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at large q', the high 8' states, which require a large
I'' to be excited, must make a much more important
contribution to the sum rules than they do at q'=0.
The calculations of this paper shed no light on the

important question of how rapidly E(q', 6) increases
with q', but only serve to indicate at what energies E
it may pay to begin the experimental study of the local
current algebra.
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The qH binding energy is calculated by Gnding the pole in the A-d doublet 5-wave scattering amplitude.
This amplitude is obtained from a multiple-scattering formalism of the Faddeev type. Each of the two-body
interactions was represented as a sum of an attractive and a repulsive 8-wave nonlocal separable potential
of the Yamaguchi form. The A-N potentials were chosen to fit the scattering lengths and effective ranges
obtained by Herndon, Tang, and Schmid (HTS) in a variation calculation. The N-N potential was adjusted
to 6t the deuteron binding energy and the triplet scattering length. Calculations with several sets of values
for the free parameters are carried out. By making the Jt -N repulsive strengths infinite, 6xing all three re-
pulsive potential ranges at 0.2 F, and varying the range of the N-X attractive potential, a value for the @H'
binding energy that agrees with that of the HTS calculation is obtained.

I. INTRODUCTION
' 'X a previous paper, ' low-energy A-d scattering and
~ ~ the hypertriton were treated using a Faddeev' type
of multiple-scattering formalism. In that work the
nucleons were treated as identical particles and the
A-E and E-E interactions were represented by purely
attractive, spin-dependent, S-wave, nonlocal separable
(NLS) potentials. The purpose of this paper is to im-
prove the gII' binding-energy calculation by the in-
clusion of repulsive cores in the two-body potentials.

In HS3 the A-E potential parameters werc deter-
mined by matching the low-energy, S-wave, singlet- and
triplet-scattering amplitudes to the amplitudes obtained
from two types of local potentials. The 6rst type was
the purely attractive Dalitz-Downs (DD) potentiaP e

whose parameters had been obtained from a variational
txeatment of the light hypernuclei. ' The second type

*%ork supported in part by the U. S.Atomic Energy Commis-
sion.

f A preliminary report of this work was given at the April 1966
Meeting of the American Physical Society in %ashington, D. C.;
Bull. Am. Phys. Soc. 11,381 (1966).

j J, H. Hetherington and L. H. Schick, Phys. Rev. 139, B1164
(1965).Hereafter referred to as HS3.

L. D. Faddeevy Zh. Eksperlm. 1 Teor. Flz. 39y 1459 (1960)
I English transl. : Soviet Phys. —JKTP 12, 1014 (1961);Dokl.
Akad. Nauk SSSR 138, 561 (1961); 145, 301 (1962) English
transls. : Soviet Phys. —Dohiady 6, 384 (1961);7, 600 (1963)g.' R. H. Dahtz and B.%. Downs, Phys. Rev. 111,967 (1958).

4 B. %'. Downs and R. H. Dalitz, Phys. Rev. 114, 593 (1959).' The scattering lengths and effective ranges of the Dalitz and

was thc hax'd coI'c plUS Rt tractlvc exponential
Heldon-Tang-Schmtd (HTS) poteIltlal whose palaII1-
eters also had been obtained from a variational treat-
ment of light hypernuclei. The results of HS3 were
that, if the A-E potential parameters were chosen so as
to give agreement with the DD amplitudes, a value for
Bs (the binding energy of the A in the hypertriton) in
agreement with experiment was obtained. The values
obtained for the low-energy s1-p elastic cross section,
however, werc consistently smaller than the experi-
mental ' values. This discrepancy coUld bc tx'Rccd to thc

Downs potentials used in HS3 were taken from J.J.de Swart and
C. Dullemond, Ann. Phys. (N. Y.) 19, 458 (1962).

6 R. C. Herndon, Y. C. Tang, and E. %. Schmid, Phys. Rev.
137, B294 (1965). For some other hypertriton calculations using
hard cores, see B.Ram and B.%. Downs, Phys. Rev. 133, B420
(1964) and references cited there.' B.Sechi-Zorn, R. A. Burstein, T.B.Day, B.Kehoe, and G. A.
Snow, Phys. Rev. Letters 13, 282 (1964); G. Alexander, U.
Karshon, A. Shapira, G. Yekutieli, R. Knglemann, H. Filthuth, A.
Fridman, and A. Minguzzi-Ranzi, ibid. 13, 484 (1964).

s It has been brought to our attention that more recent experi-
mental results for A-p cross sections than those used here have
been published by G. Alexander, O. Senary, U. Karshon, A.
Shapira, G. Yekutieli, R. Knglemann, H. Filthuth, A. Fridman,
and B.Schiiby LPhys. Letters 19, 'l13 (1966)g.These cross sections
are larger than those used in this work so that the use of purely
attractive NLS potentials may still be inadequate. In any case, the
main result of this work, that NLS potentials which 6t low-energy
A-X scattering parameters obtained from local potentials also can
give the same J3Jh as these local potentials, still holds. This result
can be checked for the correct values of the low-energy A.-E
scattering parameters only after a calculation of Bq incorporating
these parameters in carried out with local potentials.
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fact that values of the singlet and/or triplet A.-X
scattering lengths were too sma11. On the other hand, if
the parameters were chosen so as to give agreement
with the HTS amplitudes —which in turn were then in
good agreement with the A-p scattering data' —both
scattering lengths were now so large as to give a value of
0.9 MeV for B~.This is in marked disagreement with the
value

Bg——0.31+0.15 MeV

used by HTS. These results indicated that if in each
spin state the HTS A-E potential were more realistically
represented by a sum of two NLS potentials —one re-

pulsive and one attractiv- agreement with the experi-
mental values for both Ba and the low-energy A-p cross
section could be obtained. It is shown in this paper that
with such a potential for each A-X spin state (as well as
for the 1V-X interaction) and with no more free parame-
ters than in the case of a local potential, the HTS values
for the hypertriton binding energy and A-p cross section
may be duplicated.

The inclusion of a repulsive term in the two-body
potentials is only one of several improvements that need
to be made in the calculations carried out in HS3. For
example, the e6ects of three-body forces and the
AX+-+ ZS process, each of which has been investigated
to some extent in diferent types of calculations by other
authors, ' "must eventually be accounted for as must
tensor forces and interactions in other than relative S
states. Nevertheless, it seems most reasonable to in-

vestigate the ability of sums of simple two-body NLS
potentials to reproduce the results of local potentials
with repulsive cores before inquiring into the relative
merits of more esoteric NLS and local potentials.

Sums of separable potentials have been used previ-
ously by Tabakin" to represent the 1V-E interaction. In
a calculation of the triton binding energy Tabakin used
two different sums of NLS potentials. In the erst, the
repulsive potential was chosen to differ from a local hard
core in that it led to a smooth two-body wave function.
In the second, the repulsive potential was designed to
more closely simulate a local hard core, but the shape of
this potential was not as convenient a form as that dis-
cussed below. Neither of the Tabakin potentials, there-
fore, was used in the present work. With a simplified
model of the triton, Tabakin did 6nd that of two X-S
potentials that fit the same scattering data the one
which was more repulsive gave the smaller value for the
triton binding energy. This is just the effect looked for
here. However, the &H' binding energy is much smaller
than that of H', the A-E S-wave amplitudes are not as

'For calculations which include three-body forces see A. R.
Sodmer and S. Sampanthar, Nucl. Phys. 31, 251 (1962)."For calculations which include AS+-+ ZS, see G. Rajasek. aran
and S. N. Biswas LPhys. Rev. 122, 712 (1961)g, as well as the
article cited in Ref. 5.

'F. Tabakin, Phys. Rev. 137, 875 (1965). For other than
S-wave S-3f potentials see F.Tabakin, Ann. Phys. (N. Y.) 30, 51
(1964).

well known as the corresponding E-TV amplitudes, and
no spin averaging of the total A-S potential will be
carried out. These factors make the ~H' problem more
complex than the spin-averaged triton discussed by
Tabakin. The emphasis here, then, is on obtaining a
good result for 8& with a particular type of potential,
rather than on investigating the sensitivity of 8& to
various types of potentials.

Although many types of potentials have been used to
represent the A-E interaction, to the authors' knowledge
a sum of NI S potentials is not among them. With wide
open freedom of choice for the shape of each two-body
NLS potential, simplicity became the deciding factor.

The type of NLS potentials employed in the present
work. consisted of a sum of two Yamaguchi" potentials
for each independent two-body interaction. The parame-
ters in these potentials were determined so as to fit the
appropriate two-body low-energy data. In the spirit of
paralleling the HTS calculations, no attempt was made
to fit high-energy E-S phase shifts. A detailed descrip-
tion of the potentials and the general method used to
fit the two-body data is presented in Sec. IIA. Explicit
application to the A.-S singlet and triplet amplitudes,
including the limit of an infinite repulsive potential, is
made in Sec. IIB. The Ã-S triplet potential is dealt
with in Sec. IIC.

In Sec. III the results of exact calculations of Sq using
the potentials described in Sec. II are presented and
discussed. Included are the results for Bg when a re-
pulsive core is present in only the X-E potential, only
the A-S potentials, in none of the potentials, and in all
of the two-body potentials.

II. TWO-BODY POTENTIALS

A. General Considerations

Of the three particles present in the hypertriton, the
A is an isospin singlet while the nucleons are members of
an isospin doublet. Each of the three particles is a spin —,

fermion. The two-body potentials between pairs of
particles are taken to be S-wave spin-dependent po-
tentials. The A-E force is assumed to be more attractive
in the singlet state than in the triplet state. "Since the
le-Ã 'Sg force is more attractive than the 'So force, the
hypertriton has isospin zero and spin -,'.

Because the nucleons are identical, there are a total of
three different pairs of particles to consider: X+X in a
'St state, A+X in a 'St state, and A+X in a 'Ss state.
For any of these pairs the momentum-space matrix
element of the two-body potential-energy operator V is
taken to be

(pl i'I p') =l »t(P)»(P')+l ~ (P)e.(p'), (2)

where y is the relative momentum vector of the two

"Y.Yamaguchi, Phys. Rev. 95, 1628 (1954).
"See, for example, R. EI. Dalitz and L. Liu, Phys, Rev. 116,

1312 (1959); J. W. Cronin and O. K. Overseth, ibid. 129, 1795
{1963).
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particles and p =
I p I

.All the potential shapes are chosen
to have the form originally used by Yamaguchi. " The expansion of Eq. (4a) in terms of the two-body

scattering length a and effective range ro,

2'(P) =LP'+P"j ' (3) k cotb=- —(I/a)+ ', rok2+- (14)

For each pair of particles, then, there are four
potential parameters, Xl, P 2, Pl, P2. These parameters,
which vary from pair to pair, are to be determined so as
to 6t both the low-energy 1I-p scattering data' and the
&H' binding energy, as well as, of course, the low-energy
S-E '5& data. As 12 free parameters are far too many to
work with sensibly, some restrictions are necessary.
These restrictions are discussed below.

I ow-energy two-body d.ata involve the scattering
length, the effective range, and, in the case of a two-
body bound state, the binding energy. All of these may
be obtained from a calculation of k cotb, where k is the
relative momentum and 5 is the S-wave phase shift for
the two-body potential in question. It is easily shown
that the potential given in Eq. (2) yields

where
k cotta= X/D,

S= (k cot81) (k cot82) —W',

D= k cot51+k cot82+2W,

(4a)

(4c)

P
orol(k)o2(k)

"
ol(q)o2(q)qodq

q2 P2

where the jth scattering length, effective range, and
shape parameter, respectively, are given by

In Eqs. (4), k cot8, is the value of k cot8 when potential
j alone is present (i.e., X,=O, i&j), and in Eq. (5), P
stands for the principal value.

In particular, for the shape given in Eq. (3)

k cot8, = —(1/a, )+ ', rp, k'+P, k', j=—1, 2 (6)

where

anln2 nl —n2 —(aP—— 2)P—,

y12nln2+ylnl+y2n2 yp

(15)

(16)

and

y12 4a(Pl +P2 ) y

yl= aro —3ap2

y2
——arp —3apl ' —4p2 ',

yo= 2P«o+ (Plpo) 'l4P(1 —aP) —3(pi+P2)],

P=P~2/(Pl+P. ).
Equations (15) and (16) are used to impose two condi-
tions on each of the two sets of A-X potential. By
construction, once values of a and ro are chosen, any set
of parameters Xl, X2, pl, p2 that satisfies these equations
defines a sum of NI.S potentials that reprod. uces the
chosen scattering length and effective range.

For the Ã-S potential, the experimental parameters
to be fit are the scattering length and the deuteron
binding energy. The condition for the existence of a
bound state of the given pair of particles with binding
energy

2=— /n2(2y),
1S

k cotta= ik= —e.

This condition and Eqs. (4), (5), and (10)—(13) yield

s12nln2+slnl+s2n2 sp yf (20)

may be made explicit with the aid of the above equa-
tions for k cotb;. After some algebra, there result two
equations:

and

,= (2/P;)(1+4-P, '/»;)-',

r„= (1/P, ) (1-8~P, /», ),
P, = —22r/»;,

W= (P~.—k')/(P. +P.).

where

L1—(nip 1)'3'L I —(nip 2)
'j'

sl= [I—(n/Pi)']'Ln'(3P2' —n') —2P"nj/(2P2'),
(21)

s.= I:I—( /P )'l'L '(3P '—') —2P ' ]/(2P '),
sp ——(W' —n)' —sls2/s12,

so that
nl= a~ '=2pl(1+4~—pl'/~~l)

ro =(3»—4 )/Pl'

P~= (Pr 2n )/(2P J') —
~(13)

With these relations, k cotb; may be expressed in terms
of the two parameters n;, P;, and. it is a lilpear function
of n;.

In these expressions, p, is the reduced mass of the pair of
particles in question. For the purpose of fitting the
experimental data it is convenient to introduce

H/'= H/ with k —+ nx.

X2)0, Xi&0, P2)P1. (22a)

Once values of a and e are chosen, any set of X-X
potential parameters that satisfy Eqs. (15) and (20)
defines a sum of NLS potentials that reproduces these
chosen values.

The subscript j= 2 on o, (r), k cotb;, etc., is chosen to
refer to the repulsive part of the potential. Further, this
repulsive part is taken to be of shorter range than the
attractive part of the potential, so that
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From Eqs. (2) and (3), the momentum-space matrix
element of V is

(pl I'Iu'&=, +
2 j2 2 12 2 22 2 22

IO
7

where p (y') is the relative momentum of the two
particles. Since the Born amplitude for scattering at
energy E=p'/(2y) is proportional to this matrix element
with p =p, it is clear that if V is to act as a repulsive
potential at high energies (which is one effect of a hard
core inserted into a local attractive potential) it is
necessary that

(22b)

Equations (22) are used to descriminate against "un-
physical" fits to the two-body amplitudes.

B. A-N Parameters

e
IO

IO
I

IO
h

02'

To determine the parameters in the A-S amplitudes,
the scattering lengths and effective ranges were set
equal to the values obtained by HTS. These values are IO

Oo3 p (F) 0.5

Ogi'

+= —2.89 F, ro=1.94 F

in the singlet state and.

a= —0.7j. F, ro ——3.75 F

(23a)

(23b)

FIG. 1. A.-N'Sp potential parameters. The attractive and re-
pulsive potential strengths Xi and 'A2 are plotted against the
attractive range pI ' for three different values of the repulsive
range, P2 '=0.1, 0.2, and 0.4 F. For a given P1, P2, the values of XI
and ) & plotted have been adjusted to give the HTS singlet scat-
tering length and effective range.

in the triplet state. For each spin channel, the two free
parameters were chosen to be the range parameters Pi
and P2, since for fixed values of these inverse ranges
Eqs. (15) and (16) become simple quadratic equations
for the variables 0,~ and o.2.

The values assumed by the parameters when ) 2=0
(i.e., no core) are shown in Table I. As the range of the
attractive part of the potential is expected to shrink
from its "no core" value, "Pi ' was assumed &0.6 F for
each spin channel. From Eq. (22a), only values of
pg '&pi ' were used.

For fixed P& ', P2 ' in the ranges just described, the
other parameters were determined by reducing Eqs.
(15) and (16) to a linear relation between ni and n2 and
a quadratic equation for O.q alone. The parameters Xq and
) 2 were obtained from the solutions to these equations in
conjunction with Eq. (11).The equation for u& being
quadratic, two sets of solutions were obtained. . For one
set the strengths had. signs opposite to those expected;
i.e., ) i)0 and X2&0 which means a short-range attrac-
tion inside a longer-range repulsion. More important,
however, for this set ~Xg~ )Xi so that at high energies
the potential appears attractive rather than repulsive.
This set of solutions was discarded. For the other set of
solutions, values of X~, X2 could be obtained such that
Eqs. (22) were satisfied. Even for this set, however,
with a fixed pm ', there is a limited range of values of

~4 By analogy with the case of a hard core inserted into a two-
parameter local potential well. This behavior is also present in the
NLS potentials used in the first article of Ref. 11.

TABLE I.Values of the attractive potential parameters when no
repulsive core potentials are present. These parameters have been
adjusted so as to give the low-energy scattering parameters
described in the text.

z-x (s,)
A-N {'Sp)
~-zr (3s,)

p- (F)

0.6978
0.5213
0.5920

4 [Mev'/i2+l']
—3 292X10'
—3.961X10'
—1 380X103

"From a plot in the n1, n& plane of the hyperbola described by
Eq. (15) and application of )»0 and ) 1(0 but large (i.e., n&,
n2&0) it becomes clear that solutions exist only for limited ranges
of the variables.

pi ' for which Eqs. (22) are satisfied. ." Some typical
results including the range of pi ' for which Eqs. (22)
are satisfied are shown in Figs. 1 and 2.

From Figs. i and 2 it appeared that X2 —+~ was an
acceptable limit; i.e, , physically reasonable values of
Xi, Pi, P2 such that the HTS values of a and ro could be
6t still existed in this limit. This limit is of interest since
with X2~~ the core potential simulates a local hard.
core in that the Born approximation is never valid. The
fact that in this limit the potential is everywhere inhnite
is of no consequence. The NLS potential has no physical
signi6cance other than as a parametrization of the
interaction. The physical quantities of interest such as
the scattering amplitude are all well behaved in this
limit.
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TABLE IT. A-cV potential parameters for X.=- ~. For a given
P2 ' the other parameters have been adjusted so as to give the
HTS scattering lengths and effective ranges.

lo

NO CORE

-I
gg @oOQF

A-E' (1Sp)

p
-1

(F)

0.1000
0.2000

P1-1
(F)

0.3789
0.2403

LMev'/(2~l'$

—3.325X 104
—5.718X10'

ALEXANDER KT AL.

0 SECHI 2ORN KTAL.

A-g ('S1) 0.1000
0.2000

0.4095
0.2544

—1 585X104
—2.215X106

A determination of the other A-S parameters in the
limit was carried out next. In this limit it

follows from Eq. (11) that a~ —+P2/2: This value of ng

was substituted into Eqs. (15) and (16) to yield two
equations which were written

IO

&1 0'1 2p 1 y 1 1 2)+1 ~

For several fixed values of P2 these equations were
iterated to obtain p~ and n~. The strength lj, ~ was then
obtained as above. Some typical results are shown in
Table II.

Out of the eight free A-E potential parameters, four
parameters (two in each spin channel) have now been
determined by fixing the scattering length and effective
range in each spin channel at the HTS values. In the
local potential variational calculations —such as HTS—
it is usual to fix the range of the attractive potential by

IO
l l

IOO
(M ~~ )

200
I

500

FIG. 3.Low-energy A.-p elastic-scattering cross section versus A
laboratory momentum. The solid curve is calculated with purely
attractive A.-Ã potentials; i.e., no repulsive cores. The dashed
curve is calculated with the h.-g potentials given in the last row
of Table IV. The experimental points are from Ref. 7. See Ref, 8
for more recent experimental results.

IO

IO

IO

Io'

IO
0,5 0.4 p"i( ) 0,5

I

0.6

Fio. 2. A-S'S~ potential parameters. The attractive and re-
pulsive potential strengths )1 and P~ are plotted against the
attractive range p1 ~ for three diferent values of the repulsive
range, P2 '=0.1, 0.2, and 0.4 F. For a given P1, P2 the values of X1

and X2 plotted have been adjusted to give the ITS triplet scat-
tering length and effective range.

requiring the intrinsic range b in each channel to
correspond to a two pion exchange mechanism; namely
b = 1.5 F."Because of the more complicated form of the
potential used in the present work, this was not done
here. "This is a defect of the calculation in that it is a
breakdown in the parallelism with the HTS work. It is
not viewed as a serious defect. It is felt that the two-

body t-matrix elements are the most physically signi6-
cant quantities and these by construction are the same
(at least on the energy shell at low energies) as for the
HTS local potential calculation. Further, it is possible
to duplicate some other features of the HTS potential.
The ranges of the repulsive potentials in each channel
may be set equal and the repulsive strength in each
channel may be made infinite. With this choice there
remains one free parameter —the common core rang-
just as in the local potential calculations. "

~'For a discussion of how 6 was related to the other local
potential parameters, see B. W. Downs, D. R. Smith, and T. N.
Truong, Phys. Rev. 129, 2730 (1963).

1' Calculations which include consideration of the intrinsic range
are in progress."In HTS, a hard-core range r, =0.4 F was used. The relation of
p~ ' to this local range is not clear. It is easily verified that in the
limit X~ ~ao the repulsive NLS potential used here yields the
same low-energy scattering amplitude as a local hard core of
radius 2p2 1, i.e., r,=0.4 F corresponds to p~ ~ ——0.2 F, which is
exactly the value fixed on in Sec. III. No great significance is
attached to this value. For a general discussion of the range
parameter of an NLS potential, see A. N. Mitra, Phys. Rev. 123,
T892 (196il.



156 LOW-ENERGY A. —p S CA TIE RI N 6 1607

In Fig. 3 the low-energy A-p elastic cross section is
shown as a function of A lab momentum. Curves ob-
tained from calculations using the NI.S potentials dis-
cussed above (both with and without repulsive cores)
are shown. For the momentum range shown, the
scattering lengths and effective ranges dominate the
amplitudes, the core effects becoming distinguishable
only at the upper end of this range. For all practical
purposes the fit to the low-energy data shown' is inde-

pendent of the core parameters.

C. N-N Parameters

P1 1

(F)

iv-S (SS,l
'A1 p

—1

E«V'i(2 l'3 (F) EMev'/(2~l'g
Bg

(MeV)

0.6978
0.6400
0.5500
0.4600
0.5500
0.4600

—3.292 X10'
—5.345 X10'
—1.363X104
—5.440 X 104
—1.630X 104
—8.625 X104

~ ~ ~

0.2000
0.2000
0.2000
0.4000
0.4000

~ ~ ~

4.930X104

2.459X10'
2.510X106

2.600X104

1 ~ 171X10'

0.880
0.845
0.765
0.630
0.825
0.775

TABLE III. Values of Bq for various S-S potentials and both
A-S potentials purely attractive. The A-E no core potential
parameters used here are given in Table I.

IO
7

I
I
I!0.2
l

I
I
I
I
I

IQI
t
I
I

I
I

To determine the parameters in the S-E 'S~ potential,
the scattering length and deuteron binding energy were
fixed at the experimental values"

a=5.39 F, e= 2.225 MeV.

Equations (15), (20), and (11) were then used to de-
terrnine Xi and X~ for given Pi and P2. The general
features of the calculation are the same as those of the
A-E calculation described above. Results which include
the range of Pi ' for which Eqs. (22) are satisfied are
shown in Fig. 4.

Here, also, no attempt was made to incorporate a fit
to the intrinsic range into the determination of the

potential parameters. Further, the effective range for
all values of P2 ' shown in Fig. 4 varied over 1.730—
1.745 F for those X's that satisfied. Eqs. (22). The
experimental value of the effective range is 1.704 F."
As expected, this parameter is well-fit already and is
insensitive to the potential parameters as long as a and
e are kept at their experimental values.

The remaining E-E parameters could be determined
by again paralleling the local hard-core potential calcu-
lations; i.e, , the core range could be set equal to that
used, in the A-S potentials and the limit X2 —+~ could be
taken. %ithin the framework. of two-body NI S poten-
tial the aim of this work was to show the feasibility of
fitting Bz and the low-energy A-p cross section rather
than to produce the most economical way to obtain
these fits. Thus this procedure was not carried out.
Instead, after some preliminary calculations of Bz
described below the core range P2 ' was fixed and the
iV-X core strength was varied (by varying pi ') until a
fit to the "known" value of Bq was obtained.

IO
6

IO'—

O.I

IO

I
IO 0$ g(~) 0.6

Io.2
I

0.7

Fn. 4. S-E'S1 potential parameters. The attractive and re-
pulsive potential strengths )1 and )2 are plotted against the
attractive range P1 ' for three diferent values of the repulsive
range, Pl ' ——0.1, 0.2, and 0.4 F. For a given P1, P2 the values of 'AI

and ) 2 plotted have been adjusted to give the experimental values
of the triplet scattering length and deuteron binding energy.

'9 J.L. Gammel and R. H. Thaler, Progr. Klem. Particle Cosmic
Ray Phys. 5, 99 (1960).The potential used here gives an exact fit
to these parameters, while the potential used in HTS gives
a=5.35 F and a=2.253 MeV.

III. gH' BINDING ENERGY

The hypertriton binding energy was determined by
the use of a Faddeev type of multiple-scattering analysis
which yielded a set of coupled integral equations for the
A-d doublet scattering amplitude. The three-body
bound-state pole in this amplitude was found by varying
the energy until the Fredholm determinant for the set of
integral equations vanished. It is important to note
that, unlike the calculation of the scattering amplitude
itself, in the (negative) energy region of interest all
quantities that appear in the calculation are real. There
is a corresponding reduction by a factor of two in the
computer memory size needed relative to the space
needed in the scattering-amplitude calculation. It is
this factor of two that makes the present work, which
involves up to six coupled integral equations, feasible. "

The HTS A-N scattering lengths and effective ranges
used above were obtained from a variational calculation

' M. H. MacGregor, M. J. Moravosik, and H. P. Stapp, Ann.
Rev. Nucl. Sci. 10, 291 (1960)."The numerical calculations were carried out on the Vniversity
of Southern California Computer Sciences Laboratory's Honeywell
800, a machine with a 32K-word memory.
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ALE IV. Values of B& for various A.-E potentials and purely attractive lV-E potentials.
The g-S no-core potential parameters used here are given in Table I.

Pl
—1

(F)

0.5000
0.2600
0.2403

Xl
[MeV'/(2

—5.089X10'
—1.143X106
—5.y18X &06

0.2000
0.2000
0.2000

A-1V ('So)
P

—1

~)'3 (F)
'Ag

[MeV'/(2~)']

1.2'?2 X104
5.226X10'

0.5000
0.2600
0.2544

.~-s (3s,)
Xl p

—1

[MeV'/(2m)'j (F)
—3.975X10' 0.2000
—1.422 X10' 0.2000
—2.215X106 0.2000

[Me V'/(2m)' j
4.481X10'
1.862 X10'

Bg
(MeV)

0.815
0.425
0.360

TmLE V. Values of Bq for three of the Ã-E' potentials given in
Table III combined with the A-g potentials given in the last row
of Table IV.

0.6400
0.5500
0.4600

ar-x (s,)
p2

—1

[MeV'/(2e)'] (F)
—5.345 X10' 0.2000
—1.363X10' 0.2000
—5.44oX1o4 o.2ooo

'A2

[MeV'/(2w)'j

4.930X104

2.459X10'
2.510X10'

Bg
(MeV)

0.355
0.345
0.295

~ The no-core result for Bq given here differs from that given in
HS3 by 0.02 MeV, partly due to the use of slightly different input
parameters and partly due to the limited accuracy with which the
numerical work could be carried out. The error in any of the values
of Bg shown in the tables is &0.01 MeV.

in which Bx as given in Eq. (1) was inserted as a known
parameter. The central value of Eq. (1) was therefore
used here as the experimental value. The three-body
calculations were carried out until good, agreement with
this value was obtained.

The equations used to calculate Bz when each two-
body interaction is a single S-wave NLS potential have
been described in HS3. The adaption of these equations
to the case at hand is straightforward. The resulting
equations are given in the Appendix. It is merely noted
here that calculations were carried out with the core
strength equal to zero (i.e., no core) in all, some, and
none of the two-body potentials, so that programs con-
taining from three to six coupled. integral equations
were used.

The "no-core" result is shown in the Grst row' of
Table III."The rest of Table III shows the e6'ect of
inserting a repulsive core in the S-Spotential only. For
rows 2 through 4 the 1V-X core radius was set at P2 '
=0.2 F and. values of Pi ' (with corresponding ) i and
) 2) were chosen from Fig. 4 such as to sample the range
of 6nite Xi, ) 2 that satisfy Kqs. (22). For rows 5 and
6 P2 ' was set at 0.4 F and values of Pi ' that duplicated
those in rows 3 and 4 were used. It is seen from this
table (and Tables IV and V as well) that, as expected,
the insertion of a repulsive core causes the attractive
potential to shrink in radius and increase in depth.
From a comparison of row 3 with row 5 and row 4 with
row 6, it is seen that for fixed Pi a smaller P2 ' implies a
smaller Bg. This is so because in such a case a smaller

P2 ' implies a larger ) 2 and hence, according to the
discussion at the end of Sec. IIA, a larger effective
repulsion. Rows 2, 3, and 4 demonstrate (as does

Fig. 4) that for fixed P2 ', since), 2 increases much faster
with decreasing Pi ' than does ~Xi~, the smaller the
attractive range the smaller the value of Bq. It appears
from this table that without going to very small values
((0.1 F) of the core range it is impossible to reduce Bz
to agreement with experiment by the use of a repulsive
S-E core only. From a comparison of Figs. 1 and 2
with Fig. 4, it appears that to have any success at all in
reducing B~ suKciently, even with the addition of A-E
cores, a core range p2 '&0.2 F is needed. Within the
limits of the computer, a core range of 0.2 F is about the
smallest that could be used, and still obtain trustworthy
numerical results for Bq. Smaller values of P2 ' were
therefore not used.

The effect of inserting a repulsive core only in the
h.-E potentials is shown in Table IU. Kith the core
range in both spin channels fixed at 0.2 F and, again as
in HTS, the attractive ranges in the two channels set
equal, values of pi ' were again chosen so as to sample
the range of 6nite P ~, P 2 from Figs. 1 and 2 that satisfy
Kqs. (22). In row 1, Pi ' ——0.5 F was chosen because this
corresponds to the attractive part of the potential
having an intrinsic range corresponding to a two-pion
exchange; i.e., for a single NLS potential b=3P ' This.
value is too large for the core to have much e6ect on Bg.
However, with a, value of Pi ' close to the smallest value
allowed, it is seen from row 2 that ) & Anally becomes
large enough in both channels to significantly reduce
B~.By going to an infinite Xg,"a value of B~ is obtained
such as to indicate that the experimental value may be
rea.ched by the inclusion of an E-E core.

In Table U the results found for B~ when cores are
inserted in all three two-body potentials are displayed. .
In all three potentials the core range has been fixed at
P2 '=0.2 F. Both core strengths in the A-iV potentials
have been ma, de in6nite. The one free parameter left is
the E-Ã attractive range. Results are given for the
three sets of values of the X-E parameters used in rows

2, 3, and 4 of Table III. A good fit to the experimental
value of Bz given in Eq. (22) has been obtained with the
values of the parameters shown in the last row of Table
U. This 6t is so good that the calculations were not
carried further. However, it is clear from the results
presented that with the E-E core strength also in6nite,
the omly free parameter for the entire calculation, the
common core radius p2 ', could. be varied until the
"In this case, with P2 ' the same in each channel, the values of

p1 ' are necessarily not the same.
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experimental value of B~ was obtained to as high an
accuracy as desired.

It has been demonstrated that with each tmo-body
interaction represented by a sum of NLS potentials
adjusted to reproduce the two-body low-energy data,
the same value of Bg may be obtained as in a calculation
using local potentials with hard cores similarly adjusted.
Whether this success can be repeated if the known
behavior of the high-energy E-E 5-wave phase shift is
used to further restrict the two-body parameters re-
mains to be seen. The sensitivity of the result to diRerent
types of NLS potentials needs to be investigated. The
ability of sums of NLS potentials determined on the
basis of two- and three-body calculations to produce the
known values of the binding energies and mesonic decay
rates of other light hypernuclei, as mell as the binding
energy of the A in nuclear matter, is also a subject for
further study.

and for the general off-energy-shell matrix element

k/p, k/p', pWp'.

According to HS3,"with each two-particle interaction
represented by such a potential, the elastic A-d scat-
tering amplitude, in either the doublet or quartet spin
state, from an initial state b to a 6nal state u may be
written as the partial-wave sum

M'. s=gg(2l+1)LriP"+ gPsjrg(q„ys). (A4)

Here gE~+ is the impulse approximation contribution,
which is of no interest here, while q~MB is the multiple
scattering contribution. As the qH' is bound in an 5
state, only the 1=0 part of Eq. (A4) is relevant. The
subscript I will now be dropped, 1=0 being understood.

The 5-wave amplitude of interest is given by
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APPENDIX

The two-body momentum-space 5-wave t-matrix
element at energy E for a single NLS potential, such as
given in Eq. (2) with Xs ——0, may be written

&pl ~pip') =&~(pp') =»(p)r»r(p'),

rg =XrL1—gs"XQ ',

C.s(q, q.)r &(q)R„g(q,q')r"P(q')

XCps(q', q.) (2~) q'q"dqdq' (A5)

In this equation the Greek indices run 1 through 3,
referring, respectively, to the A-E 5=0, E-X, and
A-VS=1 interactions. The functions C 2 is the zero-
order partial-wave part of the product of the initial-
state mave function with e .The matrix r t' is given by

0 0
0 r2 0
0 0 v3

(A6)

where again tlm subscripts 1, 2, 3 refer to the respective
two-particle channels in the order just given. The
matrix element R p(q, q') satis6es the integral equation

dq e*(q)s (q)

(2~)' LE'—(q'/2~)j
(A3)

R-p(q, q') =&-p(q, q')+Z &"(q,q")r'"(q")

E+=E+t',q, ti ~ 0+,

k= (2')'" with

0

)R, (p"q, )q( )2-tr' '"q"dq, (A7)

' e (lq'+(mp/OR )ql)ep(lq+(m /ORp)q'l)de
E p(q, q')=W p

t E—(qs/2m, )—(q's/2mp) —(q+q')'/(2ms)

The integral equation (A7) may be written sym-
bolically

R=E:+E'ER, (A10)

&n Eq. (Ag), ro is the cosine of the angle between q and
q', mp is the mass of the particle not present in the Pth
two-particle channel, OR =mp+ms, and ms=OR —m
—mp, where 5R is the total mass of all three particles.
The matrix LW p] for the total spin state of interest, the
doublet state, is again from HS3

mhere the matrices E, E, v are all parametrized by the
energy E. To And the multiple-scattering contribution
to the scattering amplitude, Eq. (A10) is solved

c n i inumericallyby o vert ng t to apurelymatrix equation
1/2 V'(3/2) —v3/2

py ~ y(3/2) 0 1/~2 (A9)
M The equations rlescrihed here are those given in J. H.

Hetherington and L. H. Schick LPhys. Rev. 137, 8935 (1965)g as.—43/2 —1/W2 —1/2 J modi6ed in the Appendix of HS3.
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(i.e., the continuous variables are replaced by discrete
variables) and by using matrix inversion to obtain

R= [1 E—r] K (A11)

explicitly. Substitution of this result into Eq. (A5)
yields pMS. To obtain the zH' binding energy, it merely
needs to be noted that at the bound-state energy qM~,

and hence R, is singular. From Eq. (A11), then, the
bound state occurs at that energy for which

det[1 —Er]=0. (A12)

is the transpose of the column vector V(p), and the
matrix rJ, is given by

re=A[i Ggh] ', —
w1th

Kith Eo as the bound-state energy, 8& is given by

(A13)

Equations (A6), (AS), (A9), (A12), and (A13) were
used in HS3 to determine B~.The modifications in these
equations necessary to make them applicable to the
present work follow directly from the modihcations to
Eqs. (A1) and (A2). The generalization of these last
expressions to an arbitrary sum of NLS potentials is
easily seen to be

$-matrix elements can be propagated through the
calculation of Bz. It is easily seen that Eqs. (A12) and
(A13) can still be used provided Eqs. (A6), (AS), and
(A9) are modified as follows:

Each zero in Lr &] becomes a 2)(2 zero matrix. Each
element r in (r I'] becomes a 2X2 matrix which,
suppressing the 0. index as well as the energy depen-
dence, may be written

) ygI2A2

X2L1—g'9.i)

D= (1—g'9. i) (1—g'9 2)
—g'9 2g'9, i.

Here the indices I and 2 are the same as those used in
the body of the paper.

Each matrix element W p on the right-hand side of
Eq. (A9) becomes a 2)&2 matrix LW s' ] given by

For fixed q and q' each matrix element E p(g, g')
becomes a 2X2 matrix. This Inatrix is found from the
right-hand side of Eq. (AS) by letting

W p~ LW p'&],

&a~ &e'p

gA: gA:

Gz= gI"

gi*'& is given in Eq. (A3).
When each tmo-body interaction is

NLS potentials, the modifications to
a sum of two
the two-body

where both i and j run over 1 and 2. The potential ~ ' is
for the o.th two-body channel just mhat was called e; in
the body of the paper.

Khen only some of the two-body interactions are
represented as a sum of NLS potentials, modihcations
similar to those just described must be made in Eqs.
(A6), (AS), and (A9).


