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In order to describe electromagnetic dipole transitions of the H atom within the framework of dynamical
groups, an explicit irreducible representation of the Lie algebra O(4.2) has been found on the space of
bound-state wave functions. This representation remains irreducible when restricting to the subalgebra
O(4, 1).The transformation properties of the dipole operator in O(4,2) have been specified. The description
becomes particularly simple by the introduction of a one-parameter family of representations of O(4,2).
Finally, position representations of the generators of O(4,2) have been given.

I. INTRODUCTION

''N the preceding paper, ' external interactions have
been introduced into the formalism of noncolnpact

dynamical groups describing all states of a quantum-
mechanical system, and the reduced matrix elements
between di6erent rotational and vibrational levels have
been calculated.

ln the present paper we carry out such a discussion
for the H atom. As dynamical groups of the H atom
one can use the groups E4 or 0(4,1).' These groups con-
tain irreducible triangular representations which de-
scribe all the states of the discrete spectrum.

The following new results will be presented in this
paper:

1. The larger group 0(4,2) is shown to be a dynamical
group of the H atom by explicit construction of a
matrix representation on the space of bound-state wave
function. This representation remains irreducible when
restricting the group to the subgroup 0(4,1).'

2. It is shown how the inclusion of the electromag-
netic dipole transition operator leads to 0(4,2) as the
dynamical group of the H atom. The transformation
properties of the dipole operator in 0(4,2) are specified.

3. The inclusion of the dipole operator reveals a aber
bundle structure of the hydrogen wave functions in
terms of a one-parameter family of representations of
the dynamical group 0(4,2). For describing this struc-
ture the position representation has a special signidcance.

*Research sponsored by the U. S. Air Force Ofhce of Scientific
Research, OKce of Aerospace Research, U. S. Air Force, under
AFOSR Grant No. AF—AFOSR —30—65.' A. O. Barut, preceding paper, Phys. Rev. 156, 1538 (1967).' The first group proposed as the dynamical group of the H
atom was B4 LA. O. Barut, Phys. Rev. 135, B839 (1964)g. Later
it was found that O(4, 1) has also a representation containing all
the bound states of the H atom LA. O. Barut, P. Budini, and C.
Fonsdal, Proc. Roy. Soc. (London} A291, 106 (1966);Y. Dothan,
M. Gell-Mann, and Y. Ne'eman, Phys. Letters 17, 148 (1965);
R. H. Pratt and T. F. Jordan, Phys. Rev. 148, 1276 (1966); R.
Musto, i'. 148, 1274 (1966); M. Bander and C. Itzykson, Rev.
Mod. Phys. 38, 330 (1966); 38, 346 (1966)j.The relevant repre-
sentations of E4 and O(4, 1) are related to each other by group
contraction and their O(4} content is the same.

g I. A. Malkin and V. I. Man'ko, JETP Pis'ma v Redaktsiyn
2, 230 (1966) /English transl. : JETP Letters 2, 146 (1966)j
have noticed the use of O(4,2) for the H spectrum in Pock co-
ordinates in analogy to the Klein-Gordon equation with zero mass.
They have not discussed the problem of transition probabilities.
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4. The position representation of all operators of
0(4,2) is given.

with
J=-,'(L+M) K=-,'(L—M)

[J,K]=0
and the states are labeled by I j,k; js,ks). The states of
the H atom for fixed e are given by the representations
with j=k=-', (rs —1). These states correspond to the
wave functions

I
rsresm& obtained from the Schrodinger

equation in parabolic coordinates. 4 The quantum num-
bers ja and k3 are given by observing that the eigen-
values of Ls and Ms on Irsrnsm) are m and er —rss,

respectively. Remember that the principal quantum
number constrains rs&, e2, m by the equation

n= rs, +rss+m+1.

Using (1) we now find

js——-', [m+ (nr —Ns)],

ks ———',[m—(rsr —ass)].

(2)

(3)

If we define the operators N, Ni, Ns by NI eNr&sm
=n Inta;m&, etc , Eq. (3). gives the operator relation

N= Nt+Ns+Ls+1. (4)

Let us now introduce operators S1+,S2+ which raise
and lower the parabolic quantum numbers e1, e2, re-
spectively, by the equations

Ni+
I
~r~sm& = [(Ii+1)—(~t+m+ 1)]'"

I »+ 1, Ns m&

Nr Irrrrrsm)= —[rsr(nr+m)]'"Ili —1, Ns, m); (5)

Ns+I sresm) = y[(N, /1)(ms+m+1)]'~sI nr, ss+1, m),
Ns-

I
rsrrssm) =+[es(ass+ m)]'~'

I Ni, Is-', m),

4 H. A. Bethe and E. E. Salpeter, Quantum Mechanks of One-
orrd Troo Efeotrors Aforos (Academic Pr-ess Inc. , New York& 1957).
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II. CONSTRUCTION OF O(4,2)

As is well known, the group of degeneracy of energy
is 0(4) which is generated by the orbital angular
momentum L and the Lenz vector M and has the in-
variant operator L M=O. In the 0(3)XO(3) dragon»-
ization of 0(4) the generators are defined as
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just observe that A+ in L» can raise e arbitrarily high
by repeated application.

then we obtain immediately

[E;,I)I;+]=8,;[E (——1)'Mm],

[E,+,E,+]=0, i, j=1,2. III. THE ELECTROMAGNETIC DIPOLE
OPERATORAs we can see from Eqs. (3) and (4), X; do not belong

to a pure tensor of the rotation group generated by L.
However, the combinations

It is sufhcient to consider the third component of the
dipole operator; the others are then obtained by rota-
tion. In the position representation the wave functions

i N)8252) ai eA 3+—=-,' (Ei+—E.:+),
B+=—-,'((cVi++Xg+)

/2m

S2are the third conlponent of a vector and a scalar, re-
spectively, as is shown in Appendix A.

Using Eq. (6) one 6nds for A~, B the commutation
rules: &«.,+-" —iL.,+-" —I, (»)

e) e)
'

kg+, AB+]=a-,'E,
[AP,B+]=a-', M&,

(A,",B+]=0,
LB»+]=k»
LX,AB+]= +A()+,

fE,B+]=aB+,
LM(),A ()+]=+B+,
L3E3,B+]= &A a+.

(12)

zL,~„(s)
ni+ 1

—L„,+~i"(s)+ (2ni+m+1) L„,+„"(s)
rti+m+1 —(n +im)' L„, + i"(s). (13)

The other components of A+ satisfy the commutation
rules (see Appendix A)

Therefore we obtain
[A;+,A;+]= ——,

' 'L;;+ —,'$();;,
LA,+,A;"]=0,
LA P,M~]= KB+8;;.

(9) (t/n)N, ,

Si+1 Sninmm

D(++I)jn@n1+1,nm, m,

')ii+')ran+1 I( nz+1, u, nmIn the remaining terms of Eq. (8) one can replace the
index 3 by i, as follows from the vector character of
A and M.

If we now make the following identi6cations:

+ (2ei+rm+1)n„, „,„
(rii+)ri) D(n—1)jn+ni —i, n2, m p

are the parabolic coordinates and L„+ m(s) are the
(g) Laguerre polynomials. We have to find the effect of

s=-', ($—))) on I„, ,„.For this we simply use the re-
cursion relations

J56

(i(A+ A ))—-
(, B++B- i

(10)

where D, is de6ned as the dilatation operator by u, i.e.,

D.f(x) = f(ax) . (15)

( 1)na+~~([mt m)-—
+%1AQtg =

~I/2g2

A position representation to D, is D =a*+"*.An equa-
tion similar to (14) hoMs for ())/e)u„,„,„.Now, with
the norIDallzatlon constant

we can And by straightforward calculation that the
15-generators L t), 1~n~P~6 satisfy the commutation
rules of 0 (4,2) with the metric: g» ——+1, g(;5——g66= —1.
The exphcit irreducible representation of 0(4,2) is ob-
tained by using the definitions (10), (7) and inserting
the matrices for Ei+, J(I2+ given in (5).This representa-
tion remains irreducible when one restricts 0(4,2) to
the subgroup 0(4,1) by dropping L„6, L5(). To see this

mPe& m t'

—I /2

(16)

and remembering the definitions (5) for Xi+, N2+, we

~ E. Jahnke, P. Kmde, and F. Losch, Tables of Bif;her FNnct~ons
{McGraw-Hill Book Company, Inc. , New York, 3.960}.Observe,
however, that our Laguerre polynomials are the ones used by
Bethe and Salpeter {Ref. 4) which are related to the ones in
in Jahnke-Emde by I„+ ~= {—1)~+~{m+I}!I(~&.
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recognize

(iV+1)'
$N ni ed DN/ (N 1—)+1 + /!d 3++

X

PHYSICAL
SECTION

(X—1)'-
+DN/ (N+1)+1 Nngn2m )

Ã

(%+1)'
'gln1n2rn DN/ (N—1)+2 —M4+E

(S—1)'-
+DN/(N+1)+2 Nnin2m

X

From this follows by addition and subtraction:

Fxo. 1. The bundle of
wave functions P,p (r}.Each
fiber contains f's with fixed
e, l and varying r, each
cross section represents a
fixed v. The physical wave
functions lie on the oblique-
lined section.

T-3

V=2

g=o

(X+1)' (S—1)'
DN/(N —1)&" +E+DN/(N+1)+.

E
(IV+1)' (S—1)'

xj DN/(N 1)~j — +~j+DN/(N+1) jfj

(18)

We see that the dipole operator contains the operators
A;+, 8+ which are elements of the complex extension
of the Lie algebra of 0(4,2)' but do not belong to
0(4,1). In this sense 0(4,2) turns out to be the more
natural dynamical group.

To see the physical meaning of the dilatation opera-
tor, observe that A;+, 8+ allow only jumps of the prin-
cipal quantum number by one. The dilatation operator
is the one which causes transitions in e over the whole
spectrum. It is also the more complicated operator to
calculate. Its representations will be given and dis-
cussed in the next section.

We also note that the operators 8+, 8, X occurring
in the magmitlde of the dipole operators generate an
algebra isornorphic to SU(1,1) 0(2,1).

IV. THE FIBER SPACE OF THE HYDROGEN
WAVE FUNCTION

n=3 n=4

for all r. The normalization constant E„~' is

X„)'——(rj/r)"X 1
——(44/r)'"

2'+' (n+ l)!
X

44'(21+1)! (44—l—1)!
(22)

d„1„1'"= R~('(r)R„)"(r)r'dr
0

(23)

is the scalar product of these different functions. In-
serting (20) and (19) we obtain

We can represent this family as a bundle of functions,
each cross section. of which is covered with f„( '(r)'s
for fixed r r increasing along each Aber (see Fig. 1).
The physical wave functions (20) are given by the
steep section with r = 44 for f„( '(r)

Observe that each cross section contains orthogonal
wave functions only for 6xed e. For different n and
equal /, m, only the states in the physical section are
orthogonal and

In view of later applications we consider in this dis-
cussion the Hilbert space of wave functions dehned
with diagonal I-' and I3. If we dehne

S~((r) = e "r'F( n„23+2, 2—r), (19)

where e„=e—l—1 is the radial quantum number and
F(x,y, s) the hypergeometric function, 4 then the radial
wave functions of the H atom are

dn)n t
TT'=

E„)'E..)"
~l~ l

e
—(1/v+1/v') 2lr

Gordon' has calculated the integral

XF(—r4„, 2l+2, 2r/r)

)&F(—44„'21+2, 2r/r') r'dr.

(24)

(20) Jp' ') (14„k; r4'r; k')R 1(r) =X„(S„((r/r4),

where X„~ is a normalization constant.
Now consider the normalized family of wave functions

0-1-'(r) =&-1'S-)(r/r) I'/-(~ e) (21)
' The complex extension of the Lie algebra of 0(4,2} is Dl.

e ('+')&"gp+ —F( j4„,p+1, k—P)
0

XF(-~,'; p+1—., k'P)d~ (»)
' W. Gordon, Ann. Physik 2, 1031 (1929).
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in terms of which we find and using the recursion formula'

g rg, r' Ni+i/i+ 1 Ll

desi ri'"= Joi i(' "(n„,2/r, ri„'2/r'). (26) "1+'~ (~)= ( +—n +a+1 ()—L e „,(t„)",
fly

8
This d t

rs
a

now allows os to represent the dilatation L . .e "(t}=(n,+ra) ' ( —nt)L+ .„,(()".
operator D, on the physical section. Obviously 8$

One finds

(31)

DA"i 9')=0 i («—)

n'

Geometrically, D, translates f a piece along a fiber
and this new function can be expanded again along the
physical section.

On each of the axed z cross sections we can define a
representation of 0(4,2) by the same procedure as used.
in Sec. II; just take ~nie2m; r) as state vectors for
fixed r (see Appendix II). In these representations the
dipole operator x; causes only transitions between
neighboring states, since it is essentially an element of
the Lie algebra of 0(4,2);

/ 8 E
&i+= D///(—//+»I W—5+ +21~+&i+1

(8$ 2S X+1
8 $ /V

Dx/—(ar »~ 5——+ —21-a—%
k 8$ 2/V /V —1

(32)

where the index dV/(X&1) of D acts to the right of the
parenthesis. From this it follows that

8 E
8+= —2DN/(ivy» i'—2r+r +JV+1-

Br /V+ 1

8 g 2

A+= —2D///()t/+» —+rB& 2r+r—+M
Llr E /V+1

8 S 2

8 = ~D/d/()t/ i) i' +r 1V+1— —
(28) Br LV S—1

(33)

The transition (27) to the physical section lifts the
selection rules in e and causes quite a complication of
the calculation. It is important to note that the calcula-
tion of d„~„~"'needs a specific position representation
of the state vectors. This is so since D is a dilatation in

the physical space. While for the description of observed
spectra one can pursue a purely group-theoretical ap-
proach, for the calculation of transition probabilities,
one had to include at the present time-space properties
into the consideration.

L= rX jp,

M=-,'(pX L—LXy) —r/r.
(29)

To find the other generators L„„we just have to find

N&+, E2+ in the position representation. This is readily
done starting from the definition (5)

V. THE POSITION REPRESENTATION OF O(4,2)

This representation is well lmown for the angular
momentum vector I, and the I enz vector M, namely,

Inserting these equations into (10), one obtains the
remaining generators L„5, L„6, and L56.

VI. CONCLUSIONS

The present discussion suggests that many other
potential problems might have a similar structure of
the transition operator. It seems that by means of
existing simple recursion relations a dynamical group
can always be constructed which combined with a
dilatation operator gives not only a representation of
the spectra but also transition amplitudes. For the
description of the dilatation operator, a position repre-
sentation of the dynamical group has been used. It is
not clear yet how the dilatation operator can be found
within the framework of a purely group-theoretical
approach to dynamics.

APPENDIX A

(a) We first show that 8+ is a scalar. For this one

only has to verify that

Ni+
~
niwim) = —L(iii+1) (iii+m+1)]'"

~
vi+1, e2,m),

~
minim) = —Lei(mi+m)]'"

~
ni —1, Npm) (30)

Ll.g,B+]=0, [Ig,B ]=0. (A1)

'Note added ~e proof. This last problem is solved in a forth-
coming paper LA. O. Barut and H. Kleinert (to be published)g.
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But

L+ Inin~m) = (~~+&~) l»n~m)
=+L(j~j)(j~+1)]'"I,.~1, ~1)
+[(j+k&)(j+ka+1)]'t'~ni+1, n2, m+1). (A2)

Hence, one 6nds

L+.
~
nin2m) =+[na(ni+m+1)]'»

~
ni, n2 —1, m+1)

+[n, (n2+m+1)]'i'~n, —1, ng, m+1),
L

~
nin2m) =+[(n,+m) (n~+1)]"'

~

n„nm+1, m —1)
+[(nm+m) (ni+1)]'"

~
n,+1, n2, m —1). (A3)

The remaining relations follow then from the vector
properties of A;+ and M; and Eqs. (8).

APPENDIX 3
(a) The functions of the fiber bundle in hyperbolic

coordinates are

Nng num
= & +ny gm

TZ)

XL„,+ —L„,+„—,(Ag)
T T

+nin pm, (n/r) Enln2m ~

On the other hand, where

8+
~
nin2m) = —f(ni+1) (ni+m+1)]'i

~
ni+1, nq, m)

+L(n2+1) (n2+m+1)]'" ~ni, n~+1, m). (A4) It now follows from Eq. 13 that
From this one can easily find that Eq. (A1) is true.

(A9)

(b) Define the other components of A+ by

A++=Ai++iA2+, A +=Ai+ iA p+—

and

($/r) nnln2m

ni+ 1 &nInpm

+ (2ni+m+1)N„, „,„

Nn1+l, ng, m

ni+m+1 N +ni, , , n'm

A++ ~ni, n2, m) =+2L(ni+m+1) (n2+m+1)]"'
X

I ni, n2, m+1), (A3)

A~-
~
ni, n2, m) = 2I ni—n, ]'i'.

~
n, 1, n2——1, m+1),

(A++)&=A:,(A~ ) t=A +.

Then one finds, using Eqs. (A3) and (A4),

nJ n2m

Nny —I,n2, m ~

Defining Xi+, S&+ as in Eq. (5) and M, S in the
obvious way, we Gnd

"LL+,A g+]= —A~+,

[L,A3+]=+A +. (A6)
(n+1 '" (X—1)'"r=. a+~ +X+B

This verifies that A+ is a vector.
(c) To prove the commutation rules (9) we only

have to show that
~X+1 '» X—1 '"-

x;=r Ai+~ +Mi+A,

(A10)

LA +,Ag]=2L

[A +,Ag+]=0,

[A +,Ma]=0.
A dilatation operator is not needed here, and the x;

(A7) consist essentially of elements of the Lie algebra 0(4,2).


