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Multiparticle Production in High-Energy Collisions*
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The "incoherent-droplet" model proposed earlier is solved for the general case of multiparticle production
in high-energy hadron collisions. For small transverse momenta the result is equivalent to taking the in-
variant square matrix element to be

c t:xp[—(e/xko'l P q;2],
s=1

where q; is the magnitude of the transverse momentum of the ith 6nal particle, n is the total number of
particles in the final state, X is an increasing function of energy, otherwise unspeci6ed, and ko is a constant.
Independent of the choice of parameters in the model, it is found that in the high-energy limit two of the
heaviest final particles share equally almost all of the available energy. Parameters of the model can be so
chosen as to reproduce the experimental constancy of the average transverse momentum and the total
cross section. The simplest choice leads to the prediction that the average multiplicity increases logarithmi-
cally with the total c.m. energy. Illustrative examples of energy and angular distributions are given.

I. DtTRODUCTION
' 'N this paper we complete the solution of a phenom-
' - enological model proposed earlier' to explore the
idea of "incoherence" in high-energy hadron reactions.
The idea originated in an attempt to understand high-
energy p-p elastic scattering at large momentum
transfers, by imagining that the incident particles
"see" each other as collections of "bits" that act
independently and incoherently. We assume that these
bits mix thoroughly during a collision and redivide into
two outgoing particles. By assuming that the momen-
tum distribution of the bits is spherically symmetric in
the rest system of a particle, it follows immediately that
to another fast-approaching particle the distribution
appears ellipsoidal, containing a much higher proportion
of longitudinal components of momentum than trans-
verse components of momentum, Thus the model
naturally leads to a strong inhibition of transverse
momentum transfer, which seems to be in agreement
with experiments. In order that the maximum possible
transverse momentum transfer increase with energy,
the number of bits shouM increase with incident energy.
Thus we may look upon the bits as the potential number
of pieces into which a hadron can be broken up. The
harder we hit, the greater the number. The idea of
incoherent scattering may be contrasted with that of
coherent scattering, in which the incident particle sees
the target as an optical potential (direct or exchange).
While the latter is designed for forward or backward
scattering, the former is designed for scattering near 90'
in the c.m. system. In this sense the two pictures
complement each other.

The model can be extended immediately to multi-
particle production processes, for all we have to do is to
consider a redivision of the bits into more than two

outgoing particles. In this case there seems to be no
obvious theoretical reason nor experimental evidence
to impose u priori limits on the applicability of the
model. We can therefore assume with good conscience
that the model applies at all angles of emission of the
final particles, until proven otherwise.

We solve the model explicitly for small transverse
momenta of the final particles. The result is equivalent
to taking the invariant squared matrix element of the
production process to be

C exp q,2

where q; is the magnitude of the transverse momentum
of the ith final particle, n is the total number of par-
ticles in the final state, E is the total number of bits in
the initial state, and ko' is the mean-square transverse
momentum of these bits. It turns out that Ã and the
average multiplicity n are proportional to each other.

Because of the strong inhibition of transverse
momenta, phase space becomes essentially one dimen-
sional. In the high-energy limit this leads to a most
probable energy distribution in which two of the
heaviest 6nal particles each take up almost half of the
total available energy.

We do not attempt any detailed comparison with
experiments in this paper, but merely make use of two
pieces of experimental information concerning the
constancy of the average transverse momentum (q) and
the total cross section~:

(g) =400 MeV/c,

u...(p-p) =40 mb.

The 6rst of these facts imposes a restriction only on the
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quantity C in the squared matrix element. Choosing C
to have the weakest possible energy dependence, we
deduce from the constancy of 0-&,& that the average
multiplicity should increase logarithmically with the
total c.m. energy. This choice is arbitrary, but a
particularly simple one. The conclusion seems to be in
disagreement with experiments, but in our opinion not
ruled out by them, owing to the considerable experi-
mental uncertainties. Some illustrative examples of
energy and angular distributions are given later, but no
detailed comparison with experiments will be attempted,
for that requires careful analyses of the experimental
data and numerical calculations in the model. We leave
this task for the future.

II. THE MODEL

Ke adopt without change the "incoherent-droplet"
model of Ref. 1, which is recapitulated here in a form
suitable for multiparticle production. The reaction
considered is

&i+&2~&i+%+ +&~)

in which all participants are hadrons, stable or unstable.
The total energy is supposed to tend to in6nity. The
reaction must be a "true" e-body reaction, in the sense

that none of the final particles are decay products of
unstable particles that were emitted in an earlier stage
of the reaction. We always describe the reaction in the
center-of-mass system, with the following notations:

8'= total c.m. energy,

M;=mass of A;, (i= 1, 2),

groups, arbitrary except for the requirement that the
4-momenta of the bits in these groups add up, respec-
tively, to I'», , I'„„,which have been prescribed. The
transition rate 5R for reaction (1) is taken to be the
number of ways in which such groupings can be made,
divided by n~, the total number of groupings possible.
It is through the normalization factor e~ that we supply
the information that there are e and only e particles in
the final state.

We have ignored the effects of spin and other quan-
tum numbers. The rationalization is that the exchange
of these quantum numbers between diGerent "parts"
of the two initial hadrons is relatively easy, compared
to the exchange of energy and momentum, so that it
would have a relatively mild eAect on the differential
cross section. A refinement of the model to include these
eGects might be indicated if the present crude attempt
works.

The counting problem involved in calculating 5R has
been solved in Ref. 1. For large Ei, E~, the result is

n—1 n—1

»mr=-p ~;P,+g»(~-L1+Z eW(l, p)j}, (4)

where A; I'; denotes 4-vector scalar product, X;„ is a
4-vector to be specified later, and (Pi„,. . . ,P„ i,„)
refers to m —1 of the final 4-mornenta, chosen arbi-
trarily. The summation over p denotes a sum over all

the 4-momenta p„of the E bits. The ri —1 4-vectors X@

are determined by the conditions

P,„=Pp„exp'; p)/(1++ exp(X; p)),
m;= mass of 8;, (i = 1, , n),

P;„=(P;,E;)=4-momentum of 8;, (i = 1, , I). We have by de6.nition
(i=1, , e—1). (5)

The basic assumption is that A ~ and A2 see each other
as collections of "bits." Thus A; is supposed to be
composed of X; bits, each with a definite 4-momentum

p„, whose sum should equal the 4-momentum of A;.
There is otherwise no restriction on p„, which may be
spacelike or timelike. We do not specify in more detail

about the nature of these bits, nor do we necessarily

regard them as intrinsic to an isolated hadron. As used

in the model they are properties of the initial two-body

colliding system only. In fact we require S& and E2 to
increase with S', so that S;—+ ~ in the high-energy
limit. The total number of bits,

1V=1Vi+E2,

is a Lorentz invariant characterizing the initial state.
The model consists of a recipe for obtaining the

differential cross section of the final state. During the
collision the bits are supposed to mix freely without

change in their individual 4-momenta. To produce the

final state the S bits are divided into e nonernpty

Q y=0, Q po=W,

and energy-momentum conservation is implied by (5)
in the form

In the limit cV, ~ ~, the summations in (4) and (5)
may be replaced by integrations over the 4-momentum

distribution of the bits. Let the 4-momentum distri-
bution function for A; be denoted by N;f;(p) in the

c.m. system, with

d4p f'(p) =1, (i=1, 2)
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We require that under a Lorentz transformation, which
takes p„ into p„', the function f; goes into f, with

f;(p)=f (p'). We further assume that f; becomes
spherically symmetric in the 3-momentum when it is
transformed to the rest system of A;. Let g;(p) denote
this spherically symmetric function. Then

(9)

where p„—+ p„' is the Lorentz transformation that takes
A z from the c.m. system to its rest system, and p„—+ p„"
is the corresponding transformation for A2. Through
these Lorentz transformations the spheres of constant
momentum in g, (p) are transformed into ellipsoids with
major axes along the incident direction. In the limit
W~ ~, therefore, f; contains overwhelmingly more
longitudinal components of momentum that the trans-
verse components. It is clear that our recipe produces
final particles that rarely have large transverse
rnomenta.

With summations replaced by integrations, (4) and
(5) read

ln5E= —Q X; P,+ d p (Xgfg+Qpfp)

n—1

eGects oversimpli6ed in our treatment would be
phenomenologically taken into account through ro and
~. For the model to be self-consistent, however, oo and
I{: must vary with energy much more slowly than 5R, if
at all.

It is clear that 5K serves as an invariant squared
matrix element. Consistency demands that invariant
phase-space elements be employed, as done in (12).

The identity of Anal particles becomes relevant when
we integrate (12) over regions of phase space. In a
correct theory, phase space should be reduced by a
factor 1/I! for each group of pp identical particles in the
6nal state, while simultaneously the matrix element
should acquire extra exchange terms. We shall assume
that (12) is not changed by the presence of identical
particles. This implicitly assumes that all exchange
matrix elements have the same sign and magnitude as
the direct matrix element, so that all factors nf cancel.
The ultimate correctness of this assumption can be
established only if we are able to derive the model from
a more fundamental theory.

GL GENERAL SOLUTION

We set up rectangular coordinates in the c.m. system
and let the x axis lie along the incident direction. The
first task is to show that as 5' —+ ~

)&ln{n '(1++ exp(X; p)]), (10) 0(EW) ', X;p 0(XW) '. (13)

P;„= d'p (N~f~+Epfp)p„e px(); p)/

(1+K. exp(4" p)). (11)

We expect X; to depend on the nature of 3;,whether
it is a proton or pion, etc. To ensure time-reversal
invariance in two-body reactions, it is sufhcient to
assume that for the same energy hadrons having the
same quantum numbers conserved by the strong
interactions have the same S;.We found in Ref. 1 that
X~, Xp for a p-p initial state should be proportional to
W. This is based on experiments below 30 BeV/c, and
does not rule out a diferent dependence on lV at higher
energies. In the theoretical developments we assume no
special 5" dependence, but require only that S&—+ ~,
Xp-+ ~, with 6nite E~/Ep, as W~ ~.

The differential cross section for reaction (1) is taken
to be

d Pi n

dp =0pK '"+'D '8'(p P;)8(W—p E~)OR, (12)
g=l

where 0.0 is of the dimension of area, and ~ is of the
dimension of energy. They may both be functions of t/I/',

and may depend on the nature of A j. and A2. In fact any

The qualitative reason is as follows. The quantity
exp(X;,p, ) may be regarded as the probability that a
bit possessing longitudinal momentum p, is chosen to
go into the final hadron 8;. Because of the preponder-
ance of longitudinal mornenta in the distribution
E&f&(p)+1Vpf&(p), 8; would almost certainly end up
with an enormous longitudinal momentum violating
energy conservation, unless we correlate the choices,
such that a chosen p, is almost always canceled by a
simultaneous choice of —p, .This requires exp(X;,p,) = 1
hence X;,=0. The reason for a small );0 is similar.

To prove (13) we start with (11) and change the
variables of integration. In the term involving 1V~f~ we
let p„—+ L~p„, and in the term involving Npfp we let
p„~ Lpp„, where Lr and Lp are, respectively, inverse
Lorentz transformations to those in (9). After this is
done (11) becomes a sum of two integrals containing,
respectively, the functions g& and g2, which are spheri-
cally symmetric in 3-momentum and are independent
of TY. The integrands are positive-de6nite. For P; and
P;0, the two integrals mentioned are proportional to
ES', where the factor W arises from the Lorentz trans-
formation. Since ~!P;,! and P;p are bounded by W, and
since by assumption E—+ ~, the integrands must
vanish as W —+ ~. By inspection we see that this is
possible only if (13) holds. By expanding the right side
of (11)in powers of X;, and X;p, and retaining only linear
terms we find that ); aoR X;0 are solutions to a system
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of 2(u —1) linear algebraic equations:

n-1 I'„
g,.~(+) g.„(—) — k.(—)

gg gg g

.&s W~ ~,
I q;I/W approaches a Qnite limit. Hence

g; can depend on W only through the combination
iV/W.

By rotational covariance a solution to (22) must have
the form

n—1 Xyp E.
(i,.„(—) ~,„(+) f, (+)

~y

0'= E D' (qi, ,q--i)q;, (23)

(i= 1, , u —1), (15)

vrhere a;I, (+), b;&+) are finite constants independent
of F'

2 E2
d p f—o+ Ri {p* po)—

iV M2 3fg

XL8;.(1+2;)- . .3/(1+2 ), (16)

b,"= d'p (goagi)n;/(1+ Q nP),

n(—=exp (X(opo+X(@pe) ~

By (13) we have )(;P;,-0(&-') and X,oL' 0(&-").
Therefore, all longitudinal and time components of X;„
and P;„drop out of (10),and the problem reduces to one
in the transverse plane (the y-x plane). Let all vectors
be decomposed into longitudinal and transverse
components:

P,=%P,.+q, ,

O.,=ik;,+g;,
p=~p, +k.

IV. TWO-BODY REACTIONS

The case u= 2, corresponding to Hi+2 2
—& Bi+Bo, is

pRltlculRlly simple. I ct thc reaction take plRcc ln thc
x-y plane, and let I' be the incident momentum, 0 the
scattering angle. When 8' is much larger than the
particle masses, P may be repla, ced by W/2. The
transverse momentum transfer is

~ q ~

=P sin8=--,-'W sin8. (25)

where Bs~ ls R scalar function. Thc sct of s 1 equations
(22) is invariant under a simultaneous permutation of

(qii ' ' ' )q~ i) aii(i (gi) ' ' ',g~ i). Let P be a peiiiiutaiioil
that takes (l, ,u —1) into (Pl, ,P(u 1)).—Then

Dp(»j(qb' ' ')q~—i) D~i(qJ''4' ' '~qi'(& —i)) (24)

Therefore, among the (u —1)' functions D... only two
Rre independent, e.g. , D~l Rnd Di~. Choosing i= j= j,,
Rnd choosing I' to be any permutation that leaves 1
fixed, we see that Dii is synunetric in (qo, ,q„).
Choosing i =1, j=2, and choosing I' to bc any permu-
tation that leaves 1 and 2 fixed, we see that D~~ is

symmetric in (qo, ,q„).
Further developments of the solution will be carried

out for special cases.

Further dc6nc a transverse momentum distribution
function;

G(k„)= dk, F(k„'+k.'), dk G(k) = 1. (26)

Qc

P(k') =-
PT

dp dpo L.~~' f (p)+~~ f (p)j
d'k P(k') = 1, ("0)-

G(k) is an even function independent of W. Now {21)
and (22) can be reduced to

4iV 2n
in5K= —-', PWsin8+ duG —lncoshu, (27)

0

where k'= p,'+p„'. The W dependence in fi, fo is taken

away by the integration, and Xi/S, So/S are inde-

pendent of W by assumption. Therefore F(k') is
independent of W. We can now write (10) and (11) in
the forms

n—1

in5K= —g g;.q,+X d'k F(k')

Xin(n Ll+ P exp(y,"k)]), (21)

P' sin8=
8&V

1'V

2Q
dM G —I tanhu.

) p
(28)

k(sin8) =P sin8 1— du G(2u/P)ln coshu

The parameter P is to be ehminated from (27) with the
help of {28).By definition G(k) &0, hence P&0. We can
rewrite (27) in the form

1n9R = —Wk (sin 8),

q, =E d'k F(k')k exp(I); k)/(1+ 2 exp(y "k)),

(22)
du G(2u/P)u tanhu . (30)
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The diRerential cross section is given by

d&/did 20. e
—Wh (sin 2) (31)

Treating (21) in the same approximation yields

Eo=3'/W—, (32)

k22=—4 dk k'G(k)
0

d4p (~ij.+~v2y2)(p, '+p.'), (33)

The function k(sin8) is positive-definite. It can depend
on W only through the combination X/W, and depends
on 0 only through sin8. Thus at fixed 8' the di6'erential
cross section is symmetrical about 8=2r/2. The model,
however, is not valid near 0=0, x, where we know
physically that coherent scattering dominates. At 6xed
0, 5K generally decreases with H/'. It decreases ex-

ponentially with TV if and only if X~ TV.

In Ref. 1 (where 2V was written as 2V/2) detailed
calculations were made assuming G(k) to be a Gaussian
distribution. Comparison with p pscatt-ering at 13—30
BeV/c at large angles led to the conclusion that X~ W.
Defining the constants

lnOR= — P ( q;(2.
Ekp2 j-l

(38)

The validity of the approximation is restricted by the
condition k2~ g;~ &&1, or

(222/Ekp)
i q;—q, i «1, (39)

P;= (x;,q;,p;),
E,= (x22+ q22+22222)'~2.

(40)

for all pairs 2, jof final particles. Since (38) indicates an
extremely rapid decrease of the diGerential cross section
for large transverse momenta, the approximation is
adequate for most calculations, except when we
specifically constraint the transverse momenta to be
large, which we shall not do.

I.et us introduce cylindrical coordinates about the
x axis, and let x;, q;, P; denote, respectively, the x
component, transverse component, and azimuthal angle
ofP;:

The differential cross section for the production of e
where M is the proton mass, we found that a fit to
experiments can be achieved by choosing

(kp/M)2= 1/32Vp,

&r2=60 mb/sr. (35)

dory' ' 'dXn

gl ~ ~ od g
gl ~ ~ eg

Xp was not precisely determined, but it should be of the
order of 10. In later applications we arbitrarily choose
&o=6.

V. MULTIPARTICLE PRODUCTION
1. Differential Cross Section

We now consider e)2, and assume that our model
applies to regions of large as well as small transverse
momenta.

The region of large transverse momenta, being much
more dificult mathematically, and much less likely to
be reached in experiments, will not be considered in this
paper. If all transverse momenta are small, then all g;
in (22) will be small, and we can approximate (22) by
the linear equation

n n n

X8(p x,)82(p q;)5(W—p E;)0.2~
—'"+'OR, (41)

where OR is given by (38), q; is the two-dimensional
vector (q;,@;),and d'q= qdqd4.

2. Integrated Cross Sections

Because of the strong suppression of transverse
momenta by 5R, particles prefer to be emitted within
small forward and backward cones. Since 5K depends
only on the transverse momenta, the longitudinal
momentum distribution is determined mainly by the
phase-space volume in a one-dimensional relativistic
phase space, defined by

Xk2~ 1
2;= l2;—Z2),

222 k n 2-2
(36) r„(W)=

where

dSi' 'dS n

b(gx;)8(W —Q E~), (42)
jul . . ~ jV„ i=1

(x 2+g 2)1/2

6 = (q 2+222')'"2n
(q*—q'.),

Ãkp'
(37)

Clearly r„(W2) =0 for W(U„, where

where k2 is the same constant defined in (33). Solving
for Ii;, we obtain

(43)
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ox loe The threshold behavior of I'„(W') for general ii can
be obtained by induction, using (45) and (48):

/

I

I
I
I

2 I

I

I

lo lO'

N (BeY)

lo lO'

F (Ws) (2~) (n—i)/2(W P' ) (n—s)/2
W~Urt.

s—i n n

[Z ~'j'"[II ~,]'" (52)
i=1 g=1

The asymptotic behavior of I'„(W') for general I
can be obtained as follows. The substitution xi
=-', [u;—(/) p/u;)] reduces (42) to

Pro. i. Total longitudinal phase space volume I'11($") for 11
6nal particles at total c.n). energy W, with i(/p+m;sl'/i=1 BeVjc,
where qi and mi are, respectively, the transverse momentum and
mass of the ith particle. Solid portions of the curve represent the
threshold and asymptotic approximations (52) and (55).

is the effective threshold energy. The formula (42)
represents the total phase-space volume for e particles
of respective masses ~; moving along the x axis, with
total energy-momentum (W,O). The expression, how-

ever, is invariant under a Lorentz transformation along
the x a,xis. Therefore, I'„(W') is also the phase-space
volume for total energy-momentum (W',E') satisfying
1/I/" —I"=g'. Using this fact we easily establish the
recursion formula

I'„(Ws) = 2
dN1

6, 1 /O' I]. ~n'yW Nn

n n

XI)(W—P u, )I) W—P . (54)
i=l Ni

dl '''ds n
I' (W')=2 — 8(W—P u, )l) W—P

0 g] i=l i=1 I;
(53)

The range of each u; is restricted by the 6 functions to
lie between hP/W and W. Therefore, we can also write

as tV —+ ~ for fixed m, Ni can be neglected in the argu-
ment of the first 5 function unless it is of order 8", and
it can be neglected in the argument of the second 5
function unless it is of order 8' '. To calculate the
leading asymptotic term we consider three possibilities
for each u, : (a) it is retained in the first 8 function only;
(b) it is retained in the second 8 function only; (c) it is
retained in neither 5 function. The leading asymptotic
term is obtained by retaining only one Ni in each 8
function. The result is

r„,[(W—Z„)s—x„s). (45)
(x 2++ 2)1/2

Changing the variable of integration to the energy
Z~„= (x„'+II„'+/)r„')'/s, and remembering that I'„ i(W')
=0 for 5'& U„1,we have

I'„ i (W' —2WE„+6„'),
(gq 2 g 2)i/2

I'„(W )=2

where
1 n—1

a„= [W'+b, „s—(Q d;)s].
2W i=1

(4&)
We note that this is independent of transverse momenta
and. masses. The scale for tV2 in lnIV2 is not significant
until we calculate I' (W') to order W '.

The general feature of I'„(W') for is&~4 is then as
follows. It is zero at threshold, , but rises rapidly, passes
through a maximum, then decreases at large tj/' essen-
tially lik.e H/ '. The maximum lies in the asymptotic
region if /r is sufficiently larger. According to (54), it is
a,t W=exp-,'(u —2). The unfamiliar feature that the
phase-space volume decreases with energy is due to the
one-dimensionality of the problem, plus the use of
relativistic phase-space elements dx,/E;. For illustration
Fig. 1 shows I'ii(W') for 6,=1 BeV, (i= 1, , tr).

Our method of deriving (54) also reveals the most
probable distribution of longitudinal momentum in the
limit 8' —& ~, to wit, two of the Gnal particles have,
respectively, u, =W, and u, =AP/IF, while the rest of

For /i= 2, 3, I'„(W') can be calculated exactly:

I"r(W') =4[W' —(~i+~s)'j '"LW' —(~i—~s)'j '",
(4g)

I' (W') = 16[(&—/)„)'—(~,—~,)sj-'/'

X[(&+&s)'—(&1+&s)'] '"X(k), (49)
where

K(k) = dp (1—ks sins') '/s (50)

[(W-&.)'—(&.+&.)'1[(W+~s)'- (~.—~s)')
k2=—

L(W—~s)'—(~i—~s)'j[(W+ ~i)' —(~i+As)'1

(4g 2B (is 1) — 1
p (Ws) & (lnW2) n;2 1+0 (55)

W-+oo tg2 lng'2
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H'( xk,')" '
(56)

the particles have neither of these properties. This
means that two of the particles have longitudinal
momenta= +W/2, while the rest of the particles have
longitudinal momenta small compared to 8' but large
compared to 1/W. Thus for W sufficiently large, the
two particles mentioned travel in opposite directions
along the x axis, and equally share almost all of the
available energy. Closer examination shows that these
two particles are the heaviest particles among the final
particles. The criterion for 8' to be large is in@'&)e,
where H/" is measured in units of some typical particle
mass.

The asymptotic cross section for production of n
particles is obtained by integrating (41) over all phase
space:

kp/ep«1. (65)

The longitudinal momentum distribution for the ith
particle, when q&2, ~ ~, q„2 are 6xed, may be read
from (45): r„,[WP—2W(xP+~P)»P+~P]

(~,2+g .P)& /2P (Wp)
I.„(a,; qg, ,q„)=

(66)

When averaged over many events at the same energy,
we have

(q)=-,'kp(nX/n)' '=-', e'/'ep, (64)

where we have assumed n))1, and where (58) has been
used. The criterion (39) for the validity of the basic
approximation requires (2n/Xkp)(q)«1, or

where
/(p ——e/(2 lnW).

Note that F„~vanishes for
(57)

(x~+h~)'/P) (2W) '[W'+h~ —(Q 6)']
The average multiplicity n is the value of n that
maximizes o „.

n=—

Near n= n, o.„(W) may be approximated by

o „(W)=o „-(W) exp[—(n —n)'/2n],

o -(W) = o p(n —1)(ep/W)' e"='.
where

(60) ~(+&)[WQ 2W(gp+qp+m2)1/2+q2+mp]
I..(x; q)=

I' '"'(W') (x'+m'+q')'/PWe see that fluctuations about e=n are rather large for
S(100, so that n has only qualitative significance for
these cases. To estimate the total cross section we
integrate (59) over n nfrom —pp to + p-o, obtaining

7

(67)

where m is the mass of the anal particle being con-
sidered, and

Thus I.„(x;)depends on masses and on qP, , q„'. Over
(58) most of the ran. ge of x;, however, we may replace F

by its asymptotic form, and (x +6 )'" by ~x;~, and
these dependences drop out. We shall approximate
F„(W') by its asymptotic form F„("(W'). Then I.„

(59) depends only on quantities associated with the same
final particle:

og,t(W) = (2sn)'/Pa„(W)

Kp)
=o() —

~

(2sn)'/P(n —1)e"=' (61)
t/I/')

n —1 Xko'

(Eq T„(q)=1.

(62)

The average transverse momentum is

3. One-Particle Distributions

The distribution of transverse momentum for the
ith particle can be obtained by integrating (41) over all
coordinates except q;. The result is independent of i:

T„(q)=2c„qe '"",

2n. (n —1) W'i "-'
I'„(")(W') = ln

m', &

(68)

where, for convenience we have arbitrarily supplied a
scale factor mP in the logarithm. The range of x in (66)
is taken to be

O& ~x~ &W/2. (69)

($2—wP)~/P T (q)I ((E2 q2 m2)1/2 ~

q)

(E' q' m')'"— —I„(E)=2E

(7o)(g 2/4—m2) 1/2

In actuality the upper limit should be smaller than
indicated, by a quantity of the order of particle masses,
and near that limit (67) is inaccurate; but our approxi-
mations are good enough for qualitative purposes.

Using (67) and. (62) we arrive at the approximate
energy distribution I„(E) and angular distribution
A „(8) for a final particle of mass m:

~x~—j. »2

(q)= dq qT-(q) = pkp
A„(8)=

(63) p

dy yT„(y sin8)I. (y cos8; y sin8) .

(71)
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100 .—
given by

n+1nk(n —1)(2orn)'"j —.- 2 ln(W/ao)

IO—
X

/ o
O~p'x p

pWI

I
I t I I I III

I IO

X

p~ ~
0

I » tv i&I

102 IO~

W/M

IOsIO4
s lgggl I i I 1 I I II

ol
n+ln[(n —1)n'"j - 2 ln(W/3f)+1, (75)

FIG. 2. Average multiplicity as a function of total c.m. energy
W, based on the choices of parameters of Sec, 6, which are some-
where arbitrary. The dashed curve on the left is based on experi-
mental fits of p-p elastic scattering at machine energies. The
dashed curve oa the right is an asymptotic curve. The experimenta
points 0 are taken from Ref. 2, and the points X are from
Hansen and W. Fretter, Phys. Rev. 118, 812 (1960).

0

These are not exactly normalized, for the approxi-
mation leading to them does not preserve normalization.
As unnormalized distributions, they are accurate except
near the ends of the ranges of E and 0, where they have
only qualitative signihcance.

VI. ILLUSTRATIVE EXAMPLES

For illustration we choose a tentative set of param-
eters for the model and work out some predictions for
pp-initiated reactions.

I

I 2 3 4 5 6 7 8 9 10 I I 12 13
E (BeV)

FIG. 4. Illustrative energy distribution for ii final particles of
1 BeV mass, at c.m. energy W =25 BeV. The curve for 8"=100
BeV is not significantly diferent when properly scaled. The two
vertical lines at 8=5, 7 marked of'f two areas each approximately
equal to 1/11 of the total area under the curve.

0.2—

b

I I I lllll I I I I illll I I I I Illll I I I I I III
where 3I is the proton mass. Thus n increases approxi-
mately logarithmically with t/I/" for very large 8", and
so does 1V, according to (58).

At lower energies (W&10 BeV), n should increase
linearly with W, as indicated by (58) and (32). Since 8
should extrapolate to zero at H/'=2M, we take in this

O, I—
An (GV/}

n = lI

102 10' IO4

FIG. 3. Illustrative cross sections for a reaction
leading to n final particles.

ao ——500 MeV/c.

Taking (q) = 400MeV/c for all energies we find from

(64) that
(72)

O

With this, the condition (39) for the validity of the

ba, sic approximation becomes

(73)

For a pp initial sta, te we take the asymptotic total cross

section to be 40 mb. Then (61) imposes a relation be-

tween o-0 and n. The simplest assumption is to take Gp

to be a constant, the same constant as (35). Then n is

I I

0 IQ 20 30 40 5Q 60 7Q SQ 90
go

FIG. 5. Illustrative c.m. angular distribution for 11 final par-
ticles of 1-BeV mass, at c.m. energies 8"=25 and 100 BeV. The
distribution is symmetrical about 90'. As 8' —+ ~, the forwar
peak tends to a 8 function.
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region
kp 'Sp 3W

n= -— (W—2M)=- —2 ~.
e ~p M 2 iV

(76)

To determine X we arbitrarily take Ep ——6. Thus for
moderate energies

E=6W/M,

and asymptotically

%=5.2'. (78)

The two limiting behaviors (76) and (75) are shown
in Fig. 2, together with some experimental points taken
from Ref. 2. The apparent disagreement between the
experimental data and the asymptotic curve does not
necessarily mean that our assumption of a constant ap

must be abandoned, for the experimental values of 8
are subject to large uncertainties. Apart from the fact
that fluctuations about n are large, uncertainties may
arise because (a) a good fraction of the final particles
may be decay products of unstable particles produced
in the reaction; (b) in reactions with complex nuclei as
targets, more than one nucleon in the target may be
effective in producing particles; (c) a, jet observed in
cosmic-ray experiments may in fact be a superposition
of an original and a number of secondary jets. These
effects tend to increase the apparent n.

The cross section 0„(W) for various m are shown in
Fig. 3. It is seen that at given energies many values of e
have comparable cross sections, so that the average

multiplicity, though given a precise mathematical
definition, has only qualitative physical meaning.

The approximate energy distribution according to
(70) is plotted in Fig. 4 for 11 final particles of mass
1 BeV, at 8'=25 BeV. The curve for 8'=100 BeV,
suitably scaled, is indistinguishable from this except
near the ends of the range of E, where it is slightly
diferent. If we divide the area under the curve in Fig. 4
into 11 disjoint vertical strip of equal area, then on the
average each strip is "occupied, " by one particle. The
two strips of highest energies are marked off in Fig. 4.
If we take the centers of these strips to correspond
respectively to the most probable energies of the two
most energetic particles we obtain an "inelasticity
parameter" of 40%%uq. This parameter decreases with W
roughly like (lnW) '.

The approximate c.m. angular distribution according
to (71) is plotted in Fig. 5 for 11 final particles of mass
1 BeV, at W=25, 100 BeV. The curve is symmetrical
about 90'. The general features are that between 90'
and 30' the distribution is nearly isotropic. Between
30' and 10' the distribution favors small angles, and
between 10' and 0' there is a very sharp peak, which
tends to a 8 function as lV —+ ~ . The sharp peak reflects
the fact that two Gnal particles, traveling in opposite
longitudinal directions, equally share a good fraction of
the available energy. Apart from the sharpening of this
peak, the distribution is insensitive to lV.
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