself may be grossly in error.

VII. CONCLUSIONS

The authors feel that the most important results of
this approach are that unitarity and crossing without
further dynamical assumptions are enough to determine
possible internal symmetries and the consequent under-
standing of the amazing success of bootstrap as applied
to the "derivation" of internal symmetries. First, we
understand how such a poor approximation can yield
exact results in the equal-mass limit. Second, we under-
stand that the really essential elements of the derivation
are the number of equal-mass scalar mesons and the form
of the force. The imposition of the requirement that
there be vector mesons and that they bootstrap them-
selves is completely irrelevant for the derivation of a
symmetry.

Since the success of the bootstrap model is so acci-
dental in the equal-mass case, it would be surprising
indeed if it gave good results in the broken symmetry
case. This more dificult case will be discussed in a later
paper.

It should be noted that although the diagonalization

postulate corresponds to an internal symmetry, all
internal symmetries do not correspond to the diagonali-
zation postulate. However, it is easy to And the postu-
lates which are appropriate for other types of internal
symmetry. One simply performs an energy-independent,
real orthogonal transformation on the amplitude matrix
and observes that various numbers of zeros as oG-

diagonal elements of the transformed matrix correspond
to all the various possible types of conservation laws.

In all the examples considered in this paper, we have
postulated complete diagonalization of all the amplitude
matrices having kinematically identical channels. It
happens that this leads to amplitude relations which
correspond to well-known symmetries. However, there
is no physical basis for diagonalizing all (and not just
some) of the matrices in the problem. Thus, we state
that one of many possible postulates leads to SU3 rela-
tions and that other postulates wi11 in general lead to
other relations. The postulate which yields the SU3
relations for the meson-meson system is unique only
in the sense that it postulates the maximum number of
selection rules, or "the maximal symmetry. "However,
SU3 is clearly not the maximal symmetry in the baryon-
meson system because there is an undiagonalized 2)&2
scattering matrix with the channe1. s 88, 8~.

There are several deep questions about this S-matrix
approach which come to mind that we cannot answer
at this time. For example, what is the precise connection
between our symmetry postulate and the standard Lie-
group approach? Are they always equivalent? Other
types of questions concern the derivation of symmetries,
especially broken ones. One important question is
whether the number of pseudoscalar mesons that are
assumed to exist actually determine the symmetry if a
particular dynamical scheme is used (such as the
Mandelstam representation). We hope to return to
these questions later.


