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Strong Initial- and Final-State Interactions in Nonnmsonic Hyper-
nuclear Decays and in Parity-Violating N+ N ~ N+ N Reactions*

J. BARcLAY ADAMS'

Institate of Theoretical Physics and Departmertt of Physics, Stamford Urtiversity, Stanford, Califorrtia

(Received 14 October 1966)

A distorted-wave Born calculation is used to show that the strong initial- and Anal-state interactions in
the nonmesonic hypernuclear decays, A+N ~ N+N, are of major importance, greatly suppressing certain
transitions, and suggest the dominance of one-pion exchange in the explanation of hypernuclear decay rates.
Weak exchange of heavier mesons is also suppressed by the strong interactions both in A.+N —+ N+N—
badly breaking any SU(3) symmetry of the reactions —and in the parity-violating N+N ~ N+N. It is
shown that the decay rate of heavy hypernuclei provides a measure of the A-N correlation function at short
distances in nuclear matter and should depend significantly on the existence of a hard core in the A-N
strong interaction.

I. INTRODUCTION

'HE reaction A.+N-+N+N is an interesting
example of one of the little understood non-

leptonic weak interactions, It has been observed as the
so-called nonmesonic decay mode of both 1ight' and
heavy' hypernuclei. On the basis of available data,
Block and Dalitz' have made a preliminary empirical
analysis of the structure of this weak interaction. In
this paper we would like to extend the theory of the
reaction by an attempt at an explicit calculation of the
effects of strong interactions in these nonmesonic hyper-
nuclear decays.

There have been several formulations of the theory
of the structure of the h+N +N+N rea—ction. The idea
that the reaction proceeds by the exchange of a pion
between the baryon currents seems first to have been
suggested by Cheston and Primakoff in a calculation of
hypernuclear decay rates. ' It was used by Ruderman
and Karplus in a deduction of the A spin. ' This work
was extended by Cerulus to include effects of parity
violation. ' Ferrari and Fonda considered the effects of
two-pion exchanges creating a virtual Z-E state in the
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decay. The reaction has been analyzed in the frame-
work of SU(3) symmetry. Exchanges of the entire
pseudoscalar and vector-meson octet were calculated
by Itohs using SU(6). Kohmura has used unitary sym-
metry to predict decay rates of double hypernuclei from
the known decays of single hyperfragments. ' A discus-
sion of the reaction assuming octet baryon currents by
Tamiya, Kawaguchi, and Sumi allowed for form factors
at the meson-baryon vertices but was not able to
account for observations. "Panchapakesan pointed out
that the form proposed by Block and Dalitz requires a
mixture of octet and 27 representation components in
the current "

In none of the above discussions was account taken
of the strong interaction between the A and nucleon in
the initial state or the two fast outgoing nucleons in the
Anal state. It is our thesis here that these strong inter-
actions are of major importance in the A+N —& N+N
reaction, that they select the one-pion-exchange mecha-
nism as the dominant weak effect, badly breaking SUS
symmetry, and that they allow for a crude explanation
of experimental observations. "

In this paper the decay rate is computed for a A.

particle at rest in infinite nuclear matter. For such a A.

the normal decays h. —& N+sr, A. —+ N+t+v are for-
bidden because the final nucleon's momentum (&~176
MeV) is less than a reasonable Fermi momentum

( 250 MeV). Thus in the limit of large hypernuclei
the decay rate should be purely nonmesonic. " Some
comments about the applicability of these results to
light hypernuclei are offered.

Calculations are carried out in an independent-pair
approximation and are based on the assumption that
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I Phys. Letters 22, 463 (1966)g. This paper contains numerical
errors corrected here; J. B. Adams and J. D. Walecka, in Pro-
ceedings of the International Conference on Nuclear Physics,
1966 (unpublished).

"H. Primakoff, Nuovo Cimento 3, 1394 (1956).

1611



1612 J. BARCLAY ADAMS

effects of the strong interactions can be accounted for by
interbaryon potentials. The weak one-meson exchange
is then calculated in the distorted-wave Born approxi-
mation. The most important feature of the potentials
assumed is a hard core which forces the S-wave radial
wave functions to go to zero at the core radius rather
than to a finite value at the origin. This e8ect and
oscillations of the final-state radial wave function in
the range of the weak interactions lead to major reduc-
tions in the radial integral in the matrix element. The
spirit of the calculation will be to adopt the simplest
forms of interaction and potential to show these sects.

In Sec. II we present the model weak interaction used
and the resulting matrix elements. Section III is a discus-
sion of the strong potentials and wave functions used.
Numerical results and sensitivity to variations of some
parameters are in Sec. IV. Results are compared to
experiment in Sec. U. Section UI is a discussion of some
of the shorter-range eGects and of the applicability of
this technique to parity-violating nucleon-nucleon re-
actions. Section VII is a critique of the work and
conclusions.

11. FUNDAMENTAL INTERACTION AND RATES

The longest-range eGect of the fundamental weak
interactions in A+X —+ 1V+S should be one-pion
exchange. Both dispersion relations and the field-theory
point of view we adopt here include such an interaction
because of the known weak x-A-E and strong m--E-E

couplings. We assume effective Hamiltonians for these
of the form

H =iG P~(1+Xpp)~iform,

H, =iG,g~yo~fir P. ,

where if' is the A spurion and boldface denotes vectors
in isospace. This weak-interaction Hamiltonian is taken
as a purely phenomenological model without prejudice
as to what the underlying fundamental form may be.

For first-order weak interactions between baryons on
their mass shells, this form for H„ is equivalent to one
in which a polar and an axial-vector current are
coupled to the derivative of the pion 6eld even if the
pion is not on its mass shell. For baryons moving in a
potential this is still true to the approximation that the
potential can be neglected compared to Mq+M~ and
M~ —M~. The form of the Hamiltonian adopted here
gives the rate and angular correlations for free A decay"
with the dimensionless coupling constants G„=9.0
&(10 ', X= —6.7. The pseudoscalar strong coupling
constant is GP/(4pr) = 14.

An expression for the nonmesonic decay rate of a A

particle in nuclear matter by the one-pion-exchange
mechanism can now be given, leaving open for the
moment the choice of strong interbaryon potentials and
corresponding wave functions. Because the correlations
are most easily discussed in terms of the various partial
waves, the complete set of final states summed over will
be spherical waves. Correspondingly the initial h.-S
state is analyzed into partial waves. In our nuclear
matter calculation we neglect all but the S waves for
the initial A-S state. Below we give a numerical check
which suggests that this is indeed a good approximation.
(ln the light hypernuclei with A (5 the ground state is
mainly S wave. ) The initial A.-E S wave function can
have spins arranged either in a singlet state which can
make transitions to the 6nal nucleon states 'Sp Ep or
in a triplet state which can make transitions to 'I'~, 'I'~,
and states 'Si+'Di which may be mixed by a tensor
force. It is the total transition rate which is experi-
mentally measurable of course, but for the purposes of
displaying the effects of correlations we shall also
compute quantities E(n —+P) defined in Appendix A
which are proportional to the square of the transition
matrix element for state n to state P for some relative
A-E momentum q. Computation of these is straight-
forward. The results are conveniently expressed in terms
of certain derivative operators which can be defined

to be

D1——
dr

1
Dg—

r dr dr

1
D3= r——— D4= ——r'

7

dr r dr r dr

1 d 1
Dg= ———r, D6= r——,2

dr r' dr dr r

1 d 1
Dy ———~ D8 ——————r'

r' dr df rdr

These act on the functions fis(tp, r), fps(to, r), fU (to,r), foe&(tp, r), and fpn(tp, r) which are the final-state 'So, 'Si,
'I-'&, 'P~ 'Dj radial wave functions which in the absence of internucleon potential would be the spherical Bessel
functions jp(tpr), jp(tpr), j i(tpr), ji(tpr), and j&(tpr), resPectively. Here tp is the magnitude of the relative momentum

of the final nucleons for a given q. The same radial function is used for the 'Po and 'I'~ states. For the initial
A-X state we use only one radial function f;(q,r) for both triplet and singlet cases for reasons discussed below.

"J.%.Cronin and O. E.Overseth, Phys. Rev. 129, 1795 (1963).
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The rates for A.+p —+ ss+p are then

R('Sp
&'—Sp) = -,sjs «« ""[b(f,) (Dsfss)+ (b+c) (Dsf;) (Dsfss)+c(Dsf') (fss)]

R('Sp-+ sPs) =-,'b dr re "[ (D—&f ) ( csD—sfsp+ fsz)+ (Dsfss) ( csD—sf'+f~)]

R(sSg ~ sPs) = ssl's dr re "[—a(Dsf~) (Dsfsp) s~(—Dsf') (Dsf»)

—-' (Df')(Df )+(f')(Df )+(Df*)(f )]

R(sS,~ P,)=;h-dr re "'[—a(D~f, ) (Dsflp)+ s~(Dsf, ) (Dsflp)

—s&(Dsf') (Dsf»)+ (f') (Dsf»)+ (Dsf') (f»)]

R(sSg —+ sSg+sDs) = Is dr re "[s[b(f) (Dsfse)+ (b+c) (Dsf ) (Dsfse)+c(Dsf ) (fss)]

+v2[—b(f;) (Dsfsss) —(b+c) (Dsf,) (D7fsn) —c(Dsf~) (fsn)]]

Here we have used

g—=1/(4M~My), b—=X/(2M~), c—=X/(2M'),
b,=2(fp/Msr)G —s(G s/4sr),

rN
—{M s s (M~ M~)s[1+qs/(2MAMN)]s}1/s

—[M '—-', (Mg —M~)s]'Is.

For h.+ss —+ rs+ss, transitions are not possible to the
states 'Sy, 'D~, 'P~ which have isotopic spin zero, but
transition rates to the isospin 1 states 'So, 'Po, 'I'~ are
just twice the corresponding A+ p —& ss+ p rates because
the Hamiltonian in our model obeys the AI =-,' rule. In
deriving these expressions the kinetic energy of the
particles has been neglected compared to their rest mass.

In the expressions for the E's one can recognize the
radial integral of the Born matrix element. The inte-
grand consists of the radial weighting function r' times
the Yukawa-like "weak potential" e ~"/r times a
product of the initial and final wave functions operated
on by various derivatives. These derivative couplings
come from the o.V terms inherent in pseudoscalar inter-
action which has been assumed. The total decay rate
for a A. in nuclear matter is

r-' =3 (2sr)-s[(M++M&)/M&]s

X dq qs[R„s+R„s+R s],

where qM = IsrMs/(M~+M~) and R„s is the sum of the
R(a-+ p) for a p-A spin-zero state, R~s is the sum ot
the R(a —+ p) for a p-4 spin-1 state, etc. This expression
is derived in Appendix A.

III. INTERBARYON POTENTIALS AND
WAVE FUNCTIONS

To proceed with the calculation one must choose
potentials and derive the corresponding wave functions
for the initial and hnal states. The potentials chosen are
the simplest analytical forms which we hope will de-
scribe the important physics of the situation.

The lambda-nucleon potential seems to consist of a
short-range[(1/ (2M )]attractive part and a strong, re-
pulsive core region. "Empirical" evidence for a repulsive
core comes from various studies of light hypernuclei. "
Indeed on general theoretical grounds one would expect
the exchange of a heavy vector meson such as the ~ to
give rise to a short-range repulsive potential, and de-
tailed calculation shows this to be so."The rates shall
be computed for a A particle at rest in nuclear matter. In
such a situation the Pauli principle prevents scattering
of nucleons in the Fermi sea from the A-particle, and for a
given A-E potential the wave function is described not
by Schrodinger's equation but rather by the Bethe-
Goldstone equation. The solution to the Bethe-Gold-
stone equation with a hard core has been given by
Gomes. "Gomes and Walecka have shown that addition

"J.J. DeSwart and C. K. Iddings, Phys. Rev. 128, 2810
(1962); J. H. Hetherington and L. H. Schick, ibid. 139, B1164
(1965); R. C. Herndon, V. C. Tang, K. %. Schmid, i'. 137,
B294 (1964); A. DeloB and J. Wizecionko, Nuovo Cimento 34,
1195 (1965); A. R. Bodmer, Phys. Rev. 141, 1387 (1966); R. C.
Herndon and Y. C. Tang, ibid. 149, 735 (1966)."B.%. Downs and R. J. N. Phillips, Nuovo Cimento 36, 120
(1965).

~ L. C. Gomes, thesis, Massachusetts Institute of Technology,
1958 (unpublished). See, however, the criticisms of this form in
B. W. Downs and %. K. Ware, Phys. Rev. 133, B132 (1964);
H. S. Kohler, ibid. 137, B1145 (1965); B. %. Downs and M. E.
Grypeos, Nuovo Cimento 44B, 306 (1966).
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F G, 1. Initial wave functions. The solid line is f;(g,r). The
long-dashed line is the solution of Schrodinger's equation with a
hard core. The short-dashed line is the solution of Schrodinger's
equation with no correlations. All are for q=0.1 MeV.

where r, =0.4F is the core radius, 0 is the Heaviside
step function, and.

sink
si(x) =——

The parameter P is related to the healing distance r~ by
PrII 1.9265, w——here rIr is dehned as the radius of the

IO

I-
X -IO—

r
CL Vs

—20—

of a weak attractive potential to the hard core changes
the wave function but little. "For the A.-E potential
then we adopt simply a hard core, making no distinction
between singlet and triplet states, and use an approxi-
mation to the exact solution for the wave function given
by Gomes

sin(qr, ) si(Pr)
-- 9(r—r.),

gr si(Pr. )

erst zero of f (q y) jo (gf) and measures the dls a nc
which the hard-core wave function differs significantly
from the free wave function. The healing length given
by Gomes is ran=1. 18 F. The function is sketched in
Fig. 1.

For the nucleon-nucleon potential we shall not use the
full complexity of the phenomenological potentials now
available'9 but rather confine ourselves to rather simple
central and, tensor potentials. One can in principle
choose four different central potentials, one for each pair
of the two isospin states and the two spin states. Ke
shall use only two, both with a hard-core f, with the
same radius used for the A-E potential and both with a
constant potential extending beyond the core to a radius
r„. In the one of these potentials used for the 'Si, 'Di,
'So states, the potential Ug is taken to be attractive
giving a square well, while in the other potential used
for the 'Ei, 'Eo, 'E» states, the potential is taken as
repulsive giving a shouMer. These are sketched in Fig.
The depth of the S, D well Uq= —28.2 and the radius
r„=2.3 F are chosen to give the 'So E-lV wave function
an almost bound state at zero energy and an eHective
range of 2.7 F. The repulsive shoulder for the E-wave
potentials V~ is a crude attempt to imitate the phe-
nomenological potentials indicated at these energies by
the I'i phase shifts. "The tensor potential will be of the
same shape as the central potential for the 5, D states
but the ratio of their strength y—= (tensor well depth)(
(central well depth) will be taken as 2. As justi6cation
for a stronger tensor than central potential can be cited
the results of the calculation one-pion-exchange poten-
tials. These potentials are somewhat arbitrary, but will
be varied below to show that our principal results do
not depend on the exact choice of parameters.

Because of the rather large energy release in the
reaction A+1V~1V+E, the outgoing nucleons are
going so fast that the presence of the spectator nucleons
in the Fermi sea can be ignored, so Schrodinger's equa-
tion can e ust' be used for their relative wave function.

d'or allA 1 t solutions are perfectly straightforward or anay ic
the states except the 'S& and 'Di which are coup e y
the tensor force. For these states, we generate numeri-
cally two orthonormal solutions ('S~+'D~) ~ and
('S~+'D~)2 which in the absence ot the tensor force are
pure 'S~ and 'Di, respectively. The procedure used is as
follows. All the wave functions are set equal to zero at
r, . The solution ('S&+'D&)& is generated by setting
df8s(dr= 1 and df3n/dr=0 at r, and integrating the
equations numerically to r„. The norma

'
alization of the

solution is then adjusted to match a normalized pair
of phase-shifted exterior S- and. D-wave solutions at r„.

Frc. 2. Form of nucleon-nucleon potential used. Broken hne is
for I'-wave states and solid line is central potential used in S- and
D-wave states.

"L.C. Gomes and J. D. Walecka (unpublished).
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1963)."G, Breit, M. M. Hull, Jr., K. K. Lassila, and K. D. Pya tt r.
Phys. Rev. 120, 2227 (1960);M. H. Hull, Jr., K. E.Lassila, H. M.

R. A. Amdt and M. H. MacGregor, ibid. 141, 873 (1966).
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An independent solution is generated similarly starting
with dfss/&=0 and res~/dr= 1 at r, . From this the
solution ('St+'Dt)s is created b/ using the Schmidt
procedure in the exterior region.

Ch

~ «D O Q «D Q Q O O W

Z Z

QO
QOO~i Oeu QQOOOOO

IV. NUMERICAL RES'ULTS

The actual rates predicted by our model are derived,
by carrying out the necessary integrals numerically.
The partial rates are given in r~ ' F' where for the
free-A. decay rate we have used vg '=3.83X10' sec '."
In Table I in the row (i) labeled "noncorrelated" are
the transition rates computed. for q=o.i MeV with no
interbaryon potentials in the initial or Anal states, using
free-particle wave functions. In the row labeled (ii) are
the rates computed with the potentials given in Sec. III.
Comparison of these two rows shows the dramatic
effect of the introduction of the interactions in the
lnltlal and anal states,

0.8-

os-/ I

I 'I

Q OA-I

~ 0.2—

0—

-02—

Oyl l l l l l l l l l l

2 3 4 5 6 7 S 9 l0r(fm)

I'zo. 3. Radial integrand for 'So ~'Eo at g=o.i MeV. The solid
line is with the correiations of set (ii) and the broken linc is with
no correlations, set (i).

The reasons for these large changes are found in
investigating the form of the radial integrand in the
expressions for the E.'s. The potentials change the
values and the derivatives of the 8 wave functions near
the origin. As an example the effect of the core on the 5
wave radial function is shown in Fig. 1. The weighting
function r'(s ""/r) has quite a long range. It peaks at
1.8 F and falls to one quarter of its peak value only at
6.7 F. In this range S-S radial wave function and its
derivatives oscillate several tinms while the A-N radial
wave function does not change sign. This means that
the integral is the sum of several cancelling contribu-
tions and so is very sensitive to relatively modest
changes in the form of the integrand. This is illustrated
for the '50~ 3/0 transition in Fig. 3.

To get some idea of the sensitivity of the results to our
choice of potentials the rates can be evaluated with var-
iant values of the parameters specifying the potentials.
Sets of these parameters together with M, Mq, and. q
are de6ned in Table II and the corresponding decay rates

"A. H. Rosenfeld, A. Barbaro-Galtieri, W. H. Barkas, P. I,.
Bastien, J. Kirz, and M. Roos, Rev. Mod. Phys. 37, 633 (1965).
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TABLE II. De6nitions of sets of parameters used in computing rates.

1V

Vl

Vll

Vill

1X

Xl

Xll

Xiii

Xlv

XV

Xvl

XVll

XVlll

Noncorrelated
Standard correlation
~c

Va, Vp
r„~variants
7
M
3'
No tensor
Core only Anal

Schrodinger solution initial
Noncorrelated initial
Attractive 'I'
Schrodinger initial core final

Large ft

M~ noncorrelated
M~ correlated

Q4
0.5
0.4
Q4
04
0.4
0.4
0.4
04
04
0.4
0.4
0.4
0.4
0.4

0.4

~8
(Mev)

—28.2
—28.2
—28.2
—40
—28.2
—28.2
—28.2
—28.2
—28.2

0
—28.2
—28.2
—28.2

0
—28.2

—28.2

Vg
(Mev)

20
20
20
40
20
20
20
20
20
0

20
20

—28,2
0

20
~ ~ ~ a

20

(F)

2.3
2.3
2.3
2.3
3.0
2.3
2.3
2.3
2.3

2.3
2.3
2.3

2.3

2.3

~a
(F) (Mev) (Mev)

~ a ' 14Q 1115
2 1.18 140 1115
2 1.18 140 1115
2 2.0 140 1115
2 1.18 140 1115
2 1.18 140 1115
4 1.18 140 1115
2 1.18 180 1115
2 1.18 140 1090
0 1.18 140 1115
0 1.18 140 1115
2 ' 340 1115
2 ' 140 1115
2 1.18 140 1115
0 ' 140 1115
2 1.18 140 1115

~ ~ ~ a ~ ~ ~ a

2 1,18 498 1115

(M'v)

0.1
0.1
0.1
0.'1

0.1

0.1
0.1
0.1
0,1
0.1
0.1
0.1
0.1
0.1
0.1

125
0.1
0.1

a See text for explanation.

given in Table I. Set (ii) is the standard set given above
to which the others should be compared. In sets (iii),
(iv), (v), (vi), and (vii) the core size, heahng length,
potential strength, radius of the potential well, and
ratio of the tensor to central strength are varied. In set
(viii) we vary the pion mass imagining that the pion
propagator in nuclear matter might be modi6ed. In
set (ix) an approximate binding energy for a A particle
in nuclear matter has been subtracted from the A. mass.
As one might expect, there are considerable fluctuations
in the rates as the parameters are varied, but the gross
effects seen by comparing cases (ii)—(ix) to the non-
correlated case (i) remain. Although the effects are the
results of large cancellations, they do not seem to be a
quirk of our particular choice of parameters. These gross
features are a large reduction in the transition rates
from angular-momentum-zero states and a suppression
of transitions to the isospin-zero states as compared to
the isospin-one states.

Other features of the calculations can be illustrated
by diferent sets of parameters. The importance of the
tensor force is illustrated by setting y =0 in set (z) which
makes ('Si+'Di)2 pure D wave and shows how little
this is suppressed without the tensor force. Since the
radial integrands have terms proportional to the second
derivatives of radial wave functions they have dis-
continuities at the edge of the square well. Because of
the size of the tensor coupling and the value of the
S-wave radial wave function in the coupled differential
equations this discontinuity is substantial for ('5&+'Di) &

at r„ for the standard set (ii). This is perhaps not
physical but more sophisticated potentials might be
expected. to show similar cancellations even without a
discontinuity. Apart from suppression of this D wave

most of the gross features are due to the hard-core
assumption alone. This can be seen in set (xi) where the
core is the only potential used for the S-E state. The
set of rates (xii) is calculated using for the A Ewave-
function a solution of the Schrodinger equation with the
hard-core potential rather than the Bethe-Goldstone
equation. This gives a further idea of the insensitivity
of the gross form of results to the detailed form of the
A-E wave function as long as it goes to zero at the core
radius (see Fig. 1) so the main features of the results
should remain even if the approximation to the solution
of the Bethe-Goldstone equation is not a good one.
That this boundary condition is important is illustrated
by comparing sets (ii) and (xii) to set (xiii) which is
calculated with the noncorrelated initial wave function
(A-X potential equal zero) and the standard final-state
wave functions. In set (xiv) we try using the same
attractive central potential for the I' wave as for the
S- and D-wave Ar-S wave functions. Set (xv) is perhaps
the simplest set of correlations with solutions to
Schrodinger's equation with a hard core used for both
the A-E and E-E wave functions. The rates are not very
sensitive to the relative momentum of the A.-S pair. As
illustration of this in set (xv) we have used the standard
set of potentials but changed. q from 0.1 to 125 MeV.
Finally for the purposes of discussion below, in sets
(xvii) and (xviii) we compare the noncorrelated and
correlated rates as in sets (i) and (ii) but with the pion
mass replaced by the E-meson mass in both.

The rates are of course all proportional to G„2 and
G.2. The rates of the parity-conserving transitions
(5 wave to 5 or D wave) are proportional to X' whereas
rates of parity the parity-violating transitions (5 wave
to P wave) are not functions of li.
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Table III presents the results of integrating the
partial rates to get v. ', the decay rate in nuclear matter.
The cases referred to are those defined in Table II
except of course that the integration is carried out over
all q appropriate to the Fermi sea. The Fermi momentum
used is 250 MeV. The lifetimes are then 0.5i ~g ' for
noncorrelated wave functions and 0.056 7q ' for corre-
lated wave functions. It is interesting to note that the
combination Rup+R„t+R„t is only a weak function of
the relative 4-X momentum. Over the range of q for the
h. at rest in the Fermi sea (0& q&~ 114 MeV) the sum
R&p+R&i+Rut changes by less than 20%. This means
that the rate v. ' is roughly proportional to the cube
of the Fermi momentum. Comparing cases (i) and
(xiii) to cases (ii)—(ix) in Table III one sees that r '
is a measure of the short range A.-S correlation in
nuclear matter. The ratio of h.+p —&ri+p decays to
h+e -+ e+ts decays in our model with correlations set
(ii) is about 2.6 compared to 7.0 without correlations.
The approximation of nuclear matter one expects to be
better and better in the limit of large hypernuclei. The
large hypernuclei should decay predominantly by the
nonmesonic A+It'/ —+X+X mode. Any experimental
possibility of measuring large hypernuclear lifetimes
would be of great interest as providing direct informa-
tion on the A.-X nuclear correlations.

In order to check the effect of omission of higher
partial waves in the A.-N state and to check relativistic
corrections, the nonmesonic decay rate was computed
using plane-wave initial and final states with a full
relativistic formalism. The expression for this is given
in Appendix B. The result obtained. is 0.45 v~ which
is actually smaller than the value of 0.51 v~ ' we ob-
tained neglecting all higher partial waves. This dis-
crepancy can be traced to the 10% approximation
cog=AN made in the computation of rates with partial
waves. This indicates that effects of higher partial
waves are small.

V. SHORTER-RANGE EFFECTS AND PARITY-
VIOLATING NUCLEON-NUCLEON

INTERACTIONS

The distorted-wave Born approximation can also
be applied to the exchanges of heavier mesons in the
reaction A+N~ X+X. For pseudoscalar mesons the
analytic forms for the rates will be like those given
above for pion exchange. However the shape of the
radial integrand will be substantially different. For
heavier mesons the "weak potential" e "'/r becomes
negligible for r less than the first zero of the final-state
wave function, so there is essentially no cancellation in
the radial integral due to the oscillations of the final-
state wave function. The effects of the introduction of
interbaryon potentials then are due only to the changes
they introduce in the innermost Fermi or two of the
radial wave functions. One can expect the hard core to
induce a significant reduction in rates,

TmLx III.Total nonmesonic decay rate for a h. in nuclear matter
for various choices of initial and 6nal wave function,

1V

V1

vll

Vill

Xlll

X1V

KV11

XVlll

Case

Noncorrelated
Standard
Coze variant
Healing length variant
Potential strength variant
r„variant
y variant
M variant
Mq variant
No tensor
Noncorrelated initial
Attractive 'I'
MIt.- noncorrelated
MIt-. correlated

0.51
0.056
0.047
0.040
0.057
0.060
0.055
0.046
0.060
0.23
0.15
0.059
0.11
6.0X10 '

As an example consider E exchange. The strong
E A sainte-ra-ction predicted by SU(3) with F/D= s-
has a strength (6/25)'I' times the strong w-1V-X inter-
action. Any model of a weak E-E-E interaction is
rather speculative, so from among the variety of
E 1V '/t'/ couplings -p-ossible in SU(3) let us choose as a
model a set of couplings which gives the weak E-E-X
just the same form and strength as the weak m-A.-E,
motivated by the anticipation of utilizing the same
forms already computed for pion exchange. One can
reasonably hope that such a choice will give rough and
physically reasonable results. Rates calculated for E
exchange are shown as cases (xvii) and (xviii) in Tables
I and III. The rates shown in the tables are computed
merely by substituting the E mass for the pion mass in
the expressions given above for the rates. They should
be further reduced by a factor of 6/25 if one wishes to
allow for the reduced E-A.-X strong coupling strength.
In set (xvii) noncorrelated, wave functions (potentials
all equal zero) were used for both initial and final states.
Comparing this set to set (i) we see that even without
correlations or allowing for different coupling strengths
the effect of the m, E mass difference is substantial. This
difference is even further increased if we compare the
E exchange computed with the standard. set of inter-
baryon potentials, set (xviii), to the corresponding pion
set (ii) still not allowing for the reduced coupling
strength. These results indicate that the E exchange
contribution to nonmesonic A decay is &10% of the
pion exchange.

One can also attempt to estimate the effect of initial-
and final-state interactions on a vector meson exchange
in A.+X~ %+X.For a model we suppose that a vector
meson with quantum numbers of the p is coupled to the
nucleon current with an effective Hamiltonian

G~ 4'Ã7 ueipN 0 ~

For 6,' we shall use the value 0.95 given by Kantor. 22 A
ss P. 3, Ksntor, Phys, Rev. Letters 12, 52 (1964).
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model for p-A.-lV weak interactions is more speculative
even than the E-E-X, for there is no known example of
a weak vector-meson —baryon current interaction. The
existence of such an interaction is conjectured in
analogy to a presumed vector meson-lepton current
interaction which can account for the baryon weak
form factors. For the sake of estimating an order of
magnitude let us suppose then that the weak coupling is

H„'= G„PNy„(1+Xyg)~fop&,

where G„and X have the same values used for the m-A.-S
vertex. In order to economize in algebra and computer
time, rates were calculated only for the parity-violating
transitions in the expectation that these should, sufhce
to estimate the magnitude of the rates and to indicate
the eRects of initial and final state interactions. The
partial rates defined as above for A+P~ m+p for
vector-meson exchange are

E (u +p) = (2/~)—G 'G '9,'(/0/Mar) i I (n,P) i

'

functions corresponding to the standard set of poten-
tials (ii) used above.

The large difference between I('5&,'I'i) for the
correlated and noncorrelated cases at low q is due to the
fact that the integrand is proportional to the first
derivative of the initial radial wave function. In the
noncorrelated case this derivative is —q'r/3 which goes
to zero for q

—~ 0 whereas for the correlated case the
derivative is finite near r. even for q= 0 (see Fig. 1).We
see that for the coupling constants conjectured in our
model that these correlated vector meson-exchange rates
are much smaller than the important pion-exchange
rates. Independent of the choice of coupling constants
one can see that the eRect of correlations is to suppress
the important vector-meson exchange rates by a factor
of 10 or more depending on 3II,. Unlike the pion-
exchange rates, the R, do not depend on large cancella-
tions in the radial integral and so the E., should not be

TABLE V. Results of radial integration in matrix element
for parity-violating E+Q —& 3l+S.

I('SO,SI'o) = dr re "((f;+3 pD2f;) (D4f3~)],

I('Si, 'I'i) = (i)'I' dr re ~"L(f ——,'t2D~f ) (D4f3r)

—(Dif') (f»—O'D~f») j
I('R, 'I'i) =VS dr re ""$(Dif) (f-&r P&f&p)],—

0

TAsLE IV. Partial nonmesonic decay rates computed
with vector-meson exchange.

Parameters

q 3f, r,
(Mev) (MeV) (F)

Rates in ~q ' F'

Z(1S, P,) Z(S, 1P,) Z(BS, P,)
0.1 550 None. '

30 550 None.
125 550 None.

0.1 780 None.
30 780 None.

125 780 None.

4-7X10 '
4.7X10~
4.8X10~
1.7X10 '
1.7X10~
1.8X10~

3.0X10 "
2.4X10 6

6.8X10 4

3.8X10 '7

3.4X10 '
9.3X10 ~

7.0X10 2

7.1X102
7.6X10 "2

2.5 X10~
2.5X10 2

2.7X10 2

O.i 550
30 550

125 550
0.1 780

30 780
125 780

0.4
0,4
0.4
0.4
Q4
0.4

4.9X1Q '
4.8X10 '
4.4X10 3

7.9X10 4

7.8X10 '
7.3X10 4

1.8X10~
1.8X10 2

1.4X10 '
3.4X10 '
3.4X10 '
3.0X10~

3.0X10 '
3.0X10 '
2.9X10 '
43X10 4

4.3X10~
4.3X10 4

& Noncorrelated.

where all symbols are as defined above except that now
m= LM '—(Mp MIi)2/4j" a—nd (=1/(2M~). In these
expressions the di&erence between 1/2M' and 1/2Miv
has been neglected for the coeKcients of terms in
square brackets. Table IV compares the rates R, com-
puted with correlated and noncorrelated wave functions
for the values of q and M, indicated. The first six rows
are computed with noncorrelated wave functions and
the last six rows are computed with the correlated wave

Integrals in F'Parameters

g M, r,
(MeV) (MeV) (F) I('So,'Po) I('S,'P ) I ('S,'P )

O.i 550
30 550

125 550
O.i 780

30 780
125 780

0 1 550
30 550

125 550
0.1 780

30 780
125 780
30 780

None. '
None.
None.
None.
None.
None.

0.4
0.4
0.4
0,4
0.4
0.4
0.5

2.2X10 '
6.5X 10-3
2.4X 10-2
1.1X10 '
3.2X10 3

1.3X10~

1.5X10 "'

4.4X10 '
8.6X10-3
5.1X10 '
1.5X10-3
2.9X10 '
1.1X10 '

—8.0X10 "
—2.1X10 '
—1.3X10 '
—2.0X10 "
—5.5X10 '
—3.6xio 4

6.2X10 '
1.8X10-3
2.7X10 '
2.7x10-6
7.7X10 4

1.3X10 '
6.5X10-

2.7X].0 '
7.9X10 '
3.1X10-2
1.3X10-~
4.0X10 '
1.6X 10~

1.4X10 '
4.2X 10-3
8.8X10-3
4.3X10 '
1.3X10 '
2.6X10 '
9.0X10 4

a Noncorrelated.

as sensitive to the choice of potentials outside the core
as are the pion-exchange rates.

The technique of distorted-wave Born approxi-
mation can also be applied to the parity-violating
1V+1V —+ AT+Ai' weak interaction in order to estimate
the importance of initial- and final-state interactions. If
one assumes a current-current model of the weak inter-
action then one-pion exchange will not contribute to
parity-violating eRects." Again models of the weak
vector meson interaction are highly speculative but let
us assume the interaction forms II ' and II,'. Although
one is interested ultimately in parity nonconservation
in nuclear states, the one-meson-exchange scattering
matrix acts only between two pairs of nucleons. If we
imagine expanding the relative wave functions of each
of these pairs into partial waves and keeping only the
lowest partial waves which contribute to parity viola-
tion, one sees that matrix elements between S and I'
states should measure the effective parity violating
"F. C. Michel, Phys. Rev. 133-, 8329 (1964).
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coupling strength. These matrix elements will be pro-
portional to the three integrals I given above with Mg
replaced by MN and. the 6nal relative momentum set
equal to the initial. In Table V the 6rst four rows show
the integrals for no anal or initial state interaction. .The
last six rows show the integrals with the correlations
induced by the standard set of potentials used above
(ii) except for the parameters q, M„r, indicated.

One can see that this distorted-wave Born calcula-
tion indicates that the effective weak parity-violating
nucleon-nucleon interaction is considerably reduced by
initial- and 6nal-state interactions. For much of the
range of q the reduction is by more than a factor of 2.
(The reduction due to correlations is smaller in. parity
violating N+N +N+N—weak effects which are pro-
portional to the weak transition matrix element than in
h+N~ N. +N rates which are proportional to the
square of the matrix element. The energy of the Anal
nucleon pair is also different in the two cases. ) This is
somewhat larger than the reduction factor 1.25 esti-
mated by Michel. "One might note in passing that our
calculation suggests that it may not be a good approxi-
mation to neglect the 6nite range of the weak interaction
even for the exchange of a meson with M, = 780 MeV in
computing parity violation in nuclei.

These calculations applying the distorted-wave Born
approximation to the short-range weak interactions are
perhaps of only dubious value. While they may in
principle correctly take into account strong interactions
in the initial and anal states, they do not include the
sort of process indicated by the Feynman graph of
Fig. 4. Such processes may be signiicant at the short
distances (&~0.5 F) which are important in the weak
exchange of heavy particles. Nevertheless one can take
the calculations of short-range effects in this section as
an indication that correlations will substantially reduce
the effective weak interbaryon interactions due to
exchange of heavy mesons.

VI. COMPARISON WITH EXPERIMENT

The little available knowledge of the structure of the
reaction A+N -+ N+N rests upon the analysis of Block
and Dahtz of the light hypernuclear decays. ' Assuming
theoretical values for mesonic decay rates they deduce

nonmesonic (xHe ) = (0.14+0.03)t'ai

nonmesonic(AH ) = (0 29+0 14)&A

It is stretching a point to compare these rates to our
nuclear matter calculation; however, it should be noted
that even though the A is only loosely bound to the core
nucleus it is nonetheless usually within the range of the
pion-exchange weak "potential, " so it is encouraging
that our nuclear matter decay rate (0.056 rq ') is of the
same order of magnitude as the light hypernuclear
decay rates. If one assumes that in the hypernuclei ~H4

Fzo. 4. Feynman graph of one type of process which is not
accounted for in a distorted-wave Born approximation.

and ~He4 the relative wave functions of the A and the
protons are the same as the relative wave functions of
the A. and the neutrons, then one can conclude with
Block and Dalitz that the transition rates from the
spin-0 h.-p states are small compared to transition rates
from the spin-1 A-p states and that transition rates
from the spin-1 A.-e states are about twice as large as for
spin-1 h.-p states. Because the shape of our radial wave
function f,(q,r) is different from the shape of the relative
A-E wave function in a light hypernucleus, comparison
of these empirical ratios with the ratios of the R~~ we
have computed for nuclear matter is a poor procedure;
however, one notes that the effect of correlations is
greatly to suppress R» and R„o compared to R„&bring-
ing their ratios closer to those of Block and Dalitz.
These tests of the theory are unfortunately qualitative
at best. To put it in a somewhat more quantitative way,
Block and Dalitz6nd Rn~. E„,:Rno ——1:(2~1):(0.4+0.2)
whereas the noncorrelated one-pion exchanges gives
R„~'.R„~.'R„o——1:0.06:0.14 whereas the correlated one-
pion exchange gives R~~'. R„~'.R„0=1:0.4:0.03. Block
and Dalitz's derivation of absolute rather than relative
"empirical" values for the R~g hinges on the neglect
of the range of the weak interaction compared to the
range in which the A.-X wave function changes signi6-
cantly as explained in Appendix A. Because this is not a
reasonable assumption for one-pion exchange with hard-
core baryon-baryon potentials this step in the analysis
of Block and Dalitz would seem to be invalid. At present
it does not seem possible to exclude the one-pion-
exchange mechanism as the cause of the nonmesonic
light hypernuclear decays as did Block and Dalitz, and
indeed one can hope that it will provid, e a complete
explanation. A decisive confrontation of theory with
experiment must await a detailed calculation using good
correlated hypernuclear wave functions and realistic
nucleon-nucleon potentials.
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VII. CRITIQUE AND CONCLUSIONS

The calculations in this paper are subject to a good
many legitimate criticisms. Most obvious improvement
would come with the use of more realistic interbaryon
potentials. In addition the work involves a good many
implicit assumptions which may be subject to criticism.
Among them are the following: Schrodinger's equation
and nonrelativistic quantization of the spin has been
applied to both the initial and final states; but although
kinetic energy of the two outgoing nucleons is only 10%,
of their rest mass, they are moving with half the velocity
of light. The notion of a potential may not be applicable
down to the half a Fermi distance to which we use it.
No allowance has been made for possible form factors
at the z-A-X vertex which might change the effective
coupling as the pion goes off its mass shell. Effects of a Z
component in the initial wave function are ignored.
Possible modifications of the pion propagator due to
presence of other nucleons were not considered. The
independent pair approximation is certainly not good
out to the distances of 6 F to which we use it; how-
ever, most important cancellation effects come from the
first few Fermis of the radial wave function. The relative
importance of higher partial waves should be more
carefully studied. In the spirit of this as a crude first
calculation all these approximations are taken to be fair.

One can certainly make a more sophisticated dis-
torted-wave Born calculation using better initial-' and
final-state wave functions and a more complicated form
for the weak interaction. However, the technique seems
to face certain limitations. Because details of the results
are sensitive to the potentials used and since experiment
leaves some uncertainty about the potentials particu-
larly at short distances, it would seem difficult to make
convincing predictions with an accuracy better than
10-20%, and the Born approximation itself may break
down at short distances as indicated at the end of
Sec. VI.

The calculations of this paper can be used to draw the
following conclusions. The strong final- and initial-state
interactions are of great importance in the reaction
A+X —+TV+X. Certainly no calculation of hyper-
nuclear decays can reasonably neglect them. They can
enormously suppress transitions between certain states
and should make it possible to explain the nonmesonic
decays of light hypernuclei in terms of one-pion ex-
change. The effective weak interaction due to exchange
of E and other heavy mesons is suppressed, and any
underlying SU(3) symmetry of the weak interaction
should be badly obscured by the baryon correlations.
Parity-violating E+Ã —&E+N interactions due to
exchange of heavy mesons are probably substantially
reduced by the effects of strong initial- and final-state
interactions. Experimental knowledge of heavy hyper-
nuclear lifetimes would provide in principle a measure
of the A.-E correlation function at short distances in
nuclear matter.

APPENDIX A

In the rest frame of the h. particle in nuclear matter
the rate for the reaction A+p ~ a+p is given by

r —'= (2x)—' d'k

where PJ, E;are the final and initial total four-momenta
of the systems; o.;, r~ are initial and final spins,

k, u', t' are the three-momenta of the initial and final
protons and the neutron, respectively; and kJ is the
Fermi momentum of the nuclear matter which we
assume to be the same for protons and neutrons. The
wave functions of the states Ii& and

I f) are asymptoti-
cally plane waves, but at short distances may exhibit
the effects of correlations. A transformation to relative
and total three mornenta for both the initial and final
pairs of particl. es and integrations of the final total
momentum casts the expression for the rate into the
form

r„'= (4m) '(M+/Mp)'

where M+= Mq+M~, q~=—kpMq/M+, q is th—e relative
A-p momentum, and t is the relative n pmomen-tum.
For the purposes of considering the effects of correla-
tions it is useful to analyze the initial and final relative
wave functions in states which are asymptotically
spherical rather than plane waves. The discrete quantum
numbers for the total spin, orbital angular momentum,
total angular momentum, and 2' component of total
angular momentum can be denoted collectively by 0,

for the initial state and by P for the final state (so in
spectroscopic notation 0, might stand for 'Po, for
example). The rate can then be written
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One can now define partial rates

r„"=(2m—)
—
'(M+/Mz) P

where

dq q'(R„o+3R„g),

R,g—=P R(n' —+ P)
P

and J is the total angular momentum of the set n'.
Similar expressions give the rate h.+e—& e+m:

r '= (2pr) '(M+/Mg)P dq q'(R p+3R„g).

The total rate is simply the sum of the neutron and
proton rates. The AI=-,'rule, which we assume, implies
that R 0=28&p so

r '= r„'+r '=3(2pr) '(M+/M/, )'

X dq q'(R„o+R,z+R„x) .

R(n~ p)—=~ d«ps(z, z—;) I&p, tlMln, q&l

=-', t~ l&p, t, lMln, q&l',

which are functions of q. In the expression for v~ ' we
make the approximation of retaining in the sum on n
only those sets n' in which the relative orbital angular
momentum is zero, neglecting all higher partial waves
for the initial state. One can then write

figuration in the hypernucleus and the configuration in
n. The assumption made in this step amounts to
neglecting the range of the weak interaction compared
to distances in which the A.-X relative wave function
changes appreciably. This is probably not a good ap-
proximation for light hypernuclei. However, if one
proceeds and assumes further that all the particles in
the ground state of a light hypernucleus are in relative
S states (which is probably true), then one gets

r~ '=(2~) ' «t'&(&r —R')ZZI&ptlMIq=0, n'&I'
0 a~ P

X I &n'I a;& I'2d IP(0) I'

where E&z are just the partial rates defined above with
g=0 and noncorrelated wave functions. From this last
expression we see that, under the assumptions made,
the E~g can be interpreted as the transition probability
for an 5-wave A.-S system with total spin J per unit
nucleon density at the position of the h. particle. We
repeat, however, that the approximations involved in
arriving at this sort of interpretation of the light hyper-
nuclear decay rates are probably not good because the
one-pion exchange has a long range and the A.-E
potential probably has a strong repulsive core making
P(0) =0.

Finally, in this Appendix we write down the final
proton-neutron states needed in the computation. In
second quantization these are

In order to give an interpretation to the partial rates
de6ned above we consider the nonmesonic decay of a
light hypernucleus in the impulse approximation. The
decay rate by the emission of a neutron and one of the
nucleons E is

I'&o, to&=

los„to&=

(eo)

d't gas(t tp) (-')'"

X Ypp(a+"a —a na+ ) Ivac),

d t gas(t, tp) Fop'"a+ I vac)
&

rp/ '= (2pr) ' dt t'&(&r—~')Zl &p,tlMli&l'.
I'P~, tp& = d't e~(t, to) (-')'"

A complete set of noncorrelated spherical states can be
inserted in the matrix element

&p,tlMli&=Z dq q'&p, tlMlqn)&q, nli&.
a p

If we now assume that &p, tlMlq, n& is only a weak
function of q for q in the range where (q,nli) is signi6- I'&i, to)=
cantly different from zero then

&P,tlMIi)=g&P, tIMlq=0, n) dqq'(q, nli&
0

=P&P, t IM I
q= 0, n)&nl p;&f(0)pr&2,

XF»(ay"a "—a &a+") lvac),

d't go~(t, to) (-')'"
(oo)

XI F»a "a -—(-')~/'F„(a "a -+a ~a -)

+F, ,a,na„-)lvac),

d't gop(t, to) (-')' '
(~)

XL(-')'/'F»(a~ a "+a a ")
—Froude'a+ "3

I vac),

d t god)(t tp)L( ) /PFppa ya n

where iP(x) is the relative A-il/' wave function and &n I a;&
denotes the inner product between the A-X spin con-

(3/20)1/2 F (a na n+ a na n)

+ (—'o)'"Yp«+"a-"3
I »c&,
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where the spherical harmonics F~ are functions of the
direction of t and a+~ is the creation operator for a
proton with s component of spin= &-', and momentum
—Pr+t and a~" is the creation operator for a neutron
with scomponentofspin= +~ and momentum= —,'PJ —t.
Here Pt is the total momentum of the zz-p pair in the
final state. The g's are de6ned as the Fourier-Bessel
transforms of the radial wave functions

g, s(t, t,)= (2/zr) dr r' jp(r, t)fzs(2;tp),

g»(t, t,) =- (2/2. ) «22 jo(«)fps(2', tp),
0

g,p(t, tp) = (2/m-) d2 r'j, («)fzp(r)tp),

gzp(t, tp) = (2/zr) dr r2jz(«)f,z(r, tp),
0

formalism. Here we call r, t, u the momenta of the
incident nucleon and the two anal nucleons respectively
and ~„, ~~, cv the corresponding energies. We de6ne

+1 —(P 2 M 2)
—2[(1+F2)+(1 ~2)MN/p1 ]

X[—1+(t r+Mpr')/(~1~. )],
&2= —(p '—M ') '[(1+X')+(1—X')3II~/p1 ]

XL—1+(u r+M12')/(&1& )]
—(P 2 M 2)—1(P 2 M 2)—I

X((1+&')[—1+(r u+M„')/(~ ~ )
+ (r. t+M~2)/(co~2) —(t u+M~2)/(p11p1„)]

+ (1—)8)[(1—t u/(p1„M2))Mar/p1,
—(1—r u/(p1~. ))M~/ppg —(1—r t/(~~1))M12/~

+M~ /(p1qp1~ppt)]),

where I'„, I'& are the four-vectors

P„= (p1„—M—p, u), P2= (ping MJ„ t) .—

The decay rates in the A rest frame are then

g222(t, tp) = (2/zr) dr r'j2(«) f212(r, tp) . r.-'=-,'(2zr) 'G 2G,2 dpi' d't dpzz 52(r—t—u)

APPENDIX 8 X 5 (M2.+p1,—p1 —~~) [&1+A+ 2 &2],

We record here the expression for the decay rate of a
A particle at rest in nuclear matter via the one-pion-

exchange mechanism using noncorrelated plane waves
for the initial and final states and a relativistic

'=-'(22.)
—'G 'G ' d'r d't dpzz 2 (r—t—u)

X & (M~+ pp.—p1.—p1 ~)[%+2~2—4&2].


