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We now use g&v&v
——/15 and

l g&v*&v
l

=3.12 BeV '.'s The coupling constant g&v&v,
&'& is taken to be" equal to 4.52

and"

From (13) and (14) we obtain
g&v»r i'&/g&vN p

&'&~—3.66.

FN*~p ' ———2.84, Ii~ gp
' ——1.03.

(21)

(22)

These results should be compared with the SU(6) values F~*rr, &'&= —3.5 and Frr+sr, "&=1.5."The experimental
analysis of Albright and Liu (Ref. 9) gives a large number of sets of values for Fry*sr, &'& and FN~rr, ts& which are
quite consistent with ours.
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The approximate stationary quantum state which describes a dressed fermion elementary particle in a
model theory of interacting local 6elds is reported. Showing no dependence on the infinite, positive, bare-
mass constant, a 6nite, positive, dressed fermion mass value is obtainable.

" "X contrast to the quantum-theoretic mod, els studied
~ ~ heretofore, the essentially nonlinear field, theory
analyzed, in this paper by means of a nonperturbative
method. of solution admits the possibility of a 6nite,
positive, dressed, fermion mass value, independent of
the infinite, positive, bare-mass constant. There is a
similarity between this work and. that of Nelson, ' with
the fermion 6eld operator treated here in a patently
nonrelativistic fashion.

Our purely local model theory is based. on the
Lorentz-invariant Lagrangian d,ensity

sr f)"r/&r)s4+ft (srr"r), —ms)4+) rtV'&/, —
' E. Nelson, J. Math. Phys. 5, ii90 (1964).

with P a real scalar f'teld, P a two-component complex
Weyl spinor 6eld, , mo a positive bare-mass constant, and
X a positive coupling constant. From (1) we obtain the
associated Hamiltonian operator

$2

+s I &4(x) I'-s4'(x)~ &4 (x)
2 bit&(x)

s

+Lms-~4(x)'34'(x)~t (x) d'* (2)

in which the boson field operator P(x) is represented in
diagonalized form and the fermion field operator f(x)
satisfies the anticommutation relations (g (x),f (x') ) =0,
(if (x), 4'(x')) =3(x—x')
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1
I vac) = exp

2
y(x)f. (x,y)y(y)d'xd'y

The nonrelativistic approximation to the vacuum
state, following from the specific ordering in (2), is

= f(y, x) (a c-number distribution) are to be d.etermined
by the Rayleigh-Ritz procedure and X is a normaliza-
tion constant. The energy functionality associated with
(2) and (6) is defined and evaluated by functional
integration' as

(3) E, ,= (one I
B

I
one)/(one

I
one)

where 0 „denotes the nonrelativistic fermion vacuum,
P(x)Q „—=0 with 0 „tQ„.,= 1, and f„,(x, y) = (—V',s)'i'

X8(x—y) is the real symmetric distribution inverse to

1 d'k
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=lim(1 —cosK'lx —yl)/2ir'lx —yl' (4)
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(-'f(x,x)+-:&*&.g(x, y) I.-*+-'I&4 il
'

ip—,te vpi+I mp )y—is s'&—g(xp)5&Vi}ds* (7)

in which g(x, y) is the real symmetric distribution
inverse to f(x,y),

f(x,z)g(z, y)d's—=b(x—y) .

~~one
iri ~—pi+I crisp )i&is—si)tg—(x,x)7tii 0, ——

gent
t(sf. (x,x)+s&* &ra-(x, y) I

r=*)d'~

the wave-number integration being restricted to Ikl
~&K, a cutoff constant. Normalized with respect to an
appropriate displacement-invariant measure for the I'rom (7) we derive the Rayleigh-Ritz equations
inner product functional integration over all fields p,
the vacuum state (3) is such that the associated errergy

functionalitys 5$i

E, =(vacI HI —vac)/(vac I vac)

(9)

t' 1
I one) =E ' expl ——

2
Le( )-v (.)3

Xf(*v)L4(r) A(r)j&'&&'x)

Pt(x))(, (x)daven, , (6)

where pr(x), Pi(x) (c-number functions) and f(x, y)

' G. Rosen, Phys. Rev. Letters 16, 704 (1966). In symbolic
notation, the appropriate displacement-invariant measure is

$3g 1/2

&(4)=& — sE(—v, ')'~'4 (*)],

and the squared-norm of (3) takes the form

& -~I-)=P-v fc .:)"~( )r~" -~(~)-~,",=*~

For a discussion oi this measure $(p), see: K. O. Friedrichs ei oL,
New York University Institute of Mathematical Sciences
Report, 1957 (unpublished), p. II-9.

satisfies the Rayleigh-Ritz equation 8E „/5f „=0, an
integral equation which yields the expression (4).
Finally, the vacuum state energy can be obtained by
evaluating (5),

E, = lim -d'x.
X ]g2

Let us seek a physical one-fermion stationary state,
a simultaneous eigensta, te of the Hamiltonian (2) and
the fermion number operator J'ft(x)P(x)dsx (eigen-
values E, , and unity, respectively) with the approx-
imate form

nip=-', )~g(x,x) = lim ()~Es/girs).
+-moo

(12)

Then the singularity-free spherically symmetric "par-
ticle-like" solution to the coupled c-number equations'

(9) and (10) is obtainable in closed form and given
exa,ctly by

yi ——& (3u/X)' ls(l XI'+u') 'is (13)

Pi = (3/2))" ~(l x~sI'+ is )1's(io x+a)u,"(14)
with a denoting a free positive constant of integration,
a so-called. "homology constant" stemming from the
scale (dilatation) invariance of Kqs. (9) and (10) with
the condition (12); in (14) u denotes a constant Weyl
spinor of unit length, utg=1. The 6nal Rayleigh-Ritz
equation (11) with (14) is

g(x,z) L~*s+3o'(I z I'+o') 'ja(z, y)ds»

=8 (x—y), (15)
3 Note that these are just the classical Geld equations derived

from (1) with p=&1(x) and p=e ' 0'ipse(x).' G. Rosen, J. Math. Phys. 7, 2066 (1966).

6E, , 1
=!~( —y)+- g(, )L~.'+2m. t()e ()3

5f 4
Xg(z, y)dss= 0. (11)

It follows immediately from (11) that the singular
character of g(x, y) as y —+ x is identical to the singular
character of g „(x,y) as y~ x, g(x, x) =g „(x,x)
=lim& „(E'/4ir') by (4). Hence, in order to have a
meaningful c-number equation (10), we put
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