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The large ~q~ behavior of p&(k —
q) ~„~,&=0 is clearly

controlled, by the constant term on the right-hand side

of Eq. (7), [2M&(fo) —Fo(fo)]. However, because of a
cancellation between positive- and negative-frequency
terms, the large

~ q~ behavior of J(q, ko) is rot controlled

by the above constant term, but instead is controlled

by the C term of Eq. (7). Thus,

J(q,ko) - —2C[ln(( q [/m)]'/(2k, [ q [
)', (9)

which depends' oe ko, therefore the subtractions iil-

dicated in the computation of 5K(k; yi) from M(k; pi)
[see Eq. (2)]cannot produce a finite result for 3R(k; y&).

This result when coupled with Eq. (5) completes our

proof that the power-series-expansion solution of Eq. (1)
fails in fifth order of the coupling constant.

It is a pleasure to thank Dr. Robert N. Hill for a
helpful discussion.

' It should be noted that the inclusion of higher-order terms in

Eq. (7) cannot alter Eq. (9).
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The implications of off-shell unitarity for the system of two spin--, particles are examined. It is found that
unitarity and time-reversal invariance imply a parametrization of the half-oft-shell scattering amplitude
which is identical to a formula previously found from a potential model. The amplitude is expressed in terms
of the on-shell phase shifts and additional real quasi-phase-parameters.

''N recent papers' a parametric representation was
~ ~ given for the half-oG-energy-shell element of the
proton-proton scattering matrix. This representation
was derived from potential theory, and describes each
partial wave in terms of the on-shell phase shifts and
mixing parameters, together with additional real
numbers called quasi-phase parameters. The purpose
of this paper is to show that the parametrization found
is a consequence of oft-shell unitarity and, time-reversal
invariance for a system of two spin--', particles. We also

give a simple derivation of a factorization theorem
discussed recently by Kowalski' for the full-off-shell

amplitude.
The general transition matrix T is dined in terms of

the kinetic-energy operator E and. the potential V by

T(E)= V[1+(E+ie—E—V) 'V]. (1)

The matrix elements of T(E) between initial and final

plane wave states q p,. and qpf are related. to the center-
of-mass (c.m. ) M matrix by

(q„iT(E)
~
q, ,.)= —(4 'p)-'M„(k', k)P(P, —P,). (2)

Here P; (Pq) is the initial (final) momentum, E is the
total energy, and k (k') and rP/2p are these quantities
in the c.m. system; p, is the reduced mass. M„ is a 4&4
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= (x/4s) dfl M„t(k', x)M„(x,k), (3)

where 0 describes the direction of x.
Consider first the case of the singlet states. The singlet

element of M can be expanded in the form

1 2I+1
M. (k', k) =—Q n. '(k', k)Fi(k' k), (4)

M & 2

where P& is a Legendre polynomial. Equation (3) then
becomes

e„~(k',k)+n„(k,k') = —n„*(k',~)n„(a,k) . (5)

For simplicity we suppress the ind, ex /. If a=k=k',
this equation implies that

n„(~,a) =2ie"~"& sinb'(~) (6)

matrix if the interacting particles have spin —,. Only the
on-energy-shell amplitud, es, for which ~=k=k', are
measured, by elastic-scattering experiments. Double-
scattering processes involve half-o6-shell elements for
which either ~= k&k' or z= k'&k. It is w'ell known that
these can be calculated, from a potential mod, el by
integration over the potential. Full-off-shell amplitudes
appear in higher-ord, er processes, and, cannot be directly
calculated from a potential.

The unitarity condition expressed in terms of 3f is'

-,'i[M„t(k', k) —M„(k,k')]
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for some real phase shift 5', which is the stand, ard
condition of elastic unitarity. For a =k / k we have

Q) (k )K)+Q))(K)k ) = —Q)) (k )K)Q))(K)K) )

which is the half off-shell unitarity condition. If
time-reversal invariance is imposed, we have Q„(K,k')
=Q„(k',K), so that the left side of Eq. (7) becomes
2 ReQ, (k', K). Thus the equation implies that the phase
of Q,*(k',K) is opposite to that of Q„(K K), and

Q„(k',K) = 2ie"'"&6 '(O', K) .

Here 6' is a real number called, the singlet quasi-phase-
parameter.

For the triplet states, ' the 3f matrix is expanded, in
terms of spherical harmonics of the angle between k
and k'. Ke consid. er a particular total angular momen-
tum j.The states for which the orbital angular momen-
tum l is equal to j do not mix with the states l= j+1.
Therefore the argument used, for the singlet state

applies and, the scattering amplitude takes the form
2i exp[i|I(K)]h„(k',K), where tI is the standard triplet l =j
phase shif t.

For the mixed. states 1=j+1, n becomes a 2)&2
matrix with rows (columns) corresponding to initial
(final) states i=j—1 and i=j+1, respectively,

Q 11(k K) Q 12(k K)
Q, (k', K) = (9)

On the energy shell, time-reversal invariance implies
o."=n", but in the general case the matrix is not
symmetric. Time-reversal invariance implies

Q„(k',k) =Q„r(k,k') .

Thus, instead of Eq. (7), we have

Q„'(k')K)+Q„r(k', K) = Q„'(k', K—)Q, (K,K) . (11)

The on-shell expression for n, if we use the Blatt-
Biedenharn parametrization, is'

cos'e e"- sin5 +sin'e e"+ sin8~
Q„(K,K) = 2i

sine cose(e"- sin5 —e"+ sin8+)

~

~ ~ ~

~

sine cose(e"- sin8 —e"+ sintI+)

sin'e e"- sin8 +cos'e e"+ sin8+
(12)

Here e and 8+ are the mixing parameters and the i= j&1 phase shifts, evaluated at energy K'j2))b. If we put Eqs. (9)
and (12) into Eq. (11) we find four equations, which imply that the quantities

'ie'b (Q-"*+-Q2'* tanb) 1ie by (Q)118 Q218 COtb) iie b (Q)22++Q)2@ COt&-) 1ie b+(Q)228 Q128 tan&)

are real. Here the Q's are Q„(k',K). If we define these four quantities as 6:,6+, 6 +, and 6++, respectively, and,

then solve for the n's, we 6nd.

cos'e e"-6:+sin2e e"++
Q„(k',K) = 2i

~

~

sine cose (e"-6:—e'+6+ )

sine cosb (e"-6 +—e"+6++)

COS2e e"+i1+++Sin2e e*b-i1 +
(13)

Equation (13), together with the forms for the unmixed states, describes the parameterization previously found

from a potential model. Thus any attempt to fit the off-shell scattering matrix to experimental data by searching

for real quasi-phase-parameters 6 will automatically satisfy unitarity.
Finally, we note that Eq. (5) implies in a simple way the factorization property for the full-off-shell amplitude

which has been proved in some recent papers. ' ' If Q„(k',k) =2iX„(k',k), then, using Eq. (5), we have

ImX„(k',k) =A. (O', K)d. (K,k) (14)

for the singlet case. So the imaginary part can be calculated in terms of quasi-phase-parameters, and hence, from

a potential model. Unitarity supplies no information about ReX.

I am indebted to Dr. L. Belier for a discussion on this point.
4 M. J. Moravcsik, The Tmo-Nucleon Interaction (Clarendon Press, Oxford, England, 1963).
' H. P. Noyes, Phys. Rev. Letters 15, 538 (1965).


