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Structure of Resonances in Electron Scattering by Hydrogen Atoms*
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A study of the structure of resonances just below the n= 2 excitation. threshold in electron scattering by
hydrogen atoms is carried out by utilizing an approximate method adopted from the projection-operator
formalism. Analytic expressions for the level width near the threshold are obtained for both the singlet- and
triplet-compound-state series with zero total angular momentum. It is found that the level widths behave
like the level spacings in that they decrease exponentially as the levels approach the threshold. Nevertheless,
the ratio between the level spacings and widths remains a constant less than 1.It is then concluded from the
study that within the approximations adopted in the method, neither the singlet nor triplet series of the
compound states become overlapping near the threshold. However, the Lamb shift may, by removing the
degeneracy in the n=2 levels, cut oft these in6nite sequences of compound states, thereby restricting the
number of allowed resonances. The interference between potential and resonance scatterings is also
examined.

I. INTRODUCTION
' 'N recent years, a number of resonances in the elastic
. . electron scattering by atoms and molecules have
been found theoretically and observed experimen-
tally. ' 6 In the present paper we deal with the simplest
case of such scattering systems, namely, electron scat-
tering by hydrogen atoms. The existence of resonance
in the elastic electron-hydrogen scattering system

(H,e) just below the n =2 excitation threshold. was erst
predicted by Burke and Schey' in a detailed close-
coupling calculation. Subsequently, a number of
theoretical papers, in which various methods are dis-
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cussed, ' ' have appeared; these papers conhrm this
prediction. Experimental observation of such a com-

pound state was later reported by Schulz, by Kleinpopen
and Raible, and by McGowan, Clarke, and Curley. '

The structure of the resonance is, however, not
well understood. It was first pointed out by Gailitis
and Damburg4 that because of the strong electric
dipole interaction between the projectile electron and
the degenerate e= 2 levels of hydrogen, there may exist
an infinite number of resonances in the (H, e) scattering
system just below the @=2 excitation threshold. How-

ever, the Lamb shift may, by removing the degeneracy
in the e= 2 levels, cut off this infinite sequence of com-

pound states, thereby restricting the number of allowed
resonances. The pertinent question is then whether these
allowed resonances are isolated or overlapping. The
purpose of this paper is to present a study concerning
this question.

The plan of the paper is as follows. In Sec. II, a very
brief review of Feshbach's treatment of resonances~

which leads naturally to the expression for the reso-
nance width is given for a two-electron system. By
utilizing the derived expressions, a study of resonance
structure is carried out in subsequent sections. In Sec.
III, the method used to obtain the channel wave func-
tion is outlined. The determination of the compound
channel wave function is described in Sec. IV in which

an effective one-particle Schrodinger equation is derived
for the projectile electron in a zero total angular mo-
mentum scattering. The potential in the eGective
Schrodinger equation is constructed in such a way that
it asymptotically takes the appropriate electric dipole
form arising from the interaction with the degenerate
e= 2 target levels and in such a way that it is capable of
reproducing the calculated level positions of the lowest
I-=0 singlet and triplet compound states. In Sec. V,
level positions of higher members of the two series are

'H. Feshbach, Ann. Phys, (N. Y.) 5, 387 (1958); 19, 287
(1962).
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calculated from the dispersion relation of the effective
one-particle equation and are compared with other
available theoretical values. The ratio formula of the
level positions near the threshold derived by Gailitis and
Damburg4 is then normalized so that an analytical
expression of the level spacings is derived (in Sec. VI).
Level widths are calculated in Sec. VI where a com-
parison is made with a measured width' and with values
calculated using other apprmimations. An analytic ex-
pression for the level widths near the threshoM is
derived, and it is found that widths behave like spacings
in that they decrease exponentially as the levels ap-
proach the threshold. By utilizing these derived ex-
pressions for level spacings and widths, the structure of
the resonances is then examined, The profile of the cross
section is calculated in Sec. VII. Finally, in Sec. VIII,
some concluding remarks are stated.

Ir. ZXIRZSSIOm FOR THZ WmTH
OF COMPOUND STATES

Thc SchI'odlngcI' cquatlon which represents a two-
electron scattering system is

(H—E)% =0,
where the Hamiltonian, neglecting the relativistic and
finite-mass CGects, may be written in terms of the
center-of-mass coordinates as

H= Ho(ly)+Ho(f2)+ Vo(rf rg) . (2.2)

The total wave function 0' for the two-electron system
is antisymmetrical with respect to interchanging elec-
tron coordinates, including spin coordinates. Since we
are dealing with a nonrelativistic two-electron system
with no external magnetic interaction, we may suppress
the explicit dependence of the wave function on spin
coordinates and carry the total spin S as a parameter
so that

+(r~,r ) = (-)'+(r2, r~) (2.3)

Let X„(r)denote the target states in con6guration space
having the corresponding eigenvalues ~„;then

tion operator I' such that

Pe =x,(r~)W, (r,)+(—)sX,(r2)W~(r~) (2.6)

with the remainder of + $i.e., Q%', Q=1—P] given by

e~= z ~ .(")~.(")+(-)",(")~.(")&, (2n

~i7C syr

'tl.„(r) - 8.ge'~"+f„(k,,r) (2.10)

where the k's are the wave number of the electron and
the f„'sare the scattered amplitudes.

Since P projects out the complete elastic channel from
0', it then follows that Q%' does not contain any incident
wave. Thus, the Schrodinger equation (2.1) may be
solved for P%' in terms of Q yielding'

(X—E)P%=0, (2.11)

K=P H+HQ QII P.
E—QHQ

(2.12)

The explicit appearance of the resonance energies in the
CGective Hamiltonian X comes from the bound states
of the Q-projected Hamiltonain QHQ

where the completeness relation P„~X„(r))(X„(r)
~

= 1 is
implied. The appropriate projection operator I' which
is Hermitian and idempotent is'

P=Pg(rg)+Pg(r2) —Pg(rg)Pg(r2), (2.8)

where P,= ~X„(r))(X„(r)
~

is the elementary projection
operator. This permits us to deine the single-particle
channel wave function 'tt„(r;)uniquely in terms of the
inner product (x„(r~)/ e(r;,r,)) (Appendix A):

~.(;)=-;L1+b, -P (;)1(x,( ) l~(',;)), (29)
where 8„q——b„qb~ob 0 are the delta functions. It may
easily be shown that the single-particle channel wave
functions 'll. dined by Eq. (2.9) are orthogonal to the
ground target state Xi for v/ 1 and satisfy the boundary
conditions inferred by 4".

Ho(r)x„(r)= g„x„(r), (2.4) (QHe-h. )e~.=o, (2.13)
where v denotes the set of hydrogenic quantum numbers
(~,l,m) and

X.(r) =» 'X-~(») y i"(») (2.5)

Ke let v=1 denote the ground state and set ~i ———', to
define our energy scale. '

For elastic scattering, we may project out, from the
total wave function 4', the elastic channel involving
only the ground target state and treat the remainder
of + as a field for generating nonlocal optical potentials
for the elastic channel. To do this, we require a projec-

J. VV. McGowan, following paper, Phys. Rev. 156, 165 (1967}.
9 Atomic units are used throughout this paper except where in-

dicated otherwise.

(E—X')P@=PHQ QHP+,
E—8

(2.14)

X'=K—PHQ QHP.
jV

(2.15)

'" Y. Hahn, T. F. O' Malley, and L. Spruch, Phys. Rev. 128,
932 (1962}.

where the QC 's approximate the quasistationary nature
of the compound states. Thus, the eigenvalues so ob-
tained approximate the level positions of the compound
states.

For an isolated resonance, Eq. (2.11) may be written
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Solving Eq. (2.14) for P@2 we obtain with

(2.26)X"=X—PHQ Q — QHP,
a g—g',(2.16)PV =PCS(+'+ APHQC'

E—X'+izl
with

(+)
where the resonance structure functions A have noA=, (2.17)
longer the simple expression given by Eq. (2.17) but

g &ci) QHP[1/(E X/+i~)]PHQC) &

' must be determined by solving the set of simultaneous
equations

where P(J (+) is the homogeneous solution of Eq. (2.14):

(X'—E)PP(")=0. (2.18)

The structure of the resonance is given by A [Eq. (2.17)]
which may be interpreted as the probability of com-
pound-state formation. From the definition of the com-
plex resonance energy, we hnd from the denominator
of Eq. (2.17):

1
(B—C.')2 — C QBP PBQC ) L

E—X"+zzl

= &y. l
QHP ly(+)&. (2.27)

It is clear that Eq. (2.27) reduces to Eq. (2.17) for
isolated resonance. For overlapping resonances, it is
convenient to introduce the concept of averaged width

&P& such that

(
!

) (!')= (2 /B) X (C. QBPC(B 20")PBQC ), —(2.2)!)

E X'+ig—
where S is the number of overlapping compound states.

This permits us to write for the resonance energy 8'

with

r.=2 l&y(-)IPHQlc. )l &dn, (2.22)

(2.23)

1
C,'= C,+(0 QBPC' PBQ@ ) (2.20)

E—X'

and for the width

I' =22r&C', QHP8(E —X')PHQC ). (2.21)

Utilizing the outgoing solutions of Eq. (2.18), the
width given by Eq. (2.21) takes the expression

III. DETERMINATION OF Pci

In order to carry out the calculation for the width
from Eq. (2.24), both the channel wave function PP
and the quasi-stationary representation QC' of the
compound-state wave function must be determined.
In this section, we deal with the determination of the
channel wave function PP. The determination of QC
will be given in the next section. %e now concentrate
our discussion throughout the rest of the paper on the
(e,H) system.

Since the projection operator P given by Eq. (2.8)
commutes with the target Hamiltonian IIo, the Schrod-
inger equation (2.18) may be rewritten as

(E Hp(ri) Hp(rp)—)P)IP= P—VP)J2, (3.1)
where kj is the wave number of the electron in the exit
channel, and the operator J'dQrp accounts for decaying
of the electron into all the infinitesimal elements of the
solid angle dQJ in the exit channel. For elastic scattering,
the only open channel is (k,„,v) with v=1 which is
spherically symmetrical; the expression for the width
reduces to

P-=(4/ )I&0' 'IPHQlc-&I'
=(4/~)I&pl( 'I volQc'-&I'

with
I
c'-&&c'-

I

V =. Vp+HQ —— QH, (3.2)
E—QHQ E 8.'—

where in the potential U the first term Uo is simply the
interelectronic repulsive potential lri rpl

' an—d the
remaining term in U is the nonlocal optical potential
including the e6ects of distant resonances. From the
definition of the projection operator P [Eqs. (2.6) and
(2.8)], PCS may be written as

where we used Kq. (2.2) and the relations PQ=O'
and [P,Hp]= [Q,Hp]=0.

For overlapping resonances, the situation becomes,
however, more complicated. The formal solution of
Kq. (2.11) now takes the form

with

P4=(2 )"'(xi(rz)»(rp)+( —)'xi(»)vi(ri)}, (3.3)

»(r )= [1—'Pi(')](Xi(r') I4(r'r;)), (3 4)

where v~ is the single-particle channel wave function

pcF py(+)+ g A PHQC, (2 25) corresponding to the Hamiltonain X', and (22r)')'

E X"jig — comes from the normalization of z)i and PCIP. !
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where L and 3f are the total orbital and magnetic
angular momenta of the scattering system, respec-
tively, and the (l,l,m, m, I

LM)'s are the Clebsch-
Gordan coefficients. Substituting Pf from Eq. (3.3)
into Eq. (3.1) with vi given by Eq. (3.5) and operat-
ing on the resultant equation by +~2 (04'Oms'I LM)
x(Yi, "(i'2) I, we obtain

d' ls(is+1)
+2Vi(rs)+ki' »,&2(rs)

df2 rg

2+1(rs rl)»ris(rl) (3 6)
where

ki'= 2(E—ei) =ki'+1, (3 7)

To remove the angular parts of Eq. (3.1), we expand
the channel wave function vi(r) in spherical harmonics

vi(r)= g (Ol20mslLM)r 'vs, is(r)F'is '(/), (3.5)
Zgts 2

The integro-differential equation (3.10) is solved
numerically for vo, &2(rs) subject to the boundary
conditions

vsris(rs= o)=o, (3.12)

v,si(r )2:ki ' sin(kir —Lisir+$L&e&), (3.13)

where the EL&e&'s are the phase shifts. It is well known
that the phase shift so obtained does not give the correct
potential scattering, since the neglected nonlocal poten-
tial is of importance in potential scattering. However,
for the purpose of calculating width, the static-exchange
wave function obtained from Eq. (3.10) may constitute
a reasonable approximation, since at resonance the
dominating distortion which arises from compound-state
formation is accounted for in the Q subspace. The
accuracy of the calculated width from this approximate
wave function is discussed in Sec. VI where comparisons
with other approximations are made.

d' ls(is+1) 1
+2 1+ e srs+kls Vorls(rs)

-dr~~ r2' rQ

where
2(-)'

~s,L'"(rs) = Xio(rs)
2L+1

='Ns, Lie&(rs), (3.10)

f'2 riL rsL )
Xio(ri)

r L+i r L+lj

Xvs&ls(rl)«1+rs xlo(rl)

vi(rs) =—Q (0120ms I LM)
f2 l2'

X(0ls'Oms'ILM)(Yrs '(rs)
I (&i(ri) I

x v(ri, rs) I xi(ri)) I Yi,.""(rs)), (3.8)

Ei(rs, ri)», is(ri) = (—)e Lxio(rs) p (—)'"
l 2'm2'tn2

x (Ol20ms I
LM)(0ls'oms'

I LM)( Yr,"'(rs)
I

X(xi(ri) I V(ri, rs) —-', (1+ki')

(r )V "'(i'))I Voo(~)) (39)

Equation (3.6) differs from the static-exchange
equation" in the appearance of the nonlocal optical
potential. However, if we approximate V I Eq. (3.2)]
by its first term Vo (i.e., equivalent to the static ap-
proximation H' PHP), Eq. (3—.6) reduces to the static-
exchange approximation. "

(4.1)(QHQ —h )QC =0,
where QC„has no ground target-state component:

Q@ Z {X(ri)4'&&(rs)+( ) X~(rs)A (ri)}~ (4 2)
ygl

From the definition of the projection operator Q,
the single-particle compound wave functions p„(r;)
take the form

y„~(r;)=-'2I 1—P,(r;)J(x„(r;)I c (r;,r;)). (43)

In actual applications, only a 6nite number of excited
target states may be included in Eq. (4.2); it is then
no longer possible to satisfy Eq. (4.1). For such cases,
we may vary QC (2 e , vary . r.k„ in the subspace pro-
jected by Q) so that

~(Qc'-IQHQ-&-IQc'-) =0 (4.4)

This is equivalent to making the single-particle com-
pound wave function p„satisfy the Hartree-Fock
equations. Equation (4.4) may also be solved by con-
structing the appropriate parametrized trial variational
wave function for QC' and minimizing the variational
parameters' or by solving a 6rst-order matrix di6eren-
tial equation representing the resultant coupled
equations. "

Expanding P„ in spherical harmonics, one obtains
I remembering r = (22,l,m) g

IV. DETERMINATION OF Qe'

The stationary representation of the compound state
may be obtained from the Q-projected Schrodinger
equation

X +2(1+ki')&LO»rrs(ri)«i
r gj+1

(3.11) y„(r;)= Q (l;l,m, m; I LM)r; 'ys„.(,(r;) Yr, ~(r';) . (4.5)
lg, m2

"P. M. Morse and W. P. A11is, Phys. Rev. 44, 269 (1933);
B. H. Bransden, A. Dalgarno, T. L. John, and M. J. Seaton,
Proc. Phys. Soc. (London) 71, 877 (1958).

Now if we substitute QC from Eq. (4.2) with the

' J. C. Y. Chen, J. Math. Phys. 6, 1723 (1965}.
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s given by Eq. (4.5) into Eq. (4.4), and if we carry out the variation inside the integral and then integrate
the resultant over the approximate coordinates, we obtain

with

d' l2(l2+1)
+kn lllk l2 2 p {I nit» («2)o4»'(«2)++nip» («2prl)42 ' »'( «1) }

k„,'= 2(8 —0„), 22) 1,

(4 6)

(4 7)

I lny» '"(«2) 8 ' +Q fp(lll2 ll l2 L) x.l, («1) ~. l, («1)d«1
r2 r P+1

lll2 («2 «1)tlo."» («1) = (—)'x"» («2) 2 gp(l14 ll l2, L)

r~ 1 k„'
X x,l, («1) + ~po 42 ' »'(«1)«1, (4.8b)

r)l'+' 2e' 2
where the coefficients fp and gp,

and
fp(l, lo, ll'4'; L) = (l14L~Pp(r'1 r2)

~

ll'l2'L)

gp(ill„l1'l2', L)= (—)'&+'2—
(l14L~Pp(rl r2) ~4'/1'L),

(4.9a)

(4.9b)

are tabulated by Percival and Seaton. "Note that Eqs. (4.6) are not simply the usual set of coupled equations with
the 1s term omitted, since in Eq. (4.6) the g s are constrained to be orthogonal to the 1s state as required

by Eq. (4.3).
We confine our treatment to within the 2s—2p close-coupling approximation' and consider the case where the

(e,H) system has zero total angular momentum (i.e., L=M =0). In this case, QC becomes

rl) r2
Qc' = {IX20(«1)422.0(«2) —v3X21(«1)42,.1(«2) «»012)+(—)'t 1~2]},

4m.
(4.10)

and Eq. (4.6) reduces to a pair of coupled equations

d2
-+k2 ' 42.0(«2)=2

dr22

(1.1)

{I 200 («2)4'22 l2'(«2)+It 200 («2 «1)422'(»1)«}

( & I', &~')= (o,o)
(4.11a)

2 (1,1)

+k2 kin 1(«2) 2 Q {V211 («2)$22»'(«2)+Itoll "'(«2,«1)422.«'(«1)} ~

dr22 r22 (i1', i2') ={O,O)

d' 1—+37
——+k2 '—— —$,(r) =0,
dr2 r2A

+k2 ' %=—4
dr2 r2

(4 12)

1++37 ,.(r) =0,+k2 '—
where + is a unicolumnar matrix A is a square matrix:

with

It can be shown, in matrix notation, that Eq. (4.11) Thus, one obtains the decoupled equations
asymptotically becomes

(4.11b)

(4.15a)

(4.15b)

/422 0&e
/ /, A=
ky„,.,i '

k6 2)
(4.13)

= 8-'e

Equation (4.12) can be decoupled by a transformation
8 which diagonalizes matrix A. The appropriate trans-
formation is

$1
(4.14)

&l(1—v'37) l(1+v'37)
13 I. C. Percival and M. J. Seaton, Proc. Cambridge Phil. Soc.

S3, 654 (1957}.

1++37 —6
B '=(2+37) ' (4.16)—1++37 6

We observe that Eq. (4.15b) has no bound-state solu-
tion and that Eq. (4.15b) has an infinite number of
bound-state solutions resulting from the attractive
dipole potential generated by the 2s—2p degenerate
channels. The latter solutions do not require details
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FIG. 1. The effective potential
for a projectile electron in the ex-
cited 2s-2P degenerate field of a
target hydrogen atom.
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RADIAL COORDINATE OF THE PROJECTILE E' ECTRQN (Q )

of the potential at small distances, provided it is not
too singular at the origin.

At small distances, Eqs. (4.11a) and (4.11b) can no
longer be decoupled by a linear transformation. One

may, however, define a nonlocal optical potential" so
that Eq. (4.11) is decoupled all the way to the origin.
We assume that this nonlocal optical potential may be
approximated by a local potential. " In view of these
observations, we select for the e6ective potential g
of the wave function $, a radius ro such that in. the
external region (i.e., r&ro) the e6ective potential is
given by the dipole term —-,'(/37 —1)/r' and such that
in the internal region (i.e., r&ro) the effective potential
is given by a constant 'Uo&+& (Fig. 1).Thus, the approxi-
mate equation for $ takes the form

potential ~~X(X+1)/r' holds for both singlet and triplet
states with L=M =0. At small distances, the exchange
terms become significant and cause the potential to
split according to the spin symmetry of the system
(Fig. 1).We notice that for the triplet case the effective
potential becomes repulsive in the internal region. This
is because of the centrifugal barrier associated with the
p-electron, since in the triplet case the 2p-orbital is
always occupied, To account for the spin symmetry,
the potentials in Eq. (4.17) are labeled with the super-
scripts (+) and (—) corresponding to singlet and triplet
states (i.e., S=O, 5=1), respectively. Thus, this per-
mits us to approximate $&,.0 and Q&,.& in Eq. (4.10) as
Lsee Eqs. (4.13) and (4.16)]

with
g&k&(r) —go&&&

W&+&(r) =X() +1)/2r',
r&rp (4.18a)

r& ro (4.18b)
where

X= ~2+i(+37 5/4)'I' a—nd X(X+1)= —(/37 —1).

Since the exchange terms vanish exponentially and do
not contribute to the asymptotical potential, the dipole

"M. Mittleman, Ann. Phys. (N. Y.) 14, 94 (1961); B. A.
I.ippmann, M. Mittleman, and K. M. Watson, Phys. Rev. 116,920
(1959)."It is obvious that at configuration space close to the nucleus
the centrifugal barrier associated with the p electron becomes
dominating and gives rise to an infinite potential wall. This may
seriously limit our assumptions for approximating the nonlocal
optical potential by a local potential. This difhculty is, however,
partially removed by the fact that the compound wave functions
extend very far in con6guration space (Figs. 3 and 4} because of
the long-range nature of the supporting potential, and by the fact
that they are not strongly dependent on regions close to the
nucleus. This is particularly so for higher members of the com-
pound states.

with appropriate spin symmetry. In writing Eq. (4.19),
we have taken g =0, since there is no bound-state
solution for Eq. (4.15b). The well depth 'Uo&+& and well
width ro of the constant potential are chosen so that the
lowest eigenvalues (for both the singlet and triplet
states) match, respectively, that calculated by O' Malley
and Geltman' (Fig. 1).

V. CALCULATION OF THE LEVEL POSITION

Wave functions $ (r) are obtained by solving Eq.
(4.17) for solutions which are bounded everywhere and
decay exponentially at infinity, In view of the boundary
conditions, the unnormalized wave functions p take
the form

$ &+&(r) =sin(K '+&r), r&ro

=a(«.&"&,)k,.(ro)r"'H &,
&'&(i]I&., )r),

r & r&& (5.1)
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This leads to the egression

( &+'(r) =sin(&&, &+&r) —(bi/ci)Xio(r), r&ro
=a{r & a,„'(ilk, „lr)—(b,/c, )x„(r)},

r)ro (5.4)
with

sin(&& &+'rp) (bi/ci)Xio(ro)

ro' 'a;hc "(ilks
I "o)—(bs/cs)xio(ro)

-4

-l2

(+)
Rp

/
/

/
I
f

rp

sin(&&„&+&r)Xip(r) dr,

FIG. 2. Dispersion relations for the singlet compound-state wave
function of the projectile electron LEq. (5.8)g. The dashed and
solid curves are, respectively, the values (multiplied by rp) of the
left-hand and right-hand sides of Eq. (5.8) as a function of lks ~rc.
The parameters rp and UQ(+) are chosen so that the lowest root
Rc&+& appears at lksal =0.217696 corresponding to so&+&=9.559
eV.

~ ) Q

r'&sE;h, &"(ilEs l
r)xip(r)dr,

l Xio(r) l
'dr,

(5.6)

where
K &+& = i(2'Up&"&+

l ksa
l

'J'i'
)& p

—— i() +—-,') = (/37 —5/4) '",
lxio(r) I'« (5 7)

where u is a matching constant, and where the JI,),(')'s
are the Hankel functions of the first kind having the
integral representation [Appendi&& B, Kq. (B3)]

H;h, "&(ilks.
l r)

where (et+co) is of course equal to unity. It is worth
while to mention that, for most ro of interest, the term
(bs/cs)XM(r) in Eq. (5.4) is very small for r) ro and can
be neglected.

The continuity condition of the logarithmic deriva-
tives of the wave function at r=ro requires

2&kg m )I, P

c
—Ihsa&c cosh &z& cosa&ps)ds. (5.2)

'LÃ 0

8—in[sin(&& &+&r) —(bi/ci) Xip(r)]
Br

TQ

This is the expression used for numerical calculation of
the Hankel function. Since the single-particle compound
wave function g„(r)defined by the projection operator
[see Kq. (4.3)] contains no ground-target-state com-
ponent, we must require, in view of Kqs. (4.5) and
(4.19), the $ &+&'s to be orthogonal to Xip(r) " i.e.,

which provides us with information concerning the
resonance energies. In Figs. 2 and 3, we plot both sides

& &+&(r)Xyo(r)dr=0. (5.3)

This implies that the expression for the $ &+&'s given by
Kq. (5.1) must be modified so that Eq. (5.3) is satisfied.

'Q Actually, the orthogonal condition between the ground target
state and the single-particle compound wave function @„(r)of
a P electron is automatically satis6ed for I=0 due to the angular
parts of the wave functions. Thus, the orthogonal restriction be-
tween the radial parts of the wave function

A...(.} „(.}d.=o

is not at all necessary. However, because of our approximation
of the effective potential in the internal region r&rp, we obtain,
for both ppzsac and 4 zsaq, the linear dependence on $ (r) LEq. (4 19)j.
This leads to the curious orthogonal restriction on @g,2„1in the
equation above as a consequence of Eqs. (4.19) and (4.22). This,
however, will not strongly effect the properties of the compound
states (footnote 15).

4
(-)

Rg

(-)

2- "'

I

0.6
I

I.2

-2-

FIG. 3. Dispersion relations for the triplet compound-state wave
functions of the projectile electron LEq. (5.8)j. The dashed and
solid curves are, respectively, the values (multiplied by rp) of the
left-hand and right-hand sides of Eq. (5.8) as a function of

I ks» I
rc. The parameters rs and i&c& & are chosen so that the

lowest root )4& & appears at Iksal =0.063437 corresponding to
Gp( ) =10.149 eV.
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of the dispersion relation as functions of ~km~~ra for
singlet and triplet cases, respectively, The solutions of
Eq. (4.17) are related to the corresponding roots in
Eq. (5.8) as labeled by Z„&+)with m=p, 1, 2, in
Figs. 2 and 3.Thus, the energies of the compound states
take the expression

h '+&={eg——', ik2~~'}= —{-'+-,'[R &+%0]'}. (5.9)

For each given ro, the potentials in z (+& (i.e., 'Uo~+)

and 'Uo& ) for the singlet and triplet spin multiplicities)
are chosen so that the lowest singlet and triplet states
appear, respectively, at bo(+&=9.559 eV and Bp(
= 10.149 eV above the ground state of the target hydro-
gen. Although these values are the up bounds to the
true quasistationary representations of the two lowest
resonance energies, they nevertheless are the best
available approximate values for Eq. (4.1) without the
energy shift included [see Eq. (2.20)].

In Table I, the calculated energy levels of the erst
four compound states are tabulated for several chosen
values of ro (9&ro&12). For comparison the results of
O' Malley and Geltman, 5 of TemEn and Walker, '7 and
of Burke and Taylor" are also included in Table I. We
observe that for triplet states the calculated results are
almost independent of the joining radius, indicating
that these states are primarily supported by the 1ir'
potential tail. For singlet states, dependence of the
first few energy levels on the joining radius is observed.
This dependence is, however, not at all strong as can
be seen in Table II, where we have tabulated the cal-
culated singlet-state energy levels for several additional
values of ro chosen closer to the nucleus. From Table II,
it is observed that at r0=7ao we obtain lowest values
for both the singlet 0|=1 and 2 states. Although the
qualitative lowering of the energy levels is desirable,
it is, however, doubtful if the lowering has any quantita-
tive meaning, since the single-particle Schrodinger
equation (4.17) is an approximate representation of
Eq. (4.1). We choose rp= 12uo as the favorable joining
radius since it closely reproduces the 0.=1 values of
O' Malley and Geltman for both the singlet and triplet
1.=0 states.

Returning now to Figs. 2 and 3, we observe that as
the incident electron energy approaches the m=2 ex-
citation threshold of the target hydrogen, the left-hand
side of Eq. (5.8) tends to a constant for either singlet
or triplet spin multiplicities of the system; and the
right-hand side oscillates with increasing rapidity as
a function of energy. Since the argument ~kg ~ro of
the Hankel function becomes increasingly small at
these energies, we may replace the logarithmic deriva-
tive of the Hankel function in the right-hand side of
Eq. (5.8) by its small-argument expression'r [Appendix
B, Eq. (B8)g. The dispersion relation [Eq. (5.8)) near

I

"A. Temkin and J. I&'. Walker, Phys. Rev. 140, A1520 (1965).' P. G. Burke and A. J. Taylor, Proc. Phys. Soc. t'London) 88,
549 (1966).

TmLE I. Level positions' of the S and 'S auto-ionization
states of H .

Symmetry Sou rceb

15 rp =9, 'Up(+) = —1.3182
rp =10, 'Up(+) = -1.2456
rp =11, 'Up(+) = -1.1801
rp =12, Up(+) = —1.1227
O' MALLEY-Geltmano
Tem kin-W'alkerd
Burke- Taylore

&8 rp =9, 'Up( ) =142.93
rp =10, 'Up( ) = 7.4521
ro =11, 'Uo( ) = 2.1187
ro =12, 'Uo( ) = 0.8586
O' Malley-Geltmane
Tem kin-Walkerd
Burke-Taylore

gp(+)

9.559
9.559
9,559
9.559
9.559
9.559
9.560

10.149
10.149
10.149
10.149
10.149
10.149
10.1497

10.1646
10.1665
10.1685
10.1701
10.178
10.1668
10.1780

10.2007
10.2007
10,2007
10.2007
10.202
10.2006

10.2015 10.2036
10.2016 10.2036
10.2017 10.2036
10.2018 10.2036

10.2016

10,2036 10.2037
10.2036 10.2037
10,2036 10.2037
10.2036 10.2037

10.2036

a In eV above the ground state of hydrogen atom (1 a.u. =27.21 eV).
b Joining radius in ao and potential in eV with the zero level set at the

m =2 threshold of the hydrogen atom.
p Reference 5.
d Reference 17.
p Reference 18.

TABLE II. Dependence of the level positions& on joining radius
for the 'S auto-ionization states of H .

Sourceb g, (+) g, (+) g, (+)

rp =5, vp(+) = —1.1535
rp =6, vp(+) = —1.4463
sp = 7, vp(+) = —1.4537
rp = 8, vp(+) = —1.3930
O' Malley-Geltman'
Temkin-Walkers
Burke-Taylor'

9.559 10.1644
9.559 10.1625
9.559 10.1620
9.559 10.1629
9.559 10.178
9.559 10.1668
9.560 10.1780

10.2015
10.2014
10.2013
10.2014

~ ~ ~

10.2016

10.2036
10.2036
10.2036
10.2036

a In eV above the ground state of hydrogen atom (1 a.u. =27.21 eV).
b Joining radius in ao and potential in eV with the zero level set at the

n =2 threshold of the hydrogen atom.
o Reference 5.
d Reference 17.
+ Reference 18.

the threshold then takes the approximation

Xo cot@p ln(& [ kg (0'0) —By (0)]+&
= 10.9151 (singlet),
= 3.02934 (triplet) . (5.10)

Solving Eq. (5.10) for
~

k2 ~, we obtain to a good ap-
proximation the energy levels of the compound states
near the threshold (relative to the ground state of the
target hydrogen)

8 (+&—-,'—0.0216e (' '"o), 0.&2
h ( '—-', —0.0020e ('~ ~" )l. (5.11)

Each oscillation in the right-hand side of Eq. (5.8)
corresponds to a compound state approximated by
Eq. (5.11).

The corresponding wave functions $, so obtained
extend very far in con6guration space away from the
target. Figures 4 and 5 exhibit the erst few members of
such wave functions (unnormalized) for the singlet and
triplet states, respectively. The range parameters for
these wave functions are found to be increasing ex-
ponentially as a function of e. This is a consequence of a
long-range potential. Since wave functions $ are related
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TABLE III. Level widths of the 'S and 'S auto-ionization states of H

Symmetry

'S

'S

Source

Sine function'
Static exchange
Close-coupling' ~

Correlation
Experiment'

Sine function'
Static exchangeb
Close-coupling'
Correlationd

I'p(~) (eV)

0.0506
0.041
0.109
0.0475
0.043&0.006

0.522X10 4

0.201X10 4

0.189X10 4

0.206X10 4

r (~) (eV)

0.00645
0.00218
0.0024

0.00219

3.37X10 '
1 18X10—6

r2('& (eV)

3.94X10-'
1.26X10 4

195X10 7

6 81X10 s

Fs(~) (eV)

2 27X10 '
7.22X10 '

1.13X10 s

3.92X10 9

a 7U'idths calculated from Eq. (6.1) using sine function approximation $Eq. (6.8) $ for the single-particle channel wave function and approximate wave
function (5.4) for the single-particle compound wave function with rp =12ao, 'Uo(+ & = —1.1227 eV, and Up( & =0.8586 eV.

b Qlidths calculated from Eq. (6.1) using static-exchange approximation (Eq. (3.10)j for the single-particle channel wave function and approximate wave
function (5.4) for the single-particle compound wave function with rp =12ap, 'Uo(+& = —1.1227 eV, and'Qp( & =0.8586 eV.

e 1s-2s-2p close coupling (Ref. 2).
d is-2s-2P close coupling with 16 correlation functions (Ref. 18).
e Reference 8.

to the radial parts of the single-particle compound wave
function Qqo. ),.(r;) [Eq. (4.19)], the importance of the
long-range potential is obvious. This observation
demonstrates clearly for long-range potentials the
shortcomings of formalism involving the concept of
channel radius outside of which the incident particle
is treated as free. This nonlocalized nature of the wave
function may possibly constitute the reason why
Burke and Schey' had to carry their close-coupling
calculation as far as r~30ao in con6guration space in
order to obtain convergences for the singlet n= 0 state
when 2s—2p states are included.

VI. CALCULATION OF THE LEVEL WIDTH

with

Vdt = g (oi(ro)&1(ri)
~
&o(«,ro)

~
X,(ri)4',.(ro)), (6.2a)

v+1

&ex = p (oi(ri)X1(ro) j Vo(ri, ro)
~

X,(ri)tp, ~(ro)), (6.2b)
v+1

where the superscripts + and —on 1' indicate singlet
and triplet states (i.e., S=O, and S=1), respectively.
The first term y~t( ) in Eq. (6.1) gives the direct contri-
bution to the width, and the second term y,„&' gives
the exchange contribution. After we decouple the
angular states by using Eqs. (3.8) and (4.5), the p's
take the form

1' (+)—spf ~+&, ( )~+ „() ~o (6 1)

The expression for the width is given by Eq. (2.24).
When the expressions for PiP and QC given by
Eqs. (3.3) and (4.2), respectively, are utilized, the ex-

pression for the width may be rewritten as

P, /1 l2, l2

fp(plo', lilo, L) ot ),(ro)bio(ri)

X— X,),(ri)pk )t(ro)dridro, (6.3a)
r I'+'

CO

0
I-
O
D
UJ

2-
hl
l~

CO
I

C3

-2—
O
CL

O
Cl
UJ
N -6-

-8—
IZ
O
Z -IO

I I I I

ro

~{+)
0

I I I I I I I I

4 10 20 40 100 200 400 1000

RADIAL COORDINATE r {op)

gp(plo', lilo, L,)
npi

P,li, l2, l2'

ot t it (r1)X10(ro)

X„1,(ri)go„ it(ro)dridro, (6.3b)n1

where the f's and g's are given by Eq. (4.9).
Equations (6.3a) and (6.3b) in the 2s—2p strong-

coupling approximation reduce to the following equa-

Sourceb

ro =7, 'Uo(+& = —1.4537
rp =10, 'Up(+& = —1.2456
&o =12, 'Uo(+& = —1.1227
Burke- Taylor e

po(+& 1'1(+& 1 2(+&

0.0822 0.01002 5.726 X10 4

0.0633 0.00726 4.303 X10 4

0.0506 0.00645 3.935 X10 4

0,0475 0.00219 ~ ~ ~

3.340X10 o

2 471X10 o

2.272 X10 o

TABLE IV. Dependence of the 'S auto-ionization level widthsa
of H on joining radius.

FIG. 4. First four members of the unnormalized wave functions
g &+)(r) LEq. (5.4)j for singlet-spin multiplicity. These functions
are related to the radial parts L@l,2 p(r) and @l„1(r)j of the single-
particle compound wave functions @„(r)as follows: @l,~„p(r)
=( (+)(r) for n=2s and @a2~1(r)=L1—+37)/6j( (+)(r) for n=2p.

a W'idth in eV calculated from Eq. (6.1) using sine function approxima-
tion I Eq. (6.8)j for the single-particle channel wave function.

b Joining radius in ao and potential in eV with zero level set at n =2
threshold of the hydrogen atom.

e Reference 18.
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TA&LK V. Compound-state dependence of the direct and exchange contributions to the width and normalization constant.

Symmetry Source

r 0= 12u0, 'U0(+) = —1.1227 eV

States

a=0
0.'= 1
cx = 2
%=3

& (+) (eV)'

0,275
0.201
0.193
0.192

( )b

1.477X 101
3.096X10'
5.273 X10'
9.165X104

8.472
6.821
6.627
6,616

(a) c

ro=12go, v'( ) =0.8580 eV n=0
o.=1
&=2
A

0.150
0.131
0.130
0.130

2.594X104
3.839X10'
6.626 X 10'
1.115X 10'

1.236X10'
1.088X10'
1.080X10'
1.080X102

a Unnormalized matrix element for the width defined by Eq. (6.9).
b Direct contribution to the normalization constant for QC~ I Eq. (6.11)j.
e Exchange contribution to the normalization constant for Q4~ LFq. (6.10)j.

tions in the matrix notation:

7,„I~ = (IIs,p I
K

I e),
where V and K are the rom matrices

(6.4a)

(6.4b)

lj' —(V 200 P' 211) (6.5a)

(+1002001t 100211) (6.5b)

and the meaning of the matrix elements of V and K is
clear from Eq. (4.8). The column matrix + is given by
Eqs. (4.13) and (4.19).

~ ~

~.( ) 1
4('") . (6 6)

6(1—v'37) &-(r) 6(1—v'37)

The wave functions $ (r) obtained in Sec. IU must
satisfy the relation

tortion of the channel wave function is of importance.
This suggests that width depends strongly on the
channel wave function ~I„O.Thus one should really use
more adequate solutions of Eq. (3.6) which may be ob-
tained, for example, by the variational method.

Ke have also investigated in a limited sense the de-

pendence of the level width on joining radius using ap-
proximation (6.8) for the channel wave functions. The
results are summarized in Table IV. We notice that the
dependence on ro for the level widths is similar to that
for the level positiorls. The values of the width change
moderately for 0.&1.The width of the lowest state o.=o
which is supported largely by a potential in the interior
region changes significantly. Ke expect that for states
near the threshold the results for the width calculated
using static-exchange approximation are, however,
sufficiently reliable to draw some meaningful conclusions.

It is instructive to examine the unnormalized matrix
elements for the widths which are defined as

37—+37
(4'+'(r)

I
5-"'(r)&~2

I
(!-"'(r)lx20(r)&l' mith

qP-"'= l~« "~v.*")'(c'-I() I@.& (6 9)

(~-I()l~-&=2&~«'-'~~.-"),
+ l(t '+'(") lx»(r))l' =1 (6 7) where 1UdI& ' and 1V,„&~I are the direct and exchange

contributions to the normalization constant for the

so that QC as approximated by Eq. (4.10) is normalized
to unity.

The width can now be estimated from Eq. (6.1)
with the single-particle channel wave function es,p(r)
determined from Eq. (3.10) at kt ——7Ir with the electron
wave number k~ in the exit channel corresponding to
the resonance energies Li.e., at values of E= hs„
k12=2(E—61)].The calculated widths are tabulated in
Table III together with that calculated by Burke and
Taylor. "Except for the lowest 'S state, the agreement
is reasonably good. For comparison, we also included
in Table III, the measured value of the lowest '5
resonance width and values for the widths derived by
approximating the single-particle channel wave func-
tion by the simple sine function

lhz 90"
O
~~ 80-
z
P 70-
LU

~+60-
4 50"
I-~ 40-
cls 30-
za 20-
O
CL IO-

~ 0
O
~ -IO-

C-20-
rL'p-30—
2
$-40—

-50

c I
cVO *0.

re=

I s I I I I

4 IO IQO
RADIAL CQQRDINAYE r (Q

IOOO

II2,0—kt
—' sin(fstr) . (6 8)

Judging from the differences in calculated values for
the width, it is apparent that the static-exchange dis-

FIG. 5. First three members of the unnormalized wave functions
$ ' 1(r) I Eq. (5.4)] for triplet-spin multiplicity. These functions
are related to the radial parts L@7, , 0(r) and @~, 1(r)j of the single-
particle compound wave functions @„(r)as follows: @I,2 0(r)= ( ( ) (r) for n =2s and @q,„1(r)= L(1—+37)/6j( ( ) (r) for n =2p.
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compound state QC . We tabulated, in Table V, the
quantities $ (+), /l/~o( ), and /)/, ' ' as a function of (2

for ro ——12uo. It is observed that as 0. becomes large
(i.e., the level positions approach the 21=2 excitation
threshold), all the quantities stay approximately con-
stant except for E~~( & which increases exponentially.
This suggests that widths decrease exponentially with
increasing 0.. The behavior of y(~) and g, ("& with
increasing 0. can be understood from the fact that the
wave functions of the higher members (large a) are
almost identical within and near the domain of the
target hydrogen [see Figs. 4 and 5).

The direct contribution to the normalization constant
Eq~("& may be explicitly written in terms of the Handsel
function:

37—+37
(~)=

l
sin(..(+)r)—{bi/ci)xio(r) l

'dr

+l~(ro)l' I&'Io")(ol&2-lr)l'«r, (6»)

where a, /)I, and cl are defined in Eqs. (5.5) to (5.7). For
smail argument

l k2
l
r-+ 0 (i.e., n becomes large), Eqo( )

takes the approximation [Appendix 8, Eqs, (89)
and {812)j

Ego(")—(1.75X 10')(:(2~/'»o (singlet states) ' (6.12}—(2.04X104)e(2 '"' (triplet states),

Thus, it appears (because of the less-than-one ratios)
that within our model neither the singlet nor the triplet
series of the 5 auto-ionization states are overlapping
near the threshold. . The corresponding values for the
vndth-spacsng ratios obtamcd m. Sme-function approx&-
mat»n [Eq. (6.8)1 for the singlet and triplet series
are, respectively, 2,35&10 2 and 1.26& $0 4 which are
also less than 1.

The exponential formula [Eq. (6.13)j for the widths
reproduces closely the calculated widths [Table IIIj
for both the singlet and triplet series near the threshold.
It ls surprlslng thRt this formulR Rlso rcpI'odUccs I'cason"

ably well the calculated widths for the o.=0 states. The
only exception occurs in the sine approximation for
the width of the lowest singlet state. The calculated
width Using the same sine fUnction RpproximRtlon is
much greater (by a factor of approximately 2) than that
predicted by the formula. This is due to the fortuitous
absence of cancellation of the area spanned by the in-
tegral in the sine function approximation. As a result
a better agreement with the experimental results is
obtained.

The transition matrix 1 for the elastic scattering can
be obtained from Eq. (2.25):

where wc have used the small-argument expressions whe«&u represents thc potential scattering Rnd thc

for l/o2
l

der;ved from Fq (5 10} Th;s permits us to A.~'s are the resonance structure functions satisfying

write for the level widths near the threshold as (in Ecl (227). The cross section then takes the form

Rto1111C lillltS)

F (+)~(1 397X10-2)&—(2o/Io)n

F (—)~p 387X10-'l)s—(2~/)o)N
(6.13)

%'e 6nd therefore that widths, just like the spacings
between their' corresponding stRtcs, dccr'case cxponcQ-
tially near the threshold. It is then of interest to examine
whether the series of singlet- and triplet-compound
(Ru'to-lolllzRtlo11) states just below tllc 22= 2 threshold
arc overlapping or Isolated.

If we assume that the shifts in resonance energies
due to the second part of Eq. (2.20) are negligibly small,
it is then easy to show from Eq. (5.11) that the spacings
between the compound states decrease exponentially as

gb (+)—Ll h (+)—g (+)
l

—0 Ig73s-(»/&o)~a 2 I I a+1

gh (—)=I
l
h I(-) h I(—)

l
=0 0173s—(2o/)o)~

Despite the fact that both the level widths and spacings
decrease exponcntiaDy, their ratios for the singlet and
triplet series, however, remain constant near the
threshold:

I'.(+)/Ab. (+)=7.46X10-',
I' & )/hh & )=4.27X10 '.

(ll ~'"'I'+ll ~( 'I')&(I
4x'

(7.2)

where the superscripts (+) and (—) stand for the
singlet- and triplet-spin multiplicities, respectively.

For the sake of clarity, we assume that at the energy
region of our interest there is only one resonant state of
signiicance for each spin multiplicity. Equation (7.1)
then I'cdUccs to

(+)
l

2~2(2o(k)

g (+)—ot"„(6)+
g—g '(+)+&2T (+)

(7.3)

()r/k) I" (+)eo*oo(+)
iZ'(6) —o/" (6)+-

jV—h '(6)+22T &+)
{7.5)

From Eqs. (3.1) and. (3.2) it is clear that the potential
scattering comes from three sources, namely the static
field of the target hydrogen, the exchange interaction

(7 4)

wllel'c wc llavc llscd Eqs. (2.17} to {2.21). By lltlllzlllg

Eq. (2.24), thc 9"lllatllx CR11 bc 1'cwllttcll as
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with
0 —L0 (+)+e(r(—) (7.7)

between the projectile and atomic electrons, and the
polarization effects due to virtual excitation. In prin-

ciple, the potential scattering can be obtained exactly
by solving Eq. (2.18) [or Eq. (3.6)].We then have, for
the case L=M=O,

q ~&+) = —(27&/k)e"0 +)'sinl&o&"&, (7.6)

where 80(+) is the phase shift due to potential scattering.
Substitution of Eq. (7.5) with 1'„(+'given by Eq. (7.6)
into Eq. (7.2) yields, for the case I-=M=0,

20—

15—

I & I I I

+1 (8 (~l &~i
=o;+0;+o-;

i-1
0'

(-I
0&10.=

0IO
(

005— 0'

li!
I

t'

-IO- Ii
I( I+t

I&

& ) i-t &-t &-t

&T =0 +0; +0';

I-I & t-)
0) =-2&rp

At E = l0349

-I5—

9.0
t t 1 t I I

9.8 10.2 9.2 9.6 10.0

ELECTRON ENERGY (eV)

10.4

4m.

g (+)=—e'~0(+) sin80 +)—
k2

r (")e"'«+)
2

FM. 6. Calculated potential, resonance, and interference
contributions, which are denoted by 0.„,0,, and 0;, respectively,
to the cross section for s-wave electron scattering by hydrogen
atoms.

4x
~

sinl)0(+)
~

'+
k2 [jV g'(+)]2+ & [r (+)j2

—,'F (+) sinbp(+)e" (+)
—2 Re

E h (+)+-,'ir (+)
(7.8)

«I (+)
bo(+) = 30(+)+tan '

g(~)
(7.9)

where IIO(+) is the total s-wave phase shift (i.e., the
sum of potential and resonance phase shifts) and r(+)
and g(+) are the corresponding width and resonance
energy calculated in the 1s—2s—2p close-coupling
approximation. '

In Fig. 6 the interference contributions together with
the potential and resonance contributions to the eros&

section are plotted for the L=0 elastic scattering with
singlet- and triplet-spin multiplicities. The interference
contributions to the cross section depend strongly on

"U. Fano, Phys. Rev. 124, j.866 (1961).

where the three terms in Eq. (7.8) are in order the
potential, resonance, and interference contributions to
the cross section.

Recently, the energy dependence of the scattered-
electron current from hydrogen atoms has been mea-

sured. ' The dependence exhibits the prohle predicted
by Burke and Schey. ' It is therefore of interest to cal-
culate the energy dependence of the interference be-
tween potential and resonance scatterings. "We have
noted before (Sec. III) that potential scattering depends
strongly on polarization eQ'ects of the nonlocal optical
potential so that the phase shift obtained in the static-
exchange approximation [Eqs. (3.10) to (3.13)j is not
adequate for calculating V'„(+)from Eq. (7.6). To be
consistent with approximations being made in this

study, we adopt the values of the phase shift calculated
using the 1s—2s—2p close-coupling approximation'"
and subtract from it the resonance part of the phase
shift. Hence, the potential-scattering phase shift is
given by

the width. For the singlet case, the interference con-
tribution is not only significant, but it gives rise to the
pro61e of the cross section. On the other hand, if the
width is very narrow the structure due to the interfer-
ence becomes dificult to observe as in the triplet case.
The total partial cross section for L=O elastic scatter-
ing is then obtained from Eq. (7.7) which exhibits the
general prohle predicted by Burke and Schey' and ob-

y Mc(crowan et +) 6c,8,20 We have not carried our
calculation higher in energy than that given in Fig. 6.
Judging from the dependence of the interference and
resonance contributions on the width, we expect that
the lowest triplet p-resonance states and possibly the
second singlet s-resonance state may also give rise to
structures in the cross section which may be observable
within the present experimental resolution.

[d2/dr2+k„.mje„=(A./r2)e„ (8.1)

where A„canalways be diagonalized by a transforma-
tion matrix B„.The projection operator discussed in
Sec. II in this case must be modified appropriately to
include more open channels.

"A more elaborate calculation of the cross-section pro6le was
carried out by J. W. McGowan which include L/0 scatterings.
I am grateful to him for helpful discussions.

~' P. G. Burke, Advan. Phys. 14, 521 (1965};M. H. Mittleman,
Phys. Rev. 147, 73 (1966}.

VIII. DISCUSSION

The model study presented here is a convenient way
of obtaining information concerning the resonance
structure in electron scattering by hydrogen atoms
without using elaborate computor calculations. Ex-
tension of the method used in the model study to reson-
ance series other than the s-wave scattering or to reson-
ances in excitation channels (or to other appropriate
systems) is straightforward since, in general, the
angular-degenerate coupled equations at the eth
threshold can asymptotically reduce to [compare with
Eq. (4.12)]"
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There are, however, a number of shortcomings in the
model study which should be discussed. In Sec. VI, we
have observed that the calculated values of the width
depend strongly on the accuracy of the single-particle
channel wave function being used. This then casts
some doubt on the accuracy of the calculated width.
Other than the limited encouragement found in the
comparison of the calculated width with other approxi-
mate calculations (Table III), the question concerning
the reliability of the static-exchange approximation
[Eq. (3.10)j for the width is left unanswered. If an
extensive calculation for the channel wave function is
attempted from Eq. (3.6), the nonlocal optical potential
must first be constructed explicitly. We then encounter
a problem which is as elaborate as solving the coupled
equations directly. This then defeats the purpose of
such a model study. However, it is rather unlikely that
the state-exchange approximation for the channel wave
function will introduce significant errors which would
mislead us in our conclusions for the resonances near
the threshold. We also expect that level shifts [see
Eq. (2.20)j are small and would not atf ect our
conclusions.

If, in addition to the level position, an accurate
value of the level width is utilized for the lowest state
of a given resonance series, then an iteration procedure
may be constructed so that a consistent set of joining
radius and potential well may be determined. This
may result in somewhat better values for the width.
We are still facing the ambiguity of whether the joining
radius and potential well so obtained are the pro-
perties of the approximate channel wave function being
used in the calculation of the width. One may neverthe-
less improve the approximate procedure by construct-
ing a more realistic interior potential for the projectile
electron. An approximate interior (nonlocal) potential
may be determined from a variational wave function
QC, K "& which is obtained from Eq. (4.4) by a constraint
variational method. The trial variational wave func-
tion can be constructed in such a way'2 that its con-
stituent single-particle compound wave function p„
[see Eqs. (4.2) and (4.5)] asymptotically assume the
appropriate expression given by Eq. (5.2).

Errors arising from the approximations being made
in determining the single-particle compound z ave
function are believed to be small for o.&1 states, since
these wave functions not only yield the correct level
positions but also possess the correct asymptotic ex-
pressions demanded by the appropriate r ' long-range
potential. The latter property of the wave function is
of importance since for the calculation of width the
electronic distribution at large r becomes very signifi-
cant. For more complicated systems, the appropriate
long-range potentials for the projectile electron are
not usually available; it is then not possible to deter-
mine the desired asymptotical expressions for the com-

"J.C. Y. Chen, Bull. Am. Phys. Soc. 11, 722 (1966).

pound wave functions. This method of course becomes
useless. Note that the regular Q-space optimized
variational wave function may yield sufriciently ac-
curate quasi-stationary level positions. But it may not
necessarily yield as accurate values for level width since
the accuracy of the calculated width depends strongly
on whether the variational wave function has the cor-
rect asymptotic electronic distributions. A double-
perturbation method for such a case may be derived
to improve systematically the calculation of the width. "
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APPENDIX A: UNIQUENESS OF PARTICLE WAVE
FUNCTIONS IN THE TARGET-STATE

EXPANSION

The expansion" of a two-electron function T(ri, r2)
which has a specified symmetry

Y(ri, rg) = (—) T(r2, ri) (A1)

and a specified angular momentum I. but which is
otherwise arbitrary can always be made in terms of a
complete set of one-electron target states (x„(r))so
that

T(rl r2) Z (x (rl)G (r&)+( ) x (r2)G (ri)} ~ (A2)

This expansion, however, does not define the particle
wave functions G„(r)uniquely. This nonuniqueness has
been pointed out and their eGects on the absolute
definition of the phase shift has been discussed. ""
Here we would like to investigate in details the extent
of the nonuniqueness for G„(r).

Let us define in terms of T(ri, r2) and of target. states
the quantities C„„:

C„„=(x„()x„.(r,) iT(r, (A3)

which are obviously unique for a specified T(ri, r2), and
satisfy the symmetry condition inferred from Eq. (A1)

C„„=(—)sC„„. (A4)

Now expanding the particle wave functions in terms of

"I am grateful to Dr. R. Phythian for his helpful discussions."A, Temkin, J. Math, Phys, 2,. 336 (1961).
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the target states, we have

G,(r) =-', p (C„,+D„)x,(r), (A5)

target state except for Gi(r), i.e.,

(G„(r)
~
xi(r))=0, v/1. (A15)

where the D„„'sare def, nod in terms of the inner This is self-evident from our defin't'o for the G„'s

products (x„(r)
~
G,(r))

, —( )8+)D, (AS)

This ambiguity in G„(r)provides us with extra degrees
of freedom for imposing further restrictions on the
G„(r)'s.

From Eq. (A5), we have

(x„(r)
~
G„(r))=-,'{C„„+D„„}.(A9)

Thus we may make the particle wave functions G„(r)
orthogonal to the target states by appropriate choice
of D„„whenever it is allowed. For singlet states (i.e.,
S=0), we may choose (note D„„=0)

Dvv' = Cv'v p

and for triplet states (i.e. , S= 1), we may choose

(A10)

D„„=2(x, (r)
~
G,(r))—C„. (A6)

Substituting G„(r)given by Eq. (A5) into Eq. (A2)
and operating on the resultant equation by

(x„(ri)x„.(rs) ),
we obtain

(X„(ri)X„(rs)
~

0 (ri, r2))=C„+-',{D„+(—)PD;,}.(A7)

Comparison of Eq. (A7) with Eq. (A3) reveals that the
G„(r)'sare defined in Eq. (A2) within the ambiguity of
D„„whichhas the following symmetry:

1
(1)(s) p is sin—r+iprd{

7l

(Bi)

where {={i+it'2, and the contour path 2 is shown in
Fig. /(a). If we choose t'i' ————,']r, the contour path
becomes that shown in Fig. 7(b), and the integral takes
the expression

~(6

(i) (S) p is sin[ {r-r/2)+it—21+ip[ (c/2)+it—2]df2'

e
'—i(~/2) P oo

&is cosh (rs) prsdi. 2— (B2)

For the special case P=i) () and s=i [ki
~

r appearing in
Eq. (5.1), we then have"

&(m /2) &p oa

H;, ('ik .i ) = p
—I&soir cosh(rs) —i&c!'sic.2

APPENDIX 3: INTEGRAL REPRESENTATION
AND EXTREME EXPRESSIONS FOR THE

HANKEL FUNCTION

The Hankel function of the first kind IIp(')(s) has
the integral representation

D„„=C„„,v'& v (Aii)

so that the orthogonality conditions are satisfied.
For the projection operator P and Q with P=Pi(ri)

+Pl(r2) Pl(rl)P1(r2) Q 1 P and Pl(r) =
~
xi(r))

(xi(r) ~, it is most convenient to define the G„(r)'s as

G„(r,) =-', Li+()„i—Pi(r, )j(x„(r,) ~
Y(r, ,r,)). (A12)

In terms of the C„„'s,Eq. (A12) becomes

G„(r,) = -,'(1+l].i) p C.„.x„r.(r,) ,'C„ixi(—r,)—. (A13)

+ p I &col r cosh(rc)+(ho!'Sd{
2

2~ (n /2) x 0

[ "So[r cosh(]'S) COS(){Of &)df'&

(B3)

which except for a factor of i—' is real. Asymptotically,

By comparison of Eq. (A13) with Eq. (A5), we may
summarize the choice of D„v in our definition of G„
PEq. (A12)j by the matrix

-f'- w+im

g - plane

5 = 51+|(~

T+ f00

7T
2

t 0
—C2i

D= —Cap
—C4i

Cgg Cga C)4 ~ ~ ~

p p p ~ ~ ~

0 0 0
0 0 0

(A14)
(a)

7P ~———
l ce2

(b)

This implies that the D„„arechosen in such a way that
the particle wave functions are orthogonal to the ground

FIG. 7. Contour path for the integral representing
the Hankel function.

25 l am grateful to Dr. F. Mandl for this derivation.
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Eq. (83) becomes
2~xXO 1/2

Hgi, (zlkz, lr) - —i . e ~' ~". (84).Ik,.lr

This demonstrates that II;qp{') decays exponentially
at infinity as required by the wave function $ (r)
LEq (54)]

For small argument at a given r= ro (i.e., I
kzl

I rp«1),
an approximate expression for the Hankel function
H, q &o" (il kz

I
rp) can be easily obtained from the series

representation

——,'+Xp cotl Koln(-,'Ikz Irp) —8io(0)]. (88)

It is also desirable to find a small-argument expression
for the function

I(lko-I «) = Iro"'H'~ "'(zlkz-Iro) I

'

X IH;p„i' (ilkz lr)l rdr (89)

H'~. "'(z
I kz-I r) =

2~~ { j2)xp

sinh(or1ip)

which appeared in Eq. (6.12). Making use of the relation
LH, q, "&(il kz Ir)]*= H;i, "—'(ilkz Irp) and carrying
out the integration, we obtain for 't!(zlkz, lrp) the
expression

" (oz lkz-lr)" »nPoln(ozlko-lr) —b~.«)]
X

t!
I
r(t+ I+iao) I

where 5i,(t) is the argument of the gamma function
I'(t+1+iv) defined by the relation ze(o/2)Xo (Llk Ir )Moo

H, i,oui (z I
ko. I ro)

Ioo~l~o ' sinh(zrXo) r(l~z~, )I'(t+ I+zXo) =
I
P(t+1+ikp)

I expLi8&„(t)]. (86)

S(l kz-I ro) = o«(1—IH'~. '"'(zl kz- I «) I
'H'. ,+i"'

(85)
X(zlkz Irp)H x 1"&(zlkz lrp)). (810)

For small argument, we have from Eq. (85)

Hence

H,o„"'(ilkz.
I rp)

I &~aI ~p~o

2ie~"~""' sin Po 1n(o I
kz~

I ro) —8xo(0)]
(87)

I
I'(1+ilip)

I
sinh(zr1io)

This permits us to write for small argument of the loga-
rithmic derivative of the Hankel function LEq. (5.8)]
at a given radial coordinate r= ro.

(llkz-I«) "'"' (-'lkz-I«)"*"'
(811)

I'(&imp) I"(2aiko)

Utilizing Eqs. (87) and (811),we obtain for 'ti(l kz,
I rp)

the small-argument expression

I
P(1+iXo)

I

'
3(lk -I«) .. .-' „,„.,; )

X . (812)
2rp sin'Lkp ln(-,'

I
kz.

I rp) —Bgo(0)]


