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If one argues that the gauge vector fields become
massive as a result of vacuum polarization, ' one may
equally well start with the PCTC relation r).T„„(x)
= —ma'( —gs) 'j„(x)/(— '+m') as fundamental,
m being the average mass of the vector-meson octet in
exact SU(3). In this case, a breakdown of SU(3) will

only split the masses, leading to exactly the same results.
Pote added in proof. After this work was completed,

the author came to learn that the idea of PCTC has
also been independently proposed in different contexts
by R. F. Dashen and M. Gell-Mann Dn Proceedirtgs of

the Third Coral Gables Comferertce ort Symmetry Prirtci ples
at High Ertergy (W. H. Freeman and Company, San
Francisco, 1966; Caltech report (unpublished) j and by
S. Fubini, G. Segre, and J. D. Walecka LAnn. Phys.
(N. Y.) (to be published)].

It is a pleasure to thank Dr. P. K. Roy for many
critical and fruitful discussions. The author has also
benefited from discussions with Dr. T. C. Roy, Dr.
N. C. Sil, Dr. T. Pradhan, and a number of colleagues.
He is also grateful to Professor S. X. Bose for his kind
interest in this work.
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Amount of Four-Particle Production Required in 8-Matrix Theory
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It is shown that a knowledge of the two-particle scattering amplitude below inelastic threshold places
restrictions on the amount of four-particle production at high angular momenta. Conversely, if there is no
four-particle production, there is no elastic scattering.

INTRODUCTION

A N elastic-scattering amplitude which has the ana-
lytic structure given by the Mandelstam repre-

sentation and which satisfies the unitarity condition and
crossing relations is severely restricted'. It cannot grow
too rapidly with increasing energy, ' poles in coupled
scattering amplitudes are related, ' and singularities
must occur at production thresholds. 4

In this note we explore the last restriction in greater
detail. We shall show that the elastic two-particle scat-
tering amplitude is directly related, even below inelastic
thresholds, to the cross section for multiparticle produc-
tion processes at high angular momenta. Thus, two-
particle scattering depends on multiparticle production.

FIG. 1. Scattering-amplitude
kinematics.

Conversely, if the two-particle scattering amplitude is
known below inelastic thresholds, restrictions are placed
on the amount of production at high angular momenta.

For simplicity, we shall consider a theory in which
there is only one kind of particle having mass m and spin
zero. We furthermore assume a theory of the P' variety
so that the 5 matrix does not connect states having an
even number of particles with states having an odd
number. The extension to the general case involves only
algebraic complications provided the masses are not too
different.

Section 1 discusses the unitarity equations for two-
particle partial-wave amplitudes above the first inelastic
threshold. Section 2 relates the partial-wave-production
cross section defined in Sec. 1 to an integral over the
double spectral function. This double spectral function
is calculated in Sec. 3 using elastic unitarity in the
crossed channel. The conclusions of Secs. 2 and 3 are
combined in Sec. 4 to obtain a result for the production
cross section at high angular momenta. Various impli-
cations of the result are discussed in a final section.
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S=1+2iT, (1 2)

where S is the scattering matrix and
~
ktks) is a two-par-

1. INELASTIC UNITARITY

Let A(s, t, tt) be the plane-wave scattering amplitude
depicted in Fig. 1. It is defined by the relations

(kt'ks'~ T~ ktks)= h4(kt+ks kt' ks')A(s, t,—u) &

—(1.1)
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ticle linear-momentum state normalized by the rule One finds

X P Ds, ,os(R)(2J+1)'I'I Q JJo). (1.15)

(kq'ko'I k&k&) =oo&4o&84(4 4') 54(iro —ko') . (1.3) U(g) I
k~okoo) = M&/o(4+ k)

—'Io

The rule assures that Lorentz transformations realized

by the relation JJ3

V(1.) I k,k,)= I
I.k„z,k,) (1 4)

are unitary transformations. The variables s, t, and I
are defined by the usual equations

The partial-wave scattering amplitude A s(s) is
defined in analogy to Eq. (1.1) using angular-momen-

tum states,

s= (kg+ko)'

t= (kg —kg')',

u= (ko—kl')'
(1.5)

(Q'J'J, 'I &I QJJ,)=B 8, ,5,(e' Q—)A ( ). (1.16)

The relationship between the plane-wave and partial-
wave scattering amplitude follows from Eqs. (1.10)
and (1.15). One obtains the familiar formulas

Ke shall also use the variables k and s, the relative mo-
mentum and scattering-angle cosine, de6ned by the
equations and

A(s, t,u) =M(44rk) ' P(2J+1)As(s)Ps(z), (1.17)

s=4(k'+ m')

t= —2k'(1 —s),
u= —2k'(1+s) .

(1.6)

(1 7)

(1.8)

As(s) = 24rkM ' A (s,t,u)Ps(s)ds. (1.18)

In terms of T, the unitarity condition (1.9) reads

The unitarity condition (24)-'(2' —P)= TtT. (1.19)
StS=| (1.9)

X d& DJ4 0 "(R)U(R) Ik4, 'k2 ) (1 10)

Here dR indicates Haar integration over the rotation
group, and kP, koo, and Q' are the 4-vectors

kg = (keo,4or),

koo= (—keo, 4oo),

Q'= (0,0,0,M),
with

M=4or+ooo= s't'.

is most simply expressed with the aid of states having a
definite angular momentum. We dehne a two-particle
angular-momentum state at rest in the center-of-
momentum frame in terms of linear-momentum states
by the equation

IQoJJ,&=p~k(2J+1)j t s t—
Taking matrix elements with two-particle angular-
momentum states gives

~ (e'-Q) 1~.()=(e'». I2'2 le». ) (1'20)

Now suppose that 16m'&s&36nz so that T connects
two-particle states to two- and four-particle states.
Then the two- and four-particle identities, 1&'& and. 1&4&,

form a complete set of states for insertion between T~

and T on the right-hand side of Eq. (1.20). From the
normalization (1.14) and a four-particle state normali-
zation analogous to (1.3), we have

1 = dec(e.)t(e'-4~') Z le»)(e» I, (121)

1'4'= Q (4d' 'd'k4) lkrk&kok4)(k4kokok41 (1 22)

Inserting this into Eq. (1.20) gives

Angular-momentum states with an arbitrary total 4-
momentum Q are obtained by writing

where
Im As ——IAsl'+k'(44r) 'as(2 —+4), (1.23)

where
le». )= IJ(~) le».),

e= 1-Q'

(1.12)
os(2-+ 4) =44rk '

(1.13)

and L is a pure velocity transfomation. From the
definitions (1.10), (1.12), and the normalization rule

(1.3), one obtains the analogous rule

(Q'J'J'IQJJ. )=~ (e' e)~'.~.;.. -(1 14)

Equation (1.10) can also be inverted to express linear-
momentum states in terms of angular-momentum states.

and

X g (; 'd'k;)8 (Pk;—Q)IB I', (1.24)

&k,k,k,k, l rleJJ, )=s,(gk,—e)a, (k,k,k,k,). (1.25)

The inelastic term can be identified with the total
partial-wave production cross section using the optical
theorem. For s& j.6m', the inelastic term is absent, and
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Eq.(2.9) where

(2 5)

r
I
I
I
I
I
I
It

(z.to)

ImdJ= —2ikM ' Im A (s,s)Qs(s) ds. (2.7)

Inserting the inequality into (2.3) gives

~
A, (s)

~

«~Wosour-'(~/J)' '~ (~o'—1)-"', (2 6)

where Wo(s) is the maximum of ~A(s, s)
~

for s on Co.
A similar calulation can be carried out for ImA J,

FIG. 2. The nearest set of Landau curves.

Since A is real analytic,

ImA(s, s)=(2i) '[A(s+io, s) —A(s —io, s)]
= (2i)

—'D,A (s,s), (2 8)

Eq. (1.23) has the solution

=e"J sinbJ,

with 5g real. Then writing

o(2 —+ 2) =Q(2J+1)og(2 ~ 2),

(1.26)

(1 27)

~(2 ~ 4) =Z(2~+1)~~(2 ~ 4) (1.29)

2. RELATION TO THE SPECTRAL FUNCTlGN

We assume that A (s, t, N) enjoys the analytic proper-
ties of the Mandelstam representation. Thus it is as-

sumed analytic in the topological products of the s, t,
and u planes cut along the real axis from 4m' to + oo. It
then follows that A(s, t,l) when viewed as a function of
s for fixed positive s is analytic in the s plane with cuts
running from sp to ~ and —~ to —sp, where

so(s) = 1+8m'(s —4m')-'. (-'1)

The s cuts are the image of the I and t cuts under the
mappings (1.7) and (1.8).

With this information we can get an estimate on

~
As(s)

~

for large J.Using the discontinuity relationship

2' ()= '[Q(s+ )—Q( — )j, se[—1, 1j (2.2)

allows Eq. (1.18) to be written as a contour integral,

gives
~.(2~2)=4~k 'IA~I' (1 28)

Thus Eq. (1.23) is properly normalized provided we

write

(s—4m') (t—16m') =64m',

(s—16m')(t —4m') =64mo.

(29)

(2.10)

Analogous curves occur for other variable pairs by
crossing symmetry. Thus for 20m'&s&36m', D,A is
analytic in the s plane cut from —~ to —s& and s& to
~, where

si(s) = 1+8m's(s —4m') —'(s—16m')-'. (2.11)

The cuts begin at the image of Eq. (2.10) and its partner
in the pair s, u under the mappings (1.7) and (1.8). We
now expand the contour of Eq. (2.7) to an ellipse Ci
which just touches +a~. This gives the estimate

~Im As[ &4+WisikM '(7r/J)' 'Xi s(Xi'—1) 't', (2.12)

where Xi is defined by the analog of Eq. (2.5) and Wi(s)
is the maximum of

~
A(s, s)

~

for s on Ci. The absolute-
value sign on Im Aq is actually unnecessary since it is

always positive by Eq. (1.23).
Comparing Im As and

~

A s
~

' for large J, we find from
our estimates (2.6) and (2.12) that ~As~' becomes
negligible compared to Im AJ for large J if s&20m'
since then ) p'& X&.6 Thus

where D, denotes the discontinuity is the s channel.
Now D,A as a function of s enjoys a larger region of
analyticity in s than A itself. Its first singularities appear
on the Landau curves which mark the boundary of the
support of the double spectral function. The first set of
Landau curves for A(s, t,ot) in the s and t variables are
shown in I ig. 2. They have the equations

A ~(s) =- —2iHf ' A(s, s)Q~(s)dz, (2.3) Irn A J k'(4m. )
—'o ~(2 —+ 4) (2.13)

where C is any contour encircling the interval [—1, 1]
counterclockwise but avoiding the s cuts. We take C to
be the ellipse Cp with foci ~1 which just touches &sp.
We then have the inequality'

~Qs(s) I
&(~/J)"'l~o '(&o'—1) "', sECo (2.4)

5 E. W. Hobson, The Theory of SPhe7'ical md ElliPsoidal IJar-
monics (Cambridge University Press, Cambridge, England,
1931),p. 61.

for large J and s) 20m2. This is also evident from I'ig. 2
which shows that Eq. (2.9) lies above Eq. (2.10), pro-
vided s) 20m' In fact, the Landau curve (2.9) and its
s, I partner come from the ~Az~' terms when Eq.
(1.23) is substituted into the analog of Eq. (1.17) for
Im A. The other curve, Eq. (2.10) must consequently
arise from the k'(4o-) 'o~(2 —+ 4) terms.

'We assume here and show in Sec. 4 that lm Az essentially
takes on its upper bound for large J.
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The estimate (2.12) can be improved to give an ex-
pression for Im A ~ in the limit of large J. We first ex-
pand C» to a somewhat larger ellipse C2 passing through
the points &(»2+e). In doing so, we obtain small in-
dented contours from »2+ e i—t') to »2+ e+i 6 etc. running
above and below the cuts (see Fig. 3). Now in the limit
of high J, the bound (2.4) on Q~ says that the integral
over C2 is less than the integral over the indented con-
tours since X on C~ exceeds the value of X on the indented
contours. Therefore,

z1+0

FIG. 3.The expanded
ellipse C~.

The kernel E has the representation

z plane

ImAg —HE ' ds QgDdDAA

ds QsD„D,A (2.14)
E(2tiq2») ='4 d2) (2)—s) '

—ZI—8

for large J.
Defining the spectral function

with
2t+=2)22t2~L(2ti'-1)(2t2' —1)]"'. (3.5)

finally gives
p(s, t, tt) =D,D,A (s,t,u)

ZI+0

(2.15)

ImA ~—2HI ' pQs(z) ds, (2.16)

for large even J. Here we have used the fact that A is
an even function of z for identical spin-zero particles.

where dQ indicates integration over the solid angle of
the two-particle intermediate state and A"(=A*) is
the continuation of A across the cut beginning at s=4m'.
We next employ the representations

A(ss) (2 s') 'f A(,n)(n e) ='dn, eic. , (32)—
where E is some counterclockwise contour about
L
—1, 1].The integral over dQ can then be done to give

D A(se) is(2 'iN) 'f . dn, ,d=n,

g1

XA"(s)212)A(s, )12)E(2ti, )tiiz) . (3.3)

3. CALCULATION OF THE SPECTRAL FUNCTION

The use of Eq. (2.16) requires a knowledge of p for
s&20m' and t near the boundary (2.10). By crossing
symmetry, p is even under the interchange of s and t
so that it suKces to know p for t& 20m' and s near the
boundary (2.9). Inspection of Fig. 2 reveals that this
is the region for elastic scattering in the s channel pro-
vided t& (64/3)m'. Consequently p can be obtained in
this region entirely in terms of the elastic two-particle
scattering amplitude using standard techniques.

Employing plane-wave states and setting 4m'&s
(16m, the unitarity condition (1.19) along with real
analyticity gives

D,A(s, z) =2ikM ' dQ A "(s,s')A(s, z"), (3.1)

p= —32k% '
Z0 Z0

d2tid2tz L(ti—4m') (tz —4m')]'t'

&&G(t,s)G(tz, s)L(»—v+)(z —v-)3 "'tt(» —e+) (3.9)

Here we have again used the fact that A is even in z.
The quantities z, t;, and zo are those previously de6ned

' W. Zimmermani Nnovo Cimento 21, 249 (1961).

We now continue Eq. (3.3) in z or t to find D,D,A.
In doing so, it is necessary to expand the contours E»
and E2 in the q» and g2 planes. A singularity in z occurs
by way of the structure of K when the expansions of E»
and E2 are terminated by singularities in A" and A.
The amplitudes A" and A are first singular when t; or
I;=4m', where t; and I; are the images of q; under the
mappings (1.7) and (1.8) with s replaced by 2),

At these points A" and A have "square-root" singu-
larities. ' In fact, we may write for Re t&0

A(s, t) =y(s, t)+i(s 4m ) G—(s,t)
+i (t 4m') '"G(—t,s), (3.6)

where (td and G are free of singularities in the region of
interest except for possible compensating poles. The
behavior for Re e& 0 is the same by crossing symmetry.
For A" we have

A"(s, t) =dt)(s, t) i(s 4m')—'t'G(—s, t)

+i(t—4m') 't'G(t, s) (3.7)

by continuation around s=4m'. The quantity G is
defined by the equation

A(s)t) =F(s,t)+i(s 4m')'"G(s, t)—, (3.g)

revealing that G(s, t) is the absorptive part of A is the s
channel. Thus the discontinuities that appear when we
are forced to indent E» and E2 are familiar from elastic
unitarity.

We now have sufhcient information to calculate
DtD,A. One finds
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in Eqs. (1.7) and (2.1).Although the integral is formally
over an in6nite range, it is actually cut OR due to the
theta function. In fact, the region of integration shrinks
to zero as we approach the boundary of the La,ndau
curve. According to Eq. {2.16), we are only interested
in values of p near the boundary. Consequently, we may
replace the nonvanishing terms in the integrand by their
values at the lower limit' to obtain

p 32kM—IG'(4m— '&s) (II~ rl ) —"'

estimate (2.4). We are thus interested in calculating

(&
—«)"'Q~(s)« (4.3)

in the limit of large J. Next consider the function g
de6ned by

g(s) =Irl'(s-sI)"',

with the root chosen to make g(0) negative. Expand g
in a Legendre series,

g(s) =Z(2~+ 1)~~~~(s).
X[(~ —4m')(~ —4m')3'"(s —~+)-'"~(s—v+) (3 1o)

For a~ we have the formula

(4 5)

The integrals can now be evaluated near the boundary
in terms of elementary functions with the aid of the
substitution

(2 ') 'f=r(~)()~(~)« (4.6)

gg = coshAt', , (3.11)

and repeated application of the rule that nonvanishing
terms in the integrand can be replaced by their values
at the lower limit. One 6nds

p(s, t) = —(2~/15) G'(4m') s) (s—4m') "'(ms)-I(s+4m') —'

X[(~—4m )(~—16m )—64m'3'I'+O([ 3'('). (3.»)

The above expression gives the leading term in p for
4m2($(16m2 RIld t llcRr 'tllc Landau clllve (2.9).
The remaining terms vanish as least as a —,

' power at the
boundary.

4. THE PRODUCTION CROSS SECTION

%e now have the necessary tools to exploit Eqs.
(2.13) and (2.16), for from crossing symmetry the value

of p for s) (64/3)m' and (' near the curve (2.10) is given

by llltcl'cllallglllg s Rlld t lll Eq. (31-.12).
In evaluating the integral (2.16), it is again permissi-

ble to ta,ke nonvanishing terms outside the integrand.

Using this fact and Eq. (2.11) then gives

where C is some contour around the interval [—1, 1$.
If we now expand the contour, we get the integral (4.3).
Thus, gJ ——aJ, and we only need to find the expansion
coeKcients in Eq. (4.5) for large J.This is a simple task.
The formula for the generating function of the P'q can
be rewritten to read"

(sl—s) "'= (2/XI)I" Q XI
—~PJ(s). (4.7)

Integrating Eq. (4.7) three times and employing the
recurrence formulas for the I'g gives the result

g,= (15~/16)(2/X, ) I('

X[@.,—~;)/2j ~; ~- [1+O(~-)j. {4.8)

The estimates given in Eqs. (2.13), (4.1), and (4.8)
become equalities in the limit of large J. Combining
them, we obtain the exact statement

hm &I'J'~J(2 ~ 4) =h(s)G'(4m', )'), (4.9)

h(s) = (3840)Iram4 I(f+4m2) 9.I I(2

X~(~—8m')'(s —4m')-I(s —16m2)-l, (4.10)

where

{~) f(~) (s s )g/2Q (s)ds (4 1)
and t is given as a function of g by Eq. (2.10).

5. DISCUSSION

f(g) = (s/v2)G'(4m' )()k(t—4m') I"(mM/) I(/+4m') '
X [(~—4m')( —16m')]"' (4 2)

The value of )! occuring in the expression for f(s) is that
given by Eq. (2.10).

The evaluation of the remaining integral can be ac-
complished by the following considerations: First of all,
the upper limit can be replaced by ~ for large J by the

g Here v e assume G(4m', s) 80. If 6 did vanish, we would ex-
pand it in a power series about (=4m' and retain the 6rst nonzero
term. In this ease, the term in square brackets of Kq. (3.12) has
a higher power.

9 I., Streit, Nuovo Cimento 23, 934 (1962).

If thclc ls no four-partlclc pl'odUctlon fol a langc of
s in the inelastic region, then G(4m, t) must vanish
identically since it is analytic in t and t varies with s by
Eq. (2.10).Then our derivation of Eq. (3.10) is incorrect,
and we shall have to expand 6 in a power series about
4m' with respect to its first argument atid retain the
first nonzero term. This process mill again lead to a result
slmllar to Eq. (4.9) cxccp't fol lllgllcl powcls of jRnd R

different h, and we shall be forced to conclude that the
term retained is also zero. Consequently, 6 must vanish
identically as a function of both its al guments. But

~ E. T. Whittaker and G. N. %'atson, Modern Analysis (Cam-
bridge University Press, Cambridge, England, 1.952), p, 302.



156 A M 0 U N T 0 F P R 0 D U C T I 0 N R E Q U I R E D I N S —M A T R I X T H E 0 R Y 1593

then the elastic-scattering amplitude A must vanish
identically by Eq. (1.23) since it has no imaginary part.
The same conclusion can be reached if Xi~os(2~4)
falls off with increasing J faster than any inverse power.
Thus if there is to be any scattering (and production)
at all, the four-particle production amplitude cannot
fall oB too fast with increasing J. A similar conclusion
holds for A q by Eq. (2.13).

The term X~ is suggestive of the expected threshold
behavior for a production. amplitude. For, looking at
the expression for X»,

Xi——1+[Bm's+4ms'I'(s —8m') g

X[(s—4ms) (s—16m') p' (5.1)

one sees that Iii grows at threshold (s= 16m') as kr ',
where kf is the Anal momenta of one of the produced
particles. However, our result does not constitute a
proof because Kq. (4.9) is strictly true only for (64/3)ms
&s&36m'. To extend the result to s=16m' requires a
knowledge of the behavior of the Landau curves for
s=16m' and t~~. Conversely, if one is able to prove,
say from quantum 6eld theory, "that endothermic pro
dlctioe processes do have the expected threshold be-
havior, then one may draw conclusions about the
behavior of Landau curves. "

The term J4 is a consequence of the two-sheeted
nature of A at the two-particle elastic threshold plus
the assumption that A grows at the expected rate at
threshold. If A grows more slowly [G(4m', t)=—0, etc.],
then higher powers of J are required to get a nonvanish-
ing limit.

If we assume, as seems likely, that the Landau curves
for production processes ahvays lie above the curve
Eq. (2.10) for any fixed s including s&36m', then Eq.
(4.9) is valid for all s& (64/3)m'. This is equivalent to
the statement that four-particle production dominates
six and more particle production in the high-J limit.
Taking the limit as s —+~ gives

lim limlii~J4og(2 ~ 4)
g ~op J~no

= 15m'(8ns4) 'G'(4m' 4ms) s'. (5.2)

The order in which the limits are taken cannot in general

"G. Roepstor8 and J. L. Uretsky, Phys. Rev. 152, 1213
(1966).

"See Appendix of Ref. 3.

be interchanged since the production Landau curves
are tangent to Eq. (2.10) at s= ~.is

The high-energy limit is peculiar since, by unitarity,
each O.J must satisfy

k'(47r) 'o.g&1 (5.3)

Evidently the introduction of the factor ) ~JJ4 changes
the asymptotic behavior. Note that )~~ 1 as s~~.
An example of a prescription satisfying both Eqs. (5.2)
and (5.3) is

0 J~ (Iii J4) '(a+bJ 'k') 'k (5.4)

jP ~P—2J (5.7)

Comparison of Eqs. (5.6) and (5.7) shows that only the
term with J=O contributes to the sum in Kq. (5.5) at
threshold. Thus G(4m, ', t) is in fact independent of t
Using Eq. (1.28) gives the explicit formula

G(4m', t) =mas(2 —+ 2; 4m'), (5.8)

where 00 is the elastic s-wave scattering cross section
evaluated at threshold. Combining Eqs. (5.8) and (4.9)
gives a direct relation between elastic and inelastic
cross sections.

"In the case G(4m', t) =—0, the power of s on the right-hand side
of Eq. (5.2) is increased. Of course, we al'so need a higher power
of J on the left-hand side.

i4, Y. S. liu, Phys. Rev. (to be published).

with suitably chosen constants a and b.
NoIe added ie proof. The main result, given in Eq.

(4.9), can be extended to give a direct relation between
inelastic and elastic cross sections by*the following con-
siderations: The functions F and G defined in Eq. (3.8)
are real for s real and near 4m', and t physical. ~ Com-
bining this result with Eqs. (1.17) and (1.23) gives the
relation

G(s,t)=M(8irk') 'P(2J+1) iA gi'Pg(z). (5.5)

The relation can be continued in t to de6ne G for ]
below the Landau curve given by Eq. (2.9). Now let s
approach 4m' while holding t Axed. As s approaches
threshold, A J (s) vanishes according to the power law

(5.6)

This result follows directly from the known analytic
properties of F and G when combined with Eqs. (1.7)
and (1.18).i'4 When I is fixed, Pq(z) grows according
to the inverse power law


