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The large | q| behavior of ¢1(k—q)| gy=w.x=0 is clearly
controlled by the constant term on the right-hand side
of Eq. (7), [2M1(fo)—Fo(fo)]. However, because of a
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which depends® on ko; therefore the subtractions in-
dicated in the computation of M (k; ¢1) from M (k; 1)
[see Eq. (2)] cannot produce a finite result for M(%; ¢1).

This result when coupled with Eq. (5) completes our
proof that the power-series-expansion solution of Eq. (1)
fails in fifth order of the coupling constant.

It is a pleasure to thank Dr. Robert N. Hill for a
helpful discussion.

cancellation between positive- and negative-frequency
terms, the large | q| behavior of J (¢,k) is not controlled
by the above constant term, but instead is controlled
by the C term of Eq. (7). Thus,

T (g ko) —— —2CTIn(| a| /m) I/ kol 4]}, (9)

3Tt should be noted that the inclusion of higher-order terms in
Eq. (7) cannot alter Eq. (9).

PHYSICAL REVIEW VOLUME 156, NUMBER 3§ 25 APRIL 1967
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The implications of off-shell unitarity for the system of two spin-} particles are examined. It is found that
unitarity and time-reversal invariance imply a parametrization of the half-off-shell scattering amplitude
which is identical to a formula previously found from a potential model. The amplitude is expressed in terms
of the on-shell phase shifts and additional real quasi-phase-parameters.

N recent papers' a parametric representation was
given for the half-off-energy-shell element of the
proton-proton scattering matrix. This representation
was derived from potential theory, and describes each
partial wave in terms of the on-shell phase shifts and
mixing parameters, together with additional real
numbers called quasi-phase parameters. The purpose
of this paper is to show that the parametrization found
is a consequence of off-shell unitarity and time-reversal
invariance for a system of two spin-3 particles. We also
give a simple derivation of a factorization theorem
discussed recently by Kowalski? for the full-off-shell
amplitude.
The general transition matrix 7" is defined in terms of
the kinetic-energy operator K and the potential V by

T(E)=V[1+ (E+ie—K—=V)V]. )]

The matrix elements of 7'(E) between initial and final
plane wave states ¢p; and ¢p, are related to the center-
of-mass (c.m.) M matrix by

(pr; | T(E)| gp)=— (4aw) " M (K J)&* (P, —Py) . (2)

Here P; (P)) is the initial (final) momentum, E is the
total energy, and k (k') and «?/2u are these quantities
in the c.m. system; u is the reduced mass. M, is a 4X4

* Partially supported by a grant from the National Science
Foundation.
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2 K. L. Kowalski, Phys. Rev. 144, 1239 (1966); C. Lovelace, in
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matrix if the interacting particles have spin 3. Only the
on-energy-shell amplitudes, for which k=k==Fk/, are
measured by elastic-scattering experiments. Double-
scattering processes involve half-off-shell elements for
which either k=%5£%" or k=Fk’#k. It is well known that
these can be calculated from a potential model by
integration over the potential. Full-off-shell amplitudes
appear in higher-order processes, and cannot be directly
calculated from a potential.
The unitarity condition expressed in terms of M is?

Fi[M (k' k) — M (k)]
= (K/47r)/dﬂ MIAK M, (e k), (3)

where Q describes the direction of .
Consider first the case of the singlet states. The singlet
element of M can be expanded in the form

1 /
M) =—F (2 !

w1l

)a“(k',k)Pz(l%"k), 4)

where P, is a Legendre polynomial. Equation (3) then
becomes

a (B k) ta(k,k’) = —a*(k k) (k,k) . 5)

For simplicity we suppress the index I If x=k=F/,
this equation implies that

a, (k,x) = 21¢%° (0 sind® (k)

(6)
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for some real phase shift &, which is the standard
condition of elastic unitarity. For k=%>%%’ we have

o (B 6) Fae (k) = —a* (# Wacler), (7

which is the balf off-shell unitarity condition. If
time-reversal invariance is imposed, we have a,(k,k")
=a,(k’',x), so that the left side of Eq. (7) becomes
2 Rea, (%' k). Thus the equation implies that the phase
of a,*(k' k) is opposite to that of a,(x,x), and

a (B k) =2ie?® WA 2 (B k). (8)
Here A® is a real number called the singlet quasi-phase-
parameter.

For the triplet states,® the M matrix is expanded in
terms of spherical harmonics of the angle between k
and k’. We consider a particular total angular momen-
tum j. The states for which the orbital angular momen-
tum / is equal to 7 do not mix with the states /= j4-1.
Therefore the argument used for the singlet state

=21

cosZe %~ sind_+sinZe e®+ sind,.

sine cose(e®® sind_— e+ sing, )
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applies and the scattering amplitude takes the form
21 exp[16 (k) JA( (¥’ k), where 6 is the standard triplet /= j
phase shift.

For the mixed states /= j41, a becomes a 2X2
matrix with rows (columns) corresponding to initial
(final) states /=j—1 and /= j+41, respectively,

alt (B k) al2(R «
( ( )>' )

aK(k',x)=<
al (K k) a (k)
On the energy shell, time-reversal invariance implies

a?=q?, but in the general case the matrix is not
symmetric. Time-reversal invariance implies

a,‘(k’,k) =aKT(k7k,) . (10)
Thus, instead of Eq. (7), we have
a (B )+ (k' x)=—a, (B x)a(kK) . (11)

The on-shell expression for «, if we use the Blatt-
Biedenharn parametrization, is

(12)

sine cose(e®®- sind_— e+ sin6+)>

sinZe - sind_- cos?e e+ sind

Here e and 6. are the mixing parameters and the /= j-=£ 1 phase shifts, evaluated at energy «*/2u. If we put Egs. (9)
and (12) into Eq. (11) we find four equations, which imply that the quantities

Ligit- (1% 421 tane), Lieid+ (all* —o2* cote),

Liei-(a* 4 al2* cote), Sie+(a®* —al* tane),

are real. Here the o’s are a,(%,x). If we define these four quantities as A_~, A;=, A_*, and A, respectively, and

then solve for the «’s, we find

(B k)= 2i<

cos?e e-A_~sinZe e®+A

sine cose (e¥-A_~—e®+A7)

(13)

sine cose (e"ﬁ-A_+-—e1"5+A++)>

cosZe ¢+A T+ sin%e e?®-A_t

Equation (13), together with the forms for the unmixed states, describes the parameterization previously found
from a potential model. Thus any attempt to fit the off-shell scattering matrix to experimental data by searching
for real quasi-phase-parameters A will automatically satisfy unitarity.

Finally, we note that Eq. (5) implies in a simple way the factorization property for the full-off-shell amplitude
which has been proved in some recent papers.25 If a, (k)= 2iX,(%’,k), then, using Eq. (5), we have

ImX, (&' ,k) = A (k1) Ac(1,k)

(14)

for the singlet case. So the imaginary part can be calculated in terms of quasi-phase-parameters, and hence, from
a potential model. Unitarity supplies no information about ReX.

3T am indebted to Dr. L. Heller for a discussion on this point.
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