156

1
d= ——2[%1%-— (1/3m2) (m—~+ms) (mad+m2— p2) — (1/3m) (mms—t-ms2— p2)+
s

(ma2—m2— p2)

22
mE—u

e=

1 1 (mé—mi—m,’) { 1

mm p2|_ (m2—u2) | 6mx
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('WL*Z + me— 2)
Omx

{Omepme) (1= (1/3me2) (- m2— ) — (1/3ma) (remat-mad— 2)}] , (19)

(’WL+M*) (M*2+m2— 2) —*1;; (m*2+mm*—u2)

—m2 (1/6m2) (ml+m2—m 2) (m*2+m2—u2—mm*)j| , (19)

f=1/mg2.

(20)

We now use gyy-=+/15 and | gx*xr| =3.12 BeV—L" The coupling constant gyy," is taken to be' equal to 4.52

and®

g, ®/ gun, V>—3.66.

From (13) and (14) we obtain

Fyiy,V=—284, Fy+y,?=1.03.

(21)

(22)

These results should be compared with the SU(6) values Fy*y, = —3.5 and Fy*y,?® =1.5.2 The experimental
analysis of Albright and Liu (Ref. 9) gives a large number of sets of values for Fy*y,® and Fy+*y,® which are

quite consistent with ours.

The authors would like to thank Professor R. C. Majumdar for his interest in this work.
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The approximate stationary quantum state which describes a dressed fermion elementary particle in a
model theory of interacting local fields is reported. Showing no dependence on the infinite, positive, bare-
mass constant, a finite, positive, dressed fermion mass value is obtainable.

N contrast to the quantum-theoretic models studied
heretofore, the essentially nonlinear field theory
analyzed in this paper by means of a nonperturbative
method of solution admits the possibility of a finite,
positive, dressed fermion mass value, independent of
the infinite, positive, bare-mass constant. There is a
similarity between this work and that of Nelson,! with
the fermion field operator treated here in a patently
nonrelativistic fashion.
Our purely local model theory is based on the
Lorentz-invariant Lagrangian density

L= —30"¢0,p ¢ (ic*du—molY N, 1
1 E. Nelson, J. Math. Phys. 5, 1190 (1964).

with ¢ a real scalar field, ¥ a two-component complex
Weyl spinor field, m, a positive bare-mass constant, and
\ a positive coupling constant. From (1) we obtain the
associated Hamiltonian operator

H=/ {‘i Ve = (e To ()
2 8¢ (x)?
+Emo—x¢<x>2]¢f<x>¢<x>}dsx @

in which the boson field operator ¢(x) is represented in
diagonalized form and the fermion field operator ¥ (x)
satisfies the anticommutation relations {y (x),y (x')} =0,

{¥(x), ¥1(x')} =8(x—x).
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The nonrelativistic approximation to the vacuum
state, following from the specific ordering in (2), is

|vac)= {exp[—% /] B0l ) |

X Qs  (3)

where Q.. denotes the nonrelativistic fermion vacuum,
P (*)Qae=0 With QuaeiQuae=1, and feac(X,y) = (— V,2)!/2
X8(x—y) is the real symmetric distribution inverse to

1 / a3k

6ik-(x—y)_

(2x)? | k|
=§m(1—cosK| x—yl|)/2x2 | x—y|2, (4)

gvac(X,¥) =

the wave-number integration being restricted to |k|
LK, a cutoff constant. Normalized with respect to an
appropriate displacement-invariant measure for the
inner product functional integration over all fields ¢,
the vacuum state (3) is such that the associated energy
Sfunctionality?

Eqge=(vac|H|vac)/(vac|vac)
=/{%fvm(X,X)‘I—%VrVygm(x,y)|y=x}d3x 5

satisfies the Rayleigh-Ritz equation 0Eyae/8fvac=0, an
integral equation which yields the expression (4).
Finally, the vacuum state energy can be obtained by

evaluating (5),
K4

1672

Let us seek a physical one-fermion stationary state,
a simultaneous eigenstate of the Hamiltonian (2) and
the fermion number operator JSYi(x)¢(x)d%x (eigen-
values Eone and unity, respectively) with the approx-
imate form

(one)=N'1[exp<-% / / [6(x)—6:(x)]

Xf(x,y)[qb(y)—¢1(y)]d3xd3y>]

d3x.

Eype=lim
K-

x / P WA PeDuo,  (6)

where ¢1(x), ¢1(x) (c-number functions) and f(x,y)

2G. Rosen, Phys. Rev. Letters 16, 704 (1966). In symbolic
notation, the appropnate dlsplacement-mvarlant measure is

2@) -1 (£) s (-varad,
and the squared-norm of (3) takes the form
(vac|vac)= f {exp[— f [ (— V)46 (x) jﬂdﬂx]}:o(qs)sszszm= 1.
For a discussion of this measure D(¢), see: K. O. Friedrichs et al.,

New York University Institute of Mathematical Sciences
Report, 1957 (unpublished), p. II-9.
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= f(y,x) (a c-number distribution) are to be determined
by the Rayleigh-Ritz procedure and N is a normaliza-
tion constant. The energy functionality associated with
(2) and (6) is defined and evaluated by functional
integration? as

E,ne={(one| H|one)/{one | one)
- [0 +192 vt vl

— o Vit [mo—A*—SNg (x,%) Wila}d®c  (7)

in which g(x,y) is the real symmetric distribution
inverse to f(x,y),

/ fx2)g(z,y)dz=d(x—y). ®)

From (7) we derive the Rayleigh-Ritz equations
5Eone

= —Vi1—2\nl19:=0, ©
o1
6E0ne
= —ie-V1t+[mo—Ae 2 —iNg (x,x) W1=0,  (10)
2
0Eone 1
= (x— YH‘; f g(x,2)[ V22011 (z)¢1(2) ]
Xg(z,y)d*z=0. (11)

It follows immediately from (11) that the singular
character of g(x,y) as y — x is identical to the singular
character of gvao(X,y) as y— X, g(XX)= gy (X,X)
=limg_,,(K?/47%) by (4). Hence, in order to have a
meaningful ¢c-number equation (10), we put

mo=iAg (x,x) = lim (\K?/87%). (12)

Then the singularity-free spherically symmetric “par-
ticle-like” solution to the coupled ¢-number equations?
(9) and (10) is obtainable in closed form and given
exactly by*

¢1=== (Ba/N)"(|x[*+a?) 7",
1= (3/2\)2a (| x|*4-a?) 32 (io - x+a)u

(13)
(14

with a denoting a free positive constant of integration,
a so-called ‘“homology constant” stemming from the
scale (dilatation) invariance of Egs. (9) and (10) with
the condition (12); in (14) « denotes a constant Weyl
spinor of unit length, #fx=1. The final Rayleigh-Ritz
equation (11) with (14) is

- / g(x,2)[Ve*+3a* (| 2]+ 0*) g (z,y)ds

=5(x—y), (15)

3 Note that these are just the classical field equations derived
from (1) with ¢=¢1(x) and ¥ =e"*moty, (x).
1 G. Rosen, J. Math. Phys. 7, 2066 (1966).
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or equivalently by (8),

—[Va2+3a2(| x| 2402215 (x—y)
= /f(x,z)f(z,y)d%. (16)

Introducing the Fourier transforms

1
J&Y)= frae(X,y)+—— / a(kk)et == vd%d*k, (17)

(2m)?
1 [ BkK)
g(x;Y) -——gvac(X,y) ' (27‘_)3 ‘kl lk,l

X ik == S@Ra% | (18)

we see that the equations obtained from (16) and (8)
3a
(k[ + K| )a(k,k’)-f-g— aland
s

=— / a(k ko k)%, (19)

33,17

2 K)+6(k k) = — / ok )R (K" K)——  (20)

L

can be solved by an obvious iteration procedure, the

first approximation
3a  eolkKI
alkK)=—plK)=—————— (1)
8r (|k|+|k'|)

being asymptotic to the exact solution for both a|k|,
a|k’|>>1.5 The energy of the physical one-fermion
stationary state can be expressed by evaluating (7)

5 Formally more direct but difficult to justify with math-
ematical rigor, an alternative method for solving (15) or (16) can
be based on the fact that the effective Schrodinger potential
—3a2(|x|2+a%)"2? is a smooth singularity-free function which
admits no “bound states,” the Schrédinger operator —[Vy?
+3a%(|x|24a*)2] having no eigenfunction with a negative
eigenvalue in the space of bounded C* piecewise C? functions of x,
the nodeless eigenfunction (|x|2-+a?)1/2 possessing the eigenvalue
zero. Thus we have the WKB approximations

1 .
o~ — f2¢ik * (X=Y),
f(x;Y)——(z,’r)s -/l.kl Zu(x.y)[lklz l‘(x:Y)z:ll % ¥ dsk:

k|2 |k |2—p(x,y)?] 2
Xelk- @-V)dsp,

where u(x,y) =u(y,X) is a certain non-negative real function such
that u(x,x)*=3a*(|x|2+a?)2. Substituting these WKB approx-
imations into (7), we obtain

1 1 "
Eone=1/[(_2‘1;5§ .[IklZMX'X){[“{P—”(X,X)?] /2

92

[T k2= e T ) oo

o 1
Ve Vyg(X,Y)="(27r)s [|kl Su(xy)

4 4
~ lim f [%ﬁ"%’ﬁ In(2K/p(x,x))]d3x+z—f

K=o
_ 3\, _ On?
_Em+(1—6) lim o7 In(aK)+ g5
which agrees with (24).
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with (12), (13), (14), (17), and (18):

Or?

1
Eone= vwc+" /[&(k,k)+ﬁ(k,k)]d3k+——-,
4 8\

(22)
and so the dressed fermion mass value is
972 1 a*r
mEEone""Evm:—__- /a(k)k,)ﬁ(k,)k)——dsk (23)
8\ 4 (K|

in view of (20). Making use of the approximation (21),
we finally obtain

or? /3 \?
m=—+<—> lim ¢! In(eK)
&\ \16/ X~
for (aK)>>1. Since the first approximation (21) is
asymptotic to the exact solution of Egs. (19) and (20),
Eq. (24) is an exact consequence of the Rayleigh-Ritz
approximation theory.

Now all of the equations in the theory remain
perfectly regular in the limit ¢ — oo, that is, as the
homology constant e increases without bound.® In
view of the fact that the homology constant is a free
parameter in the theory, the result (24) can be made
finite by requiring ¢ to manifest a suitable dependence
on the cutoff constant K so that a— © as K — =,
say by putting e=NK. With such an a=a(K), the
finite, positive, dressed fermion mass value m=9?/8\
is obtained without ambiguity, independent of the
infinite, positive, bare-mass constant (12).7

(24)

6 Moreover, a straightforward integration calculation with (6)
and (14) shows that the expectation value of the total angular mo-
mentum

s={(one| /[%{rx Vo, ia%}—l—\/ﬂ (—irXx V+%o-)¢:|
Xd3r|one)/{one|one)
= [wit—ixxVtioway / [vitid=tuon,

entirely independent of the value assigned to @, is generally
consistent for a spin-7 particle.

7 Of course the strong divergence of the normalization constant
N in (6) is a hard-set feature of the theory. With the appropriate
displacement-invariant measure (Ref. 2) and the relation obtained
from (14) by ordinary integration

3r%a

[ut@unman="2,

the normalization condition {one|one)=1 produces
| NV 2= (3x%a/2\)F,
where

5= [{eu - [ ] o@Dty |}
X I‘I{exp[—w (x)2d%x ]} (d%)mﬁw (x),

h(x,y) = (— Vst V4 (= V) VL f(X,¥) — frao (X,¥) ]
Now from the approximate solution (21) with (17) it follows that
all iterated kernels constructed from 4(x,y) [i.e., S/ (x,2) 1 (z,y)d%s,
etc.] are regular as y — X, and thus the dominant (divergent)
terms in & are simply the powers of /"% (x,x)d3% as K — o ; hence
we have

o 1

F= ,§o;z_| —«% /h(x,x)dsx)”

= lim e%K/8,
K—»



