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The Bethe-Salpeter equation is written down for the static model of ~N scattering. This equation satis6es
unitarity exactly in the elastic region, but includes at least some inelasticity at higher energies. It is solved
below the inelastic threshold by using the Noyes technique, and then making a Pagels-type approximation.
It is applied to the reciprocal bootstrap problem of Chew, where N* exchange is assumed to provide the
dominant force for binding the N, and N exchange for giving rise to the¹.Experimental values are used for
the crossed-channel masses and couplings. The cutoff is adjusted to give the correct position for the
direct-channel nucleon pole. This gives an output N mass and residues which are in rough agreement
with experiment.

I. INTRODUCTION

'HE simplest model for P-wave mS scattering is
the static limit of the E/D method, in which the

D function is approximated by a straight line. This
model was used, by Chew' to argue that the binding of
the E is due primarily to E*exchange, while that of the
N* is a result of E exchange. Since then, numerous
other X/D reciprocal bootstrap calculations have been
made, ' which tend to support the notion that the Chew
analysis is at least roughly valid, even though other
e8ects may also be quite important. ' 4

Recently, it has been proposed by several authors
that the Bethe-Salpeter equation' may have certain
advantages over E/D methods in studying strong-
interaction dynamics. ' s It shares with the E/D equa-
tions the features that it satisfies two-body unitarity in
the elastic region, and reproduces the nearby singu-
larities correctly. It can thus be thought of as another
way of unitarizing exchange graphs. On the other hand,
it does include at least some inelastic effects and satisfies
the Mandelstam representation. It would therefore be
interesting to see how it compares with the more usual
techniques.

A complete relativistic solution of the Bethe-Salpeter
equation is not likely to be particularly simple. ~ This led
us to the static model, where the equation simplifies
considerably. Such an equation has already been con-
sidered by several authors, ' ' who did not, however, use
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it to make actual calculations in bootstrap situations. In
the following sections we shall apply it to the X,X*
reciprocal bootstrap.

where —y is the residue of the pseudopole due to Ã
exchange in the on-shell amplitude

gran(re)

=e"(sinb)/q'. (3)

It is related to the residue of the direct-channel pole in
the (I',J') state through crossing
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where u and P are the crossing matrices for isotopic
spins and spin, respectively. In the s X problem, n and P

FIG. 1. The Born graph due to the ex-
change of the baryon E~.
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II. THE BETHE-SALPETER EQUATION
IN THE STATIC LIMIT

Consider E-wave re scattering. A given state (I,J)is'
characterized by its spin J, isotopic spin I, and. pion
energy co. We shall take the pion mass= I, so that its
momentum q is given by q'=k' —1. The nucleon mass
m is considered to be so heavy that its recoil can be
neglected and the P wave can be decoupled from all
other orbital angular momenta. Suppose we normalize
the off-shell T matrix Try(co', &o,E) so that it reduces to
e" sin8 when we go on-shell by setting E=m+ce and
co'=a&; here h is the phase shift in the (I,J) state. If we
exchange a baryon X of mass m„spin J', and. isotopic
spin I', then the Born term (Fig. 1) is'

T~((v', co,E)= f((u') f((v)/(m, +co+(a' E), (1)—
where f(a) is a cutoff function containing the coupling
constant and kinematic factors.

If we go on the shell, we know that Fig. 1 gives'

TIr((e) re, m+(0) = q'y /(mg —m+re),



S. N. 8ISWAS AND L. A. P. BALAZS

7T / Tl 7T Q

/I

a procedure first suggested by Noyes. "We write

e(~',~)=f(~',~)g(~) (1o)

which means that f(co,co) = 1.From Eqs. (8) and (10) we
obtain for the amplitude

g(~) =h*/(~+~) jd '(~),
TI r7r

/ r( X r

N Nx N Nx N Nx N

Fio. 2. The ladder graphs.

e

+ ~ ~ ~ d(co) =1——
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dco" f(co",co), (12)
co"—co 5+co"

where f(co',co) is obtained by solving the integral
equation

are the same

/
—s s)

-',)

~z s q»s

f(co eco) = +—
(3) ~+co

Now the extrapolation of Eq. (2) off the shell is always
a somewhat ambiguous procedure. We therefore took
the simplest possible extrapolation, which is simply to
set

f(~)= (A*)"'e(A—~)

in Eq. (1).The 8 function introduces a straight cutoff at
co=A, and is thus a rough way of incorporating high-
energy effects.

The Bethe-Salpeter equation is equivalent to summing
the ladder graphs of Fig. 2 and has the form'

T (co',co,E)=f(co')f(co)/(ns, +co+co' E)—
f(~')f(~") T(~",~,E)

(7)
5le;+co +co EE co

where we have suppressed all I, J subscripts. We have
also neglected any self-energy and vertex modi6cations.
Moreover, our Horn term consists only of Ã exchange,
although it would be straightforward to include the
exchange of additional particles. Actually, Eq. (7) is too
general for our purposes, since we shall ultimately be
interested only in the on-shell amplitude. We therefore
set E=m+co from now on. Then for co(A and co'(A. ,
Eq. (I) becomes

v* 1 ' C"'v* 4 (~",~)
ct (co,co) = +— dco —

e (8)
++co s' y 5+co +co —co co co

f(co",co) . (13)
5+co"+co' —co 0+co' C) 1co"

This equation is nonsingular in the elastic region. It
becomes singular for co)A,+2, the point at which the
Bethe-Salpeter equation begins to pick up inelastic
contributions.

From Eq. (11)we see that a resonance or bound state
will occur at ~=~g if

Red (cog) =0.
The residue of the corresponding pole in g(co) will then
be

v= —Lv*/(~+~~)]/P«d'(~~)3.

In the (-,',—,') state, Chew's reciprocal bootstrap' suggests
that S~ exchange should be sufhcient to produce the
nucleon as a bound state. Equations (14) and (15) will
then give its mass and. residue. Since this mass must be
the same as that of the external nucleon, we must have
~g=o for consistency. Ke therefore vary the cutoG A.

until this condition is satisfied. We can then use the
same value of A in computing cog and. y for the S*in the
(s,-', ) state with X exchange. To keep the calculations as
simple as possible, experimental values were taken for
the exchanged mass and, residue in both cases. Thus
6=2.15 for E*exchange, and 6=0 for X exchange. For
p 3/ 2, 3/2 we use the Chew'-Low prediction"
=-',y]/2, ]/2, which agrees with experiment, while yI/2, $/2

=3f'=0 24, where f is .the pseudovector vrlV coupling
constant.

P(co', co) = T(co', co, oN+co)/(q'g)s's,

so that y(co,co) =g(co).
Equation (6) is a singular integral equation, which

has to be solved for each value of ~. It would be con-
venient to reduce it to a form which is at least non-
singular in certain regions. This can be done by following

Equation (13) can be solved quite simply by using an
approximation similar to the one proposed for the E/D
equations by Pagels. We shall continue to IestrIct
ourselves to the single-particle-exchange one-channel
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case althou h it would be straightforward to extend the
approximation to more comp ica e plicated otentials in multi-
channel problems. To see ow

' '
how it arises and what its

2 (M M)l t t s are we first note that for M( +, ft
1s nollslngular ol opg f "&1 physically this means that

5-L2 as can be seen fromin
E s. (11)and (12)."From Eq. (13) it then follows t at
the only singu antics o & ~,col

' '
f «(M'M) inthevariableM'arefor

M (M ~gx=max( (M 6 1)& 6}. II1 fact& wc call
always write the function f as

"™xh(y, M)
f(M ~M) =

+ min

{21) ls a good appl'oxlIllatlon

o„r;„tcgral equation and obtaining the mp
(21) is equivalent to setting

q'"= P C b{M" «I;—)

K . (20) and hence in Eqs. (18) and (13).The latterin q. ) a
~ ~

ionequation usth s becomes in this approximat'

include delta functions in y, for instance. u s i u
'

g
Eq. (16) into Eq. (13), we obtain

' ) (23)
6+a~+M' —M 6+M' 6+a;

where

1~b'iM ~M) =
(M"-S)(M"-M)

1 6+M
X

+5+M —M 6+M M +6

y —M /+6+M —M A+M /+6

linear e ua-
tions which we can solve for the f a;,M .G. M .Tllcsc caI1 tllcI1{") b" b.t t t.d b-k .t. Kq. (23) t".

g.. .,. f.,

H
'

however if we substitute Eq. (16) intoHere again, ow
e Gnd, that we can express the integra

s of tllc fllllctloll I(x).But tllls tlI11c I($

{1g) ke the approximation (21) if M&1, since otherwiseIna e
ld be making a pole approximationwc %'ou c In

ximation isregion w ere i ish t singular. Since our approxim
j.3

6+M 1
equivalent to Eq. (22), we obtain from Eq. ( )

I (M 6 M)——

(M—6—M' —y) {6+M')

6+M I(—6)
~+M' (~+y) (~+M)

d(M) =1—2 f(o', M)
m' & I 8«—M 6+Gg

with
//3

//

GD
—g

I(x)=

V I(M) V'
d(M) =�——

16+ 7I'
If we take the discontinuity of f(M', M) in Eq. (17)

th arlablc we obtain an 1ntcgial
e uation for h(y, M). In principle, we could always so ve

from Eq. (16). As long as M&k+2, however, we see
from Eq. (19) that we only need I(x) for x(1, i.e., in a

Thus we can always make thenonsingular region. us
approximation

f(M M)
//

M —M 6+M 6+M
~ (23)

M&=1 the last term is now nonsingular forSince flM, M =, e a
we 6nd, that thisM&k+2. If we again use Eq. (16), we n

term can be expressed in term s of I x with x needed
only 1n thc 1cgion & min. ( &+ max:p Just as it was for
f(M', M). Thus we can make the approximation (22) to
obtain

s=1 gs —g

with 1&a;&A. The constants c; and a; are ad~usted so

We shall use Kq. (24) in the (-', ,-,') state since we are only

he (-' -') state, however, we need. d(M) for M) . t
turns out that we can still simpli y q. pf E j.2) rovided
that we rewrite it as

(20)

robabl sets in very slowly above Its' Since the inelastIcIty pro a y
ld it should be reasonable in practIce o raisethresho, I s se

6+2 to a much higher vaue m e i
( )

m 61M s. '-& a;—M &3+a; 6+M
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FIG. 3.Plot of I(x)
as given by Eq. (27)
for A.=8.9 (full line),
compared with the
pole approximation
(16) when n=1, cI
=1518 and a1=6.67
(dashed line).
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We shall use Eq. (26) in calculating the properties of
the E*.

In practice, we just took v=1 in Eq. (16). The
constants c& and a& were adjusted to reproduce the exact
values of I(x) at x=0 and x= —4, as given by the
integral (20). For A'))1, this integral reduces to

J (x) = (x'—1)'~' 1n((A[(1—1/2h. ')
&& (x'—1)'~'+x)—1)/(x —A) }, if 0(x(1

= (1—x')"' tan '(A(1 —1/2A')

)& (1—x')'~'/(1 —xA) }, otherwise.

With A.=8.9, for instance, we obtain a~=1518, and
a&=6.67. In Fig. 3, our pole form is compared with Eq.
(27), and is seen to be quite a good approximation in the
region where it is needed. This value of A. is actually the
one which gives an output nucleon at co=0, with E*
exchange in the crossed channel. As mentioned in
Sec. II, experimental values were taken for the S*
parameters, which give 6=2.15 and y =0.2133.

If we evaluate the residue of our output nucleon pole,
we obtain y~i2, ~i2

——0.20. The corresponding experi-
mental value is y~/2, ~/2

——0.24, as we have seen. We next
exchange the nucleon in the crossed channel. Taking
experimental values for its mass and coupling, we have
6=0 and y =0.1067 in the (2,2) state. With the same
cutoff A= 8.9 as in the (—'„—,') state, this leads to an output
X*, with ~g= 1.5 and y3/2, 3/2=0. 10. The experimental
values are ~g ——2.15 and y3/2, 3/2 —2yg/2, g/2= 0.12.

I(x) =-',A'+-'x[A' —1n2h)
+(x2—1)[Ayx in2A —S(x)), (27)

where

The above results suggest that the Bethe-Salpeter
equation works at least as well as the S/D method in
making bootstrap calculations. Interestingly enough, it
seems to lead to output residues which are smaller than
the experimental values. This is the reverse of what one
obtains in most X/D calculations. "

In calculating the (—,',2) state, we took the same cutoff
A.=8.9 as in the (-', ,-,') state."Actually, this procedure
may not be as arbitrary as it probably appears at 6rst
sight. A cutoff of this type is a rough way of parame-
trizing short-range forces. Now it has been suggested
that higher symmetries should manifest themselves at
higher energies and. momentum transfers, i.e., in inter-
actions involving small distances. Therefore, it might be
reasonable to assume that parameters which represent
such interactions (for instance, cutoffs) should. obey
whatever symmetry is appropriate to the problem —the
symmetry breaking would then come from long-range
interactions. "

Several synunetry schemes have been proposed in
which the X and S* would be degenerate except for
symmetry breaking. In particular, this is true for
SU(6),'" and the strong-coupling group, "both of which
have had. some success in strong-interaction physics.
Thus it should be reasonable to assume the same cutoff
in the (-'„-',) and (2,2) states, within which the E and 1V*

occur as bound systems. Of course, we shouM, at the
same time, includ. e whatever other channels are coupled
to the m-E channel through the symmetry we are as-
suming. Since these have higher thresholds, however,
their effect is probably not crucial when the symmetry
is broken. It should therefore not be unreasonable to
neglect them, at least in erst approximation.
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