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A general method is developed for obtaining &st-order broken-symmetry sum rules for form factors
using the algebra of currents. It is found that these sum rules are the same as the corresponding ones derived
group-theoretically provided that the same or analogous physical assumptions are made in both methods.
jLhis is illustrated by R delivRtion of the Muraskin-Glashovf sUIQ rules for stI'ong baryon-Ineson coUpling
constants.

I. INTRODUCTION

'HIS paper describes an lnvcstlgatlon of thc in1pli-

catlons of having an octet of curTcnts or densities
forming part or all of a closed algebra, with the generators
of SU(3). Using a method which is a natural extension

of that used by Faustov' we obtain broken-symmetry
sum rules fox' thc forxn factols corresponding to these
currents or densities. This method is sufhciently general

that, it could be apphed to any form of amplitude and
to any broken symlnetry provided that the breaking
mechanism is known.

Contrary to expectation, we 6M, that the algebra of
currents wZ produce the same broken-symmetry suln

rules as earlier group-theoretical methods provided that
the ARM Of GAG/ogols physical assuInptlons ar'c xnadc.

In particular, wc show in Secs. II and, III tha, t the
spin-2+ baryon lnatrlx elements of scalar' and pscudo-
scalar densities satisfy five broken-SU(3) sum rules

which are Identical with the sum rules for strong-
interaction coupling constants derived by Muraskin and,

Glashow' from a standard group-theoretical technique.
The virtue of the current-algebra method. is evi-

denced, however, in its ability to incorporate diGercnt

physical assumptions and exhibit their CGects. For.

example, we show in Sec. III that in the case that the
nonzero divergences of the vector current' belong to
the same octet as the scalar densities we obtain one

additional sum rule (to the five above) involving E-type
densities only. In Sec. IV we show the CQect that.

di6erent dynalTDcal assumptions, such as the hypothcsls
of partially conserved axial-vector current (PCAC),
have on sum rules for strong-interaction coupling
constants.

In addition, we use our method, to analyze the results

of two other i~vestigations' of strong-coupling constants

~Partially supported by the National Research Council of
Canada.

1 R Paustov Nuovo Cjmento 4$ $45 (].9')' M. Muraskin and S. L. Glashow, Phys. Rev. 132, 482 (1963).
' This is the case in the quark model PM. Gell-Mann, Phys.

Rev. 125, 1067 (1962)g or simply when the breaking Hamiltonian
is proportional to a scalar density 58.' S. K. Bose and Y. Hara, Phys. Rev. Letters 17, 409 (1966);
R. J.Rivers, Phys. Letters 22, 514 (1966).

and comDMnt on the recent applications of scalar and
pseudoscalar densities in nonleptonic baryon d,ecays.

Finally, we point out further applications of our
method which are of physical interest and, in Sec. V,
discuss our results.

In «r analysis wc ~hall «ncentratc, without loss of
generality, entirely on scalar and pseudoscalar densities„
J& '(x), where a is a spherical SU(3) index. We assume
that the densities transform like an eight-vector even
in the presence of SU(3) breaking. This will be the
case, for example, when these operators form part or
all of a closed algebra with the generators of SU(3)
and may be mathematically expressed, by

$„("&being the F-spin vector current, and,

is an SU(3) Clebsch-Gordan coefficient as defined by
De Swart. ' DC6ning

D'"'(x) = 8„5'„& &(x),

we have formally'

Ql~&(0) = d'x e(—xs)D&~& (x).

We assume )s breaking of SU(3) and hence D&«&(a)

6 J.J. De Sveart, Rev, Mod. Phys. 351 949 I'1963}.
' Note that all matrix elements of D&"&

I,
'x) vill be taken between

stR'tes &1th Unequal energies.
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will have the same SU(3) transformation properties
as Q( &.

Taking matrix elements of (1) between physical
baryon states we obtain

d'«( «)&fbi(pi) I
LD" (s))~'B'(0))I&2(p2))

8 8 8
I&fbi(pi) I

~"'(0)
I &2(pm)), (2)

n P yi

where translational invariance has been invoked.
If we now introduce ki so that k~' ——0 and define

v=kipi/7Bi ——kip2/7B& then, fOllOWing the methOd Of

I'ubini et a1.,7 the left-hand side of (2) can be written
as F(O,LP), where

"Ai (v', 6') 1 "Air (v', &')
F( v~') = — dv' —— dv', (3)I

V VV V

A, =- P(2~)9(p,+k,—p.)
2 n

x&flilD" (0) I ~&&~l I'"(0) l~~& (4)

x &&il &'"(0)
I
~'&&~'ID'"'(o)

I f12&

&flil ~'" (0) I f12)=GB B '(~') ~i«2

where FBgB2("&(0)=rB,B, , the renormalization ratio,
and GB,B,B(LV) is the form factor for J(&&.

If we now set v =0, Kqs. (2), (3), and (4) lead to the
following relation:

We define the following matrix elements, between
spin--,'+ baryon states

&&&ID"(o) I f12&

8 8 8,= i(777i—m, )V3 FB,B,& &(6')uiu7
82 n Bg

where. A (v,h') is defined by the decomposit&on F(v,h')
=a,P (.,a)r+21(.,S)1'~ k,}~,.

3. DERIVATION OF THE FIRST-ORDER
SUM RULES-

We wish to obtain broken-SU(3) sum rules for the
form factors which will be valid to 6rst order in the
symmetry-breaking parameter P. Ke can therefore ig-
nore the ratios r&z~ which, by the Ademollo-Gatto
theorem, ' diBer from 1 only by a term of order X'. Since
ImAg, ~, I' is of' order 'A, we will take suitable linear
combinations of relations of the form (5) so that the
resulting continuum contribution is of order X', the
single-particle contribution remaining of order X.

Since D&~&(x) transforms as the nth member of an
octet we can consider it as the source current for a
fictitious "scalar meson, "

t and, similarly, consider
J't'&(x) as the source current for a fictitious "scalar or
pseudoscalar meson" xp for I'=1 or y5, respectively.
Thus we can set up an analogy with scattering ampli-
tudes that will provide an easy determination of the
suitable linear combinations. First, we note that AI
and Arr in (4) have a form analogous to the scattering
amplitudes in the s and I channels, respectively, for the
"reaction" 7rt&+82~1' +Bi. Thus, by changing the
variable of integration in the second integral in (3) to
(—v') we see that the continuum contribution in (5)
has the same SU(3) properties as an integral over the
sly of the s- and I-channel amplitudes. "The ImA~, ~, r'

will therefore obey the same SU(3) sum rules as this
sum of amplitudes. When SU(3) is broken such sum
rules will equal a quantity of at least order P . Therefore,
if we choose our linear combinations to correspond to
these amplitude sum rules then, since ImA~, ~, t' is
already of order ), the resulting continuum contribution
will be of at least order X'

The necessary amplitude sum rules were determined
by expressing the amplitudes in the direct channel. For
example, the matrix element &1&&'

I
LQ'e'&, Px'&j I 1V& gives

rise to the amplitudes

(EZ'I XK') =A 27'

n, n' (=B)

8 8 8,
V3 rB,„G„B,~ (6')

n o. Bg

for the s channel, and

(&E"
I
ft'If.")= (7/40)~ 27 + (1/12)& io"+ (1/12)A |p

+ (1/5)~8."+(1/3)~8."+(1/8)~ i"
8 8 8,—v3 rn'B ~GBgn'P (+2)
82 n e'

1 ImAB, B, B(v')dv'

8 8 8,= —v3 GB,B,"(~'),
v

' S. Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento 40A,
1171 (1965).

for the I channel. By requiring that the form factors
GB,B,&(&') be real (for real LV) we obtain a simple
relation between the SU(3) amplitudes for the two
channels: A e=A; for i=27, Ss, Su, 10, 10, and 1 and
A8e8a A8a8s and A8a8e —ASe8a

' M. Ademollo and R. Gatto, Phys. Rev. Letters 13, 264 (1964).' This is due to the presence of only one divergence in the con-
tinuum expression in (4).

"Note that the s and e amplitudes are evaluated at v and —y,
respectively.
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For the special case in which the scalar densities
belong to the same octet as the D& )'s, ' we have" in
addition that A8,8,'=28,8,', j=s and N.

The form-factor sum rules can be obtained most
directly by taking all possible matrix, elements of the
commutator t Q+,Jx'7= rsJ~—is&3J& together with the
matrix element of one other commutator; for example,
the matrix element of t

Q+', J&7=-',43J+' between the
states ~P) and

~

'). By eliminating the resulting con-
tinuum contributions, as described above, we obtain
the five sum rules

3Gzozo" —~3Giva, „Giv~.op4G„z,xs G.,z+~=0, (6)

These coupling-constant sum rules can also be ob-
tained from the analogous commutator to (1) for the
axial-vector current A „&&&:

8 8 8
t Qt ',A„&»(x)7= —v3 A„&»(x). (12)

rr f3 V

Taking the divergence, we obtain

LQ(~) As(P) (x)7+$Q(~) Ds(P) (x)7

8 8 8.q= —V3 ~D & '(x), (13)
rr P y/

v3G ozo~ +3G—-o- o~ .G„-O-.—o«„
+4Gzo-. ox'+Gz+z+'=0, (7)

where
Ds&» (x) = r)„A „&~& (x) .

3+~Gz'z 3v3Gss +4GNN +4G
+8Givz ~'+8Gz'=-' '+6&3Gz's =0, (8)

&3G~s ' &3Gzos ' —2Grvrr'+G—~zo '
2Gzo pIco Gz+~+w0 —Q (9)

+3G „OEO—QG '0 ~0 —2G, o„oxs 2G oEO

+G p 0IcO+G +z+a0 () (1Q)

In the special case in which the scalar densities belong
to the same octet as the D& "s we obtain ore addAioeat
sum rule:

ozO —S KO +3S oIB++3—S o.az0=0 (11)

where So,n, s(6') denotes the scalar form factor only.

4. APPLICATION

The most immediate application of our analysis is to
strong-coupling problems. With the single assumption
that the meson source density satisfies the commutator
(1)"we can rederive the Muraskin-Glashow' sum rules
for strong-interaction coupling constants since relations

(6) to (10) are identical with these sum rules. Since the
derivation of Ref. 2 was based on group theory our
result is closely analogous to the current algebra deriva-
tions" of the Gell-Mann —Qkubo mass formula.

Similarly, the assumption that the matrix elements
of the pseudoscalar quark density are proportional to
the corresponding matrix elements of the meson source
current, (&r~gys) ' 'q)Jfs)=C(%( J ' ')Bs), where C is
independent of n, will also lead to the Muraskin-
Glashow sum rules. It is interesting to note that
Mo6at" has found that this assumption leads to the
Johnson-Treiman relations in the high-energy limit.

"K.Tanaka, Phys. Rev. 135, 81886 (1964)."Similar assumptions are implicitly made by authors working
on the Lie algebra of strong coupling, cf. C. J. Goebel, Phys. Rev.
Letters 16, 1130 (1966).

"See Refs. 7 and 1, for example. It is interesting to note
that the method of M. Boiti and C. Rebbi PNuovo Cimento 45A,
475 (1966)g for calculating corrections to the mass formula could
conceivably be applied to these sum rules as well, should sufEciently
accurate data provide justification for such an extension.

.r4 J. W. Moffat, Phys, Letters 23, 148 (1966).

Matrix elements of the 6rst commutator on the left-
hand side of (13) have the same SU(3) properties as
the continuum contribution to the matrix elements of
the second commutator. It can therefore be eliminated
at the same time as the continuum and so will not
affect the sum rules. Thus, following the same analysis
as above and applying PCAC we obtain the five sum
rules (6) to (10) but with each coupling constant Gs,s,
multiplied by the factor C /rn ', where C and I are
the PCAC proportionality constant and mass, respec-
tively, for the o.th meson. Note that our sum rules are
taken at zero momentum transfer to avoid 6'-dependent
factors. If we now assume the universality principle"
CJr/mrcs ——C /nr '=C„/m„', we once again obtain the
Muraskin-Glashow sum rules. If, however, we do not
make this assumption we have two extra parameters
Crrtn '/C rnrr' and C„ns '/C ns„~, say, to be eliminated.
This correction and the first commutator in (13) make
up the contributions due to the mesons not belonging
to an 8-vector. After eliminating these two parameters
we are left with three nonlinear sum rules which will
thus exhibit fewer restrictions placed on the coupling
constants than are obtained in the group-theoretical
derivation.

Other methods of obtaining coupling-constant sum
rules have also been explored recently. 4 These investiga-
tions resulted in sum rules exhibiting more syrninetry
than experiment would lead us to expect. In the case
of Bose and Hara's work we suspect that the added
symmetry results from neglecting the first-order cor-
rections which would come from taking matrix elements
of the symmetry preserving part o-f the Hamiltonian
between physical states One can. in fact show, using

(12), that their method is inconsistent with PCAC in
that it is equivalent to neglecting important many-
particle intermediate-state contributions to the matrix
elements of some of the commutators. Consider, for
example, the matrix element

(14)

"See W. Krolikowski, Trieste Report IC/66/52 (unpublished)
and B. Renner, Cambridge Report, 1966 (unpublished), for a
discussion of this point.



Using the assumption of Ref. 4 that the symmetry-
breaking Hamiltonian is M&", where 5& '=gX& &q, we

find Qi «=t'XLSis«, Q&~«]o- r—'M~'«so that in this case,
the first commutator in (13) is identically zero. We
therefore obtain

If we take only the single-particle intermediate states
into account and use PCAC, we obtain the Hose and
Hara sum rule

where g~,~, is the Bj82 7i. strong-coupling constant.
Thus, these sum rules are obtained only at the expense
of ignoring the contributions from all other intermediate
states, including those belonging to the decuplet. It
does not appear that such an assumption can be
justl6ed ln any way.

In the case of River's quark-model method one has
octet dominance built in by the nature of the model
and hence one would expect the added symmetry from
the beginning. An assumption of dominance of the octet
intermediate states in our analysis is sufFicient to pro-
duce the sum rules predicted by Rivers.

Scalar densities have been used in nonleptonic decay
calculations by Riazuddin and Mahanthappa" and by
Gaillard. " Theoretical predictions for 5-wave decays
are made which are in good agreement with experiment
and which are based on taking the symmetry-limit
values of the matrix elements of the scalar quark
density. However, it is conceivable that SU(3) breaking
will provide contributions sufFiciently significant to
destroy the M = ~ rules and the I.ee-Sugawara triangle.
Our method provides a useful tool for investigating
these contributions and the assumptions necessary to
preserve the sum rules. We should note that this is
true for the current x current Hamiltonian" also.

Further applications of our analysis can be found
within the framework of the U(12) algebra. For ex-

ample, an investigation of the renormalization of the
leptonic decay coupling constants in broken SU(3) can

1~ Riazuddin and K. T. Mahanthappa, Phys. Rev, 147, 972
(1966).

'~ M. K. Gaillard, Phys. Letters 20, 553 (1966).
» See, for example, H. Sugar ara, Phys. Rev. Letters 15, 870

(1965);M. Suzuki, ibid. 15, 986 (1965).

be easily carried out. Such a study would be the current-
algebra analog and extension of the work done by
Kawarabayashi and Wada. " Also, with the aid of a
hypothesis of "partial conservation of tensor current'"
we could. use the commutators involving tensor currents
to investigate VI'I' and VBB coupling-constant sum
rules. Another interesting point is the type of sum rules
obtained when, instead of eliminating the continuum
contribution, we attempt to saturate the individual
matrix elements with just decuplet (and octet) inter-
mediate states. The results of these studies will be
reported in a separate paper.

S. DISCUSSION

We have reported a general current-algebra method.
for obtaining broken-symmetry sum rules to first order
in the breaking. Our analysis has demonstrated that
the sum rules obtained are just those that were previ-
ously derived group-theoretically, provided that similar
physical assumptions are made. The current-algebra
method has several advantages over group theory,
however: (1) It has greater applicability in that the
same basic sum rules are produced for the form factors
of any current or density; (2) it leaves much more room
for dynamical assumptions to be added as we demon-
strated with our coupling-constant example; (3) the
effects of the symmetry-breaking Hamiltonian and any
subsidiary dynamical assumptions become more ap-
parent; (4) higher-order corrections can conceivably be
calculated. "shouM experimental data make such calcu-
lations meaningful.

In order to obtain sum rules which diBer from those
derived, group-theoretically one must take advantage of
the latter three points as was evidenced in our example
involving the divergence of the axial-vector current.
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