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Calculation of Transition Probabilities from Noncompact
Dynamical Groups*
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External electromagnetic interactions have been introduced into the formalism of noncompact dynamical
groups describing all states of a quantum-mechanical system. Complete reduced matrix elements can be
evaluated if the hadron levels are approximated as rotational and "vibrational" levels. The relation of the
method to the S matrix and the algebra of currents is discussed.

I. INTRODUCTION

~ 'HE purpose of this paper is to show explicitly how
external interactions are introduced into the non-

compact groups describing a/l the states of a quantum-
mechanical system. We compare the results with the
S-matrix elements of the vertex functions and with the
postulates of the algebra of currents.

The hypothesis' that all states of a quantum-mechan-
ical system belong to a single irreducible representation
of a dynamical noncompact group G which contains the
group of generacy of energy, G&, as a subgroup has
been verified for all the well-known quantum-mechan-
ical systems. ' ' The hypothesis has been extended to
strongly interacting particles' ~ ' "with the hope that
one might predict the higher levels of hadron resonances.

In the formalism of noncompact groups, physical
particles are assigned to fixed. multiplets of the maximal
compact subgroups, but the operators corresponding tc
transition probabilities under external interactions are in
general complicated, that is, they do not transform
simply as the noncompact generators of the group. On
the other hand, , if one starts with the physical currents,
they obey simple commutation relations of an algebra
[say, SU(3) &&SU(3), or SU(6) if one includes the scalar
and pseudoscalar currents as well j, but then the physical
particles are rot assigned to fixed multiplets of this
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algebra of currents, but to its mixed representations.
Thus these two complementary approaches point to a
larger algebraic structure containing both the noncom-
pact group'and the group of currents and that these two
groups should be kept separately.

In this paper we treat some simple cases where the
algebraic structure contains fixed multiplets and the
transition operators transform like noncompact genera-
tors, so that complete reduced matrix elements can be
evaluated. Inasmuch as the spin dependence of levels of
had, rons can be easily approximated as rotational levels,
for which there is good experimental evidence, and the
isospin dependence as the analog of vibrational levels,
these simple cases have also direct physical applica-
tions for strongly interacting particles.

II. TRANSITIONS BETWEEN ROTATIONAL
AND VIBRATIONAL LEVELS

Whereas in ordinary quantum mechanics a system is
characterized, by a phenomenological potential or
Hamiltonian, it can now also be characterized com-
pletely by the dynamical group G with the specified
physical interpretation of its generators and. its in-
variant operators. This result would be only an elegant
geometrical description if we did, not know how to deal
with the external interactions of the system, which is
really the essence of dynamics. We want to show that the
description of the interactions 6ts quite naturally into
the formalism of noncompact groups.

Consider first ordinary atomic systems under external
electromagnetic interactions. The system without ex-
ternal fields is characterized by a specific representa-
tion" of the group G, corresponding to a Hamiltonian
Ho. We shall say that the system has the geometry of
the group G. The states of this representation are the
possible states of the physical system. In order to
actually produce these states, external interactions are

. necessary. Thus transition probability amplitudes or
form factors of the transitions must be identified with
the matrix elements of definite operators between the
states of G.

The problem is to specify the transformation property
of the external interactions and, to compute reduced

"The specific representation is picked up by additional group-
extension operators like parity (Refs. 8 and 10).
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matrix elements as well. It will turn out that, in general,
the external interactions lie in a larger group g, whose
relevant irreducible representation is also irreducible
for G.

There are three practically important electromagnetic
transitions, namely, those between rotational, vibra-
tional, and Coulombic levels. The rotational levels of a
rigid body have the synunetry of the group 0(4,1), with
one vanishing invariant operator, or E4 (Euclidian
group in four dimensions). "The group of degeneracy of
the completely symmetric rigid body is 0 (4) in

0(3)XO(3) diagonalization, where one 0(3) refers to
J„angular momentum with respect to space-fixed
axes, and the other 0 (3) to Jb, angular momentum with
respect to body-fixed, axes. The vanishing of one of the
invariant operators means here J,s= Jss= j(j+1).The
eigenvalues of the J,s and J» are denoted by p and m,
respectively. The dipole transition operator is a vector
d with three commuting components. Such a vector can
be constructed in E4 or even in the larger group 0(4,2),
the conformal group. It is remarkable that the con-
formal group has an irreducible representation (again
with one invariant operator being zero) which remains
also irreducible for the group 0(4,1)."This particular
representation consists precisely of all the states of the
rotator. The bigger group contains in addition the
transition operators. Now, for this simple case, since
d. is a vector with respect to space-fixed axis, only one
of the 0(3) is important —that is, transition elements
are independent of rn but they depend on j and p.
Thus it is suKcient to consider the group Es (Euclidian
group in three dimensions) consisting of 0(3) and the
three translations d. The ttoo slvariaets are d' and
d J=dA (4 is the component of the angular momentum
along the dipole moment axis); d' is essentially the
fundamental coupling constant e'. Using the known
representation of Ea, '4 we obtain immediately not only
the nine well-known nonvanishing matrix elements"

Vl ldslj, I')=d'~3-'
(j,I Id+Ij+1,1 1)—

~'L(i ~+ )(j ~+ )]'"
but also the reduced matrix elements"
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atom was E4 (Ref. 1). E4 is the contracted group from 0(4,1).
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Quantum Mechanics {Addison-Wesley Publishing Company,
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d~'=j (j+1)
d

d; &'=d;»'= (t(g— A)—(g+A)/(2j 1)—(2j+1)]'~'. (2)j
Here A is the lowest value of j that occurs in the
infinite-dimensional unitary representation of E3.Thus,
the dynamical group of the rotational levels inclldhng
the electromagnetic dipole transitions can be taken to
be E4 Lthe contracted 0(4,1)].The coupling constant
is specified by the invariants of the group which fit the
representation.

In the case of the three-dimensional oscillator the
dynamical group in the absence of interactions is'
SU(3,1) with the group of degeneracy SU(3) )with one
vanishing invariant operator] in which 0(3) is dia, —

gonalized (not SUs). The representations of SU(3)
that occur are of the type (e,O) with dimensions
—',(m+1)(n+2). The electromagnetic dipole operator d
can be constructed in the group SU(3,1) as in the case
of conformal group; it is a vector with respect to the
diagonalized 0(3) subgroup. In the convenient spinor
form of the representation with the basis &t $s'$s',
rr+b+c+ =I, d transforms like $&."Thus, one obtains
for the m dependence of the matrix elements
(rslm~d~rs'1'm') the equations (1), plus, from the fact
that the magnitude of 1 transform like the generators
of the noncompact subgroup SU(1,1), the reduced
matrix elements

d t"= d " '= (1/rr) (-,'-e)'".

The case of the H atom is slightly pathological in that
an additional dilatation operation occurs which causes
transitions between any e and e'. Nevertheless, it is
shown in a separate paper" that in the presence of the
electromagnetic interactions the dynamical group of the
hydrogen atom, 0(4,1), is extended to 0(4,2) or 0(5,1),
the conformal type groups, ' which also contain both the
cases of discrete and continuous spectrum as different
little groups. Thus, in all the practically important
electromagnetic transitions the conformal group is the
dynamical group which includes external interactions
and provides a unified framework of electromagnetic
interactions. "

The above calculations incorporate the usual approxi-
mations of atomic physics. Firstly, we have multipole
transitions as well, in which case the external interaction

17 In the representation with creation and annihilation operators,
the three generators (a,+a,*+b,+b,*) transform like a vector
with respect to the angular momentum J=i(aXa*+bXb*).
The U& is generated by J and M„=b,*b&+bz*b;—(a;*af,+af,*a;);
J, M;;, a+a*+b+b*, and a—a*+b—b*, form the conformal-
type algebra (Ref. 1, Sec. II). In our case b =0 and a* increase the
quantum number n by one.

' A. O. Barut and H. Kleinert, following paper, Phys. Rev.
156, 1541 (1967).

'fl In the above simple cases of rotation and oscillation, only a
subgroup of the conformal type groups is relevant for dipole
interactions.
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operator is expected to transform like a group element
e " in g thus have a de/cite direction in the group space.
Secondly, we have to take recoil eRects into account.
This means that the states of the I atom, for example,
must be labeled in addition to the quantum numbers
I, /, m, , by the energy-momentum k. Then we will
have to evaluate reduced matrix elements of the form
(k, j~d~k', j'). Only if the spin-orbit effects can be
neglected can the energy-momentum eRects be taken
into eRect in a simple way by the space-time transla-
tion group. Otherwise, due to mass diBerences between
the states, the Hilbert space of states forms a reducible
representation of the Poincare group with the various
parts connected in the rest frame by the noncompact
group G.' Alternatively, one can take the direction of
the interaction in group space to be momentum-de-
pendent in a definite way. This procedure is reasonable
because only via external interactions does the system
acquire energy-momentum, and it constitutes a new

way of treating internal and space-time quantum
numbers together. [Note added ie proof. This program
on the further development of the theory has been
explicitly carried out in a series of papers now in the
process of publication. ]

III. APPLICATION TO HADRONS

The application of this approach to fundamental
particle interactions is immediate. It is, in fact, the
generalization to noncompact groups of what is being
done for compact groups. We start from a representa-
tion of the noncompact group G giving all the baryon
states, for example,

~

N = 1,J,I,Y'JSI8). Those strong,
weak, and electromagnetic interactions which cause
transitions among these states, for examples,

(m) (v)
N* N (strong), Z' A(electromagnetic),

(ev) (E-)
e —p(weak), 0 h. (weak),

are characterized by definite operators in G (or in the

corresponding g, see above) whose matrix elements are
the 5-matrix elements of the reactions in the corre-
sponding spin states. Again, in general the energy-
momentum dependence of the states must also be
speci6ed to obtain form factors. Note that the existence
of the external interactions is conceptually of funda-
mental importance to the use of groups in particle
physics. For example, the e —+ p transition operation
wouM violate the superselection rule on charge if one
would perform this group operation of SU~ without the
external weak interaction (via the lepton pair ev),
although quantitatively the weak interactions are
negligible in the considerations of strong-interaction
symmetries. Thus only the existence of weak and elec-
tromagnetic interactions makes the group operations
of strong interactions physically meaningful.

The above approach and the approach via the algebra
of currents attack the problem of particle interactions
from opposite directions, and should therefore com-
plement each other. In the latter case, one postulates
commutation relations between current operators whose
products are essentially the final 5-matrix operators and
associates the observed particles to an approximate
zero-momentum representation of these commutation
relations. " In the former case, one starts from the
single-particle states as given by a group representa-
tion and introduces external interactions thereafter
which are associated with the transition operators of
the group. In both cases the transformation properties
of the various physical interactions have to be specified
in terms of currents or in terms of a group element.

Finally, because the choice of the dynamical group
is not entirely unique, "we formulate the following re-
quirement: The group and the physical states should be
so chosen that the transition operators of external
interactions transform like the group generators.

'0 R. Dashen and M. Gell-Mann, Phys. Rev. Letters 17, 340
(1966).

~'Because every Hilbert space is isomorphic to every other,
one could in principle transform the representation space of one
group to that of another. But then the physical quantities may
take such a complicated form as to make the new group entirely
useless.


