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Inelastic Scattering of Electrons by Protons*
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The inelastic scattering of electrons by protons has been measured at incident electron energies up to
3 BeV/c and momentum transfers gs=41BeV/cls. Excitation of known nucleon resonances at M'=1238,
1512, 1688, and possibly 1920 MeV have been observed. The calculations for the resonance at M = 1238 MeV
have been compared with calculations by Adler based on the dispersion theory of Chew, Goldberger, Low,
and Nambu. The agreement is good. Qualitative models are discussed for the other resonances.

INTRODUCTION

'HK inelastic scattering of electrons was shown by
Franck and Hertz to be a useful technique for

studying atomic structure. By studying the energy
spectrum of scattered electrons, they were able to
measure the excitation spectrum of atoms. In the
terminology of modern high-energy physics, this would
now be called missing mass spectroscopy.

The application of this method to the study of the
proton and its excited states was begun by Panofsky
and Allton' and was extended by Hand. ' These authors
studied the excitation of the pion-nucleon (nucleon
excited state) at a mass of 1240 MeV and with quantum
numbers, I=2, J=-,'+ up to a momentum transfer
q'= 18 F ' L0.7 (BeV/c)']. Hand failed to find evidence
of excitation of other resonances.

In this work, the excitation of the 1240-MeV reso-
nance is studied up to a momentum transfer g'=90 P '
P.61(BeV/c)'] and the excitation of the resonances at
masses of 1512, 1690, and 1920 MeV are observed.
These are compared with such theoretical calculations
as are available. There is good agreement except for
the excitation of the resonance at 1512 MeV, which is

too great to be understood. This paper extends and
supersedes a preliminary communication of these
results. '

KINEMATICS AND ONE-PHOTON EXCHANGE

Throughout this paper we will use a notation close

to that of Hand. .' Some of the kinematic quantities are
clear from the diagram of Fig. I. At these momentum

transfers, elastic scattering is believed to proceed
primarily by one-photon exchange. It is therefore
reasonable to assume that the inelastic scattering also
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q'=4E, Ef sin'(-', 0) . (2)

If we use quantities in the center-of-mass system of
the outgoing nucleon system M*, we find, the fourth
component of the 4-vector g:

go*= (M*'—M')/2M* —q'/2M*,

whereas, in the laboratory,

qs = (M*'—M')/2M+ g'/2M .
The normalization of the F factors is such that

o.r(O,E') =o.,(K),
which is the photoproduction cross section at the

FIG. 1. A diagram to aid in
understanding the kinematics
of inelastic ep scattering.

proceeds by one-photon exchange. Then the cross
section for inelastic scattering can be shown to be
separable':

d rr/dfidEf = J transverse(f pg &1~)o'transverse(g q+)

+rscalar(~pg ply)o'scalar(g q+) q (1)
where

n E Er cot'(8/2)—
&transverse = Fr = 2+

4~' q' E, 1+(ass/g')

u E Er cot'(0/2)
~scalar= I Q=

4rr' P K $1+ (qos/gs)]

=r/ —q'/2M ='(M*' Ms)/2M .—

e abbreVIate &T=0 transverse j &Q fTscalar

The relation between E and M* is independent of the
4-momentum transfer q'. At q'=0 (photoproduction),
E is the laboratory photon energy. For electroproduc-
tion, it is therefore called the virtual photon energy.

In the metric used. here, the square of the 4-momentum
transfer is positive for scattering:
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photon energy . eE Th I' factors have the dimensions
of the number of virtual photons per BeV steradian.

The experimental aim is therefore to determine
or(q', E') and oo(q', E') over a range of values of q' and
K (or, equivalently, q' and Me).

APPARATUS

HYOROGE

MUTE

TARGE

TOP VIEN

ELECTRON PROTON MATTERINQ

ELECTRON DETECTION

30 IN.

32 FT--

METER

AMBER

The e eriment was done concurrent yl with the
experimen s on e at lastic electron-proton and quasie astic

orte 4 anelectron-deuteron scattering previously reporte, an
used the same apparatus.

The electrons from the internal beam of the Cam-
bridge electron accelerator impinged on a liquid-

hydrogen target; the scattered electrons passed through
a quadrupo e spec rd 1 trometer onto a scintillation counter
bank. A threshold Cerenkov counter and a shower
counter helped to distinguish electrons from pions.
Pions could only be detected by knock on (~-e scatter-
ing) in the Cerenkov counter and by charge exchange in
the shower counter.

F' 2 d 3 are respectively, vertical and)

u . Thehorizontal schemes of the experimental setup. e
liquid-hydrogen target was contained in a vertica
cylinder of Mylar or Dupont I film which was centered
about 4 in. insi e e eqd th equilibrium orbit of the circulating
beam. At the end of the acceleration cycle, the rf was
turned off and the electrons spiraled inward until they
penetrate e argd the target. The incident Qux was monitore

by a quantameter and an ion chamber whic o serve
the forward bremsstrahlung from the electron beam
hitting the target.

The scattered electrons passed through a single
quadrupole magnet with a center plug and were focused
along a horizontal line. Several long, thin scintillation
counters were arranged parallel to this line, thus making
available several momentum acceptance bins simultane-
ously. Placed after these "slat" counters, as they were
called, was a gas Cerenkov counter which was used as a
threshold counter to distinguish electrons from heavier
charged particles. Finally, there were two large scinti-
lation counters, the latter of which was used as a shower
counter to distinguish the high-energy scattered e ec-
trons from low-energy knock-on electrons and pions.

An electron was counted when the following condi-
re met. Counters Ci, Cs, and either C,~, C7~ or

PION

FILTER

SCINTILLATION

COUNTERS

WER

OUNTERS

FIG. 2. Layout of the experimental apparatus, top view.

C, y, C7+ had to register in coincidence, w ic meant
a charged particle had crossed the median plane of the
qua rupd pole magnet somewhere between, an C7.

fromSuch an event was called a fourfold count. A count rom
Cg was demanded in coincidence with this; such an
event was called a fivefold count. A count from the
Cerenkov counter in coincidence with a fivefold opene

th ulse-height analyzer to receive the output
thefrom the shower countei' Cyo. If the signal from t e

called a slat drive signal, was produced. If a slat
counter, i.e., counters Cg through C6, registered in
coincidence with the slat drive signal, an electron count
was reg istered in the appropriate momentum bin.

This apparatus has been described in great e ai
in Ref. 4. Some additional details of importance for the
inelastic spectrum follow.

Syectrometer Calibration

The magnetic-6eld gradient and effective length of
the quadrupole magnet as a function of current were

94 ELECTRON

LEAD SHEET

.' ~TRAJECTORY

FIG. 3. Arrangement of counters
showing a typical electron trajectory,
side view.
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FILTER

QUADRUPOLE MAGNET COUNTER BANK
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SHOWER
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supplied to an accuracy of 0.2% by Paul Cooper, Jr.
These were measured by a long Qip coil and by Hall-
probe measurements. A graphical interpolation of these
points was the basis for calculating the curve of scattered
energy focused at a distance of 63 in. from the face of
the magnet (the center of C4 in. Fig. 3) versus the current
through the magnet. This curve was recalibrated by
noting the position of the elastic peak as a function of
the spectrometer current. The recalibrated curve shows
that the magnet did not saturate as rapidly as the
interpolation of Cooper's data would suggest.

At the focal point of 63 in. , the average percentage
change in momentum is 0.718% per inch.

Now the slat counters (C2 through C~ in Fig. 3) were
1.5-in. wide in the direction of momentum resolution,
and this corresponds to about 1.1% for dp/p. However,
because of their finite height (~'~ in.), the slats detected
particles outside this momentum bite. Therefore, in
order to compute the momentum resolution properly,
the eKciency of the slat counters must be taken into
account. The method is as follows. Take a portion of the
spectrum which is relatively Rat. Let X equal the
number of bins in which counts are accepted. Suppose
there are really m counts per bin. Then Ãe is the ideal
total number of counts. Let f be the fractional overlap
on one side of a slat into the next bin. I.et 5 equal the
sum of the actual slat counts; let T equal the total in
peak, i.e., the number of events which triggered any or
all of the slats simultaneously. Then we have

and

hence

Nm(1+2f) =S,

Xe+r1,2f=T;

2f=X(S T)/(XT S—) . —
(6)

Then 1.08% times (1+2f) is the actual dp/p for the
slats.

This method implies no more than about a 5% error
in the momentum bite per slat.

The Counter Bank Tilt

g/
1+(E/M) (1—cose)

(E/M) sine
/

1+(E/3f) (1—cos8)

The small but finite angular acceptance of the
spectrometer led to a spread in the energy of scattered
electrons. During the experiment, the slats were tilted
in the horizontal plane so that all the elastic events
would appear in one slat (neglecting resolution function
and radiative tails for the present). The same tilt of
the counter bank also ensured that all inelastically
scattered electrons of the same value of E appeared in
the same slat. %e see this from a kinematic calculation
as follows:

. CALCULATED RESOLUTION

FUNCTION

20—

MEASURED POINT

LINE IS UNFOLDED

SPECTRUM

e —P

ELASTIC SCATTERING

MOMENTUM SPECTRUM

q 0.623 ( BeY/c)

5
IO

8 ~ 3I4

l l I I 'P On
-4 -2 0 2 4 % &P/P

FIG, 4. Comparison of the calculated and measured resolution
function of the spectrometer.

therefore,

(E/M) sin8
d8,

1+ (E/M) (1—cosg)
(7)

which is independent of E' and E for constant E.
Figure 4 shows the calculated resolution of the spec-

trometer compared with the measured elastic scattering.

Pion Rejection

High-energy pions have a mean free path of about
8 in. in lead and could, therefore, be counted in the
spectrometer not only by traversing the spectrometer
according to the design, but also by penetrating the
shielding and the central plug. The background of these
pions was very large.

Pions could count in the threshold Cerenkov counter
by their knock-on electrons, particularly if they had
penetrated the absorber. They could count in the
shower counter by charge exchange. It was important
to ensure that pions were not being detected in this
experiment.

In the elastic-scattering experiment, ' absolute cross
sections were measured. Accordingly, it was necessary
to detect small pulses in the Cerenkov counter and
shower counter to ensure their efficiency. Only relative
measurements were needed in this work, so that only
events with large pulses in both the shower counter
and Cerenkov counter were included.



INELASTIC SCATTERING OF ELECTRONS BY PROTONS

A lead filter of -,'-in. Pb (3 radiation lengths) was

inserted in the scattered beam near the target at each
momentum setting of the spectrometer. With this
thickness, no more than 1% of the electrons emerge
with energies greater than one-half of the incident
energy; since we only studied electrons from half the
elastic scattered energy upwards, this 6lter effectively
removes the electrons. However, high-energy pions
are reduced by only 10%.

It was verified that this filter indeed leaves the pions

by observing the back.ground without the Cerenkov
counter, or shower counter, or at a momentum setting
above the elastic peak. where only pions penetrating
the shielding or scattering off the pole tips could count.
The background was hardly a6ected by the presence
of the 6lter. We were, therefore, able to show that the
background of pions was always less than 10% of the
total counts and usually close to zero. When we tried
to observe excitation of the mass 1512-MeV resonance
at 0=90' and q'=1 (Bev/c)', the background as
determined by the lead 6lter was too large and the
attempt was abandoned.

Radiative Corrections

This has been called, in the past, the correction for
wide-angle bremsstrahlung. We prefer to regard it as
part of a general radiative correction calculation.

Although the most thorough discussion of radiative
processes is that of Bjorken, ' an easier procedure to
follow is described by Perez y Jorba. ' Experimentally,
we measure a cross section 0 .„(E;,Ef) d'l7/(dQdEf)—
for finding a scattered electron of energy Ey. We are
interested in a hypothetical cross section which we
would measure if there were no radiative processes.
Electrons radiate both before and after scattering. Thus,
0 (E ' Ef) includes contributions from 0(E;,Ef).
(where Er')Er) weighted by a radiation kernel
K~(Er', Eq) for radiation of a photon of energy Er' Eq-
(radiation after scattering). Similarly, there is a term
in o(E,',Eq) for (E,)E ) which is due to radiation
before scattering. There is also the usual Schwinger
correction which corresponds to inelastic events
0(E,,Er) with radiation .out of the detector bin width h.

According to the Perez y Jorba recipe, therefore,

0„. (E;,Er) =0(E,,Er)(1—b)

Es—b, E

K~(E;,E )o (E,Er)dE

K~(EZ,Er) (E',EV)dEr', (g)

where 0 (E;,Er) is the cross section for scattering without
radiating, (1—b) is the Schwinger correction term, Ks

' J. S. Bjorken, Ann. Phys. (N. Y.) 24, 201 (1963).' J.Perez y Jorba, Orsay Report No. 1108, 1964 (unpublished).

integrate
along
these
lines

Cross section-
must be
known in

this area

FIG. 5. A kinematic diagram relating the incident and Gnal
electron energies, showing the region that must be measured to
make a radiative correction.

is the radiation kernel for radiation before scattering,
and Eg is that for radiation after scattering. These E's
are calculated in the peaking approximation using the
formula developed by Hand. '

Here 8 is given by

2n Er 131

hE 121 m' 1 36

E n 1 q' (E,—E )'
Eg= ln—1+

z &z—z' EP—E

2E; 2E;i—
X ln ——', ln 1+ ~, (9)

mi

Er n 1 0' (Er' Er)'—
ln—1+

I;,' ~ Z, '—Z, m2 Z,'Z,

2Er 2Eri—
X ln —

~~ln 1+
m u)

Here 6 is the bin width at the detector.
We must also add a small (5%) addition to Kg, K~,

and 8 for the real physical radiators present in the
experiment.

Thus to evaluate the corrected. cross section 0 (E;,Er),
we must know 0(E;,Eq') at all val.ues of Er' from Er up
to the elastic scattering value and o(E,Er) at all
values of E,' from E; down to the elastic-scattering
value. The correction thus becomes an iterative
procedure.

This is made clear by reference to Fig. 5. This is a
kinematic diagram of the incident energy versus the
scattered energy. Clearly, all elastic-scattering events
lie on a line on this plot. Inelastic events all lie to the
left of this line, with smaller Ey.



%hen wc consider thc determlHatlon of thc cori.ection
for a point, E;, Ey in this plot, we see that the line
integrals of Eq. (8) are the horizontal and vertical lines
in this figure. Now, since we need to know 0 (E;,Ef) at
every point on the line, we see we must know
o .„(E;,Eq) at all points in the shaded region before
we may start the iteration.

0 (E;,Er) is clearly known for elastic scattering by
Using the form factors from Ref. 3; for inelastic scatter-
ing, it may be determined at any momentum transfer
and K using data for lower momentum transfers and
lower E.For the evaluation we must interpolate between
known points. This is done using Zq. (1) for the in-
elastic or elastic scattering and interpolating the elastic
form factors according to Ref. 2 and the inelastic cross
section 0~ according to the formula G~i'(q)2i, where
the value of / is chosen from the two known points at
the end of the interpolation range. This procedure
approximates the expected theoretical behavior of the
cross section.

The radiative corrections have been evaluated using
diferent bin sizes 6 and using slightly different radia-
tion kernals Eg, E~. The results are insignificantly
diferent.

Attempts were made to calculate the radiative cor-
rection according to the recipe of Bjorken. ' However,
the results gave 0=1.1 fT „„contrary to physical
intuition and to the Perez y Jorba calculation, which
gives 0- 0.9 0. .„.The two methods should be equiva-
lent (see the Appendix), though that of Bjorken is
harder to apply. %e believe that our attempts to calcu-
late with the Bjorken recipe were subject to an unknown
source of error and should, therefore, bc ignored.

TREATMENT OF DATA

Two principal subtractions are to be made on the raw
data, viz. , target-wall scattering and the radiative cor-
rections. Subtraction of detected pions in the scattered
beam was carried out by the lead-filter technique
described above and was always small. Electrons arising
from charge-symmetric processes (e.g., Dalitz pairs)
were subtracted OG by observing the positron cross
section at various points along the spectra. This sub-
traction was also small. The subtracted counts had to
be corrected for the shower-counter efficiency at the
particular bias and energy of the electron. These
eS.ciencies were measured by observing the shower-
counter spectrum for elastically scattered electrons at
comparable energies.

False kinematic coincidences such as that diagrammed
in Fig. 6 were suppressed by demanding a signal from

(10)

The counting rate from the solid target of the same
material as the target wall is also measured;

This should be the same number for the target wall

alone. The reversed field for H~ plus target wall is

~0+= (&a++&x+)/(Qa+Qx)

The reversed 6eld for the target mall alone is

&~+ = &jr+/Q~

(12)

The number that is wanted is

one of the slat counters. The recipe followed then was:
(1) to obtain the counts from hydrogen alone after wall

subtraction; (2) to subtract counts with the field
reversed; (3) to correct for background. pions using the
lead filter; (4) to normalize the inelastic counting rates
to an absolute cross section by comparing them with
the elastic counting rate; (5) to correct for shower
counter efficiency; and (6) to compute the radiative
corrections.

Target-Wall Backgrouud

The fractions of electrons scattered from the target
wall varied. from 10 to 20% of the total scattering. This
fraction was determined by measuring the distribution
of the beam across the target using the beam clipper
as described in Ref. 3; from this we deduce directly the
fraction of bremsstrahlung from the hydrogen, G. The
calculation then proceeds as follows.

Let X be the number of counts for a given run, Q the
charge collected by the quantameter, and R=E/Q the
counts per unit charge. More precisely, let XII equal
the number of positron counts in the reversed field
sUbtlaction XII+ equal the number of posltroIl coUnts
in the reversed 6eld runs. Let X~+ be similarly defined
for the Mylar cup of the H film (target-wall scattering).
Let Qir equal the quantameter charge due to brems-
strahlung in the hydrogen, let Q~ be the same for the
target wall. Let G=QiI/(QIr+Qir) be the fraction of
bremsstrahlung for H2.

This G is obtained from a knowledge of the shape of
the target cup and measurements of the amount of
bremsstrahlung as a function of the amount of target
exposed to the beam.

Note then that the raw counting rate Eo is given by

&a =&ss /Qa. (14)

TARGET 7r+
~—————

CHARGE
EXCHANGE

SCATTERING

e- I

PAIR
PROOUCTION

C7
FIG. 6. Illustration

of a process that
could produce a false
count if care is not
taken.

Solving for this in terms of the measured quantities, me

obtain
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Consider the two limiting cases:

(A) Rsr+= 0,
Rrr =G 'PRo —(1 G)R—st Ro+—/G,

(8) Rjr+ =Rrr+,

Rlr =G '[Ro—(1 G)Rs—r] Ro+.—

(16)

(17)

In practice, there is not much difference, since Eo+ is

always about 5% or less of Ro.
The correction is listed as a multiplicative correction

and includes the correction to the monitoring as well as
that due to scatter from the walls. This somewhat dis-

guises its real form, which we therefore now discuss.
From Eq. (17), we note that when G= 0.9 (90% of the
bremsstrahlung from hydrogen which is true for 8= 5
BeV) and Rsr Ro——, we have 10%%uo of the scatters due to
the target walls, yet the multiplicative correction is near
unity. The correction divers from unity when the frac-
tion of events scattered from the target walls is diferent
from the fraction of the bremsstrahlung from the walls.

Tmaz I. DiGerential cross sections for L'.=2.358 BeV.

+~a
(BeV)

1.774
1.754
1.735
1.716
1.698
1.680
1.662
1.643
1.624
1.607
1.591
1.573
1.556
1.539
1.522
1.506
1.490
1.473
1.457
1.441
1.426
1.411
1.395
1.380
1.365
1.350
1.336
1.321
1.307
1.292
1.279
1.265
1.250
1.237
1.223
1.210
1.197
1.184
1.117
1.158
1.146
1.134
1.121
1.109
1.097
1.085
1.074
1.106
1.050
1.039
1.027
1.016
1.005
0.994

0.213
0.598
0.862
0.485
0.160
0.119
0.084
0.0758
0.0955
0.0800
0.109
0.116
0.145
0.189
0.236
0.293
0.2"l7
0.352
0.274
0.230
0.233
0.203
0.213
0.208
0.194
0.196
0.207
0.194
0.225
0.201
0.219
0.209
0.219
0.249
0.241
0.279
0.262
0.259
0.273
0.260
0.239
0.232
0.231
0.215
0.216
0.209
0.212
0.207
0.254
0.239
0.255
0.245
0.242
0.283

1.27
1.40
1.43
1.38
1.17
1.04
0.83
0.745
0.881
0.744
0.928
0.948
1.046
1.142
1.204
1.254
1.234
1.284
1.222
1.171
0.977
1.200
1.106
1.026
1.122
1.187
1.032
1.344
0.991
1.252
1.078
1.196
1.351
1.141
1.412
1.125
1.188
1.275
1.142
1.079
1.133
1.157
1.064
1.150
1.103
1.164
1.114
1.446
1.080
1.238
1.092
1.110
1.267
1.076

0.350
0.398
0.652
0.833
0.938
1.027
1.072
1.045
1.078
1.072
1.018
0.937
0.993
0.920
0.894
0.880
0.881
0.879
0.885
0.900
0.891
0.906
0.915
0.928
0.921
0.936
0.950
0.945
0.953
0.947
0.953
0.932
0.892
0.911
0.874
0.888
0.862
0.861
0.858
0.873
0.863
0.889
0.889
0.896
0.842
0.874
0.862

0.260
0.446
0.523
1.1SS
1.435
2.187
3.295
4.267
5.813
5.436
6.904
4.756
4.104
3.286
3.440
3.322
3.049
3.126
3.454
3.255
3.970
3.501
4.023
3.919
4.165
5.054
4.982
6.019
5.720
5.717
6.221
5.830
5.110
5.120
4.954
4.686
4.669
4.564
4.753
4.797
6.154
5.464
6.022
5.851
5.490
6.576
5.690

10
14
14
12
12

10
8
7
7
6
6
6
7
7
7
7
8
8
7
7

7
'l

7
7
6
5
5

4
5
5
5
5
5

4
4

~ (10»
cms/Bev sr} l%}

jVp
(BeV)

0.983
0.973
0.962
0.952
0.942
0.931
0.922
0.912
0.901
0.891
0.882
0.872
0.863
0.853
0.844
0.835
0.826
0.817
0.808
0.799
0.790
0.782
0.774
0.765
0.757
0.748
0.740
0.732
0.724
0.716
0.709
0.701
0.693
0.686
0.679
0.671
0.664
0.657
0.649
0.642
0.635
0.628
0.622
0.615
0.608
0.602
0.595
0.589
0.582
0.576
0.570
0.563
0.557

Rb

0.283
0.270
0.288
0.283
0.275
0.271
0.231
0.239
0.255
0.243
0.236
0.259
0.248
0.268
0.203
0.221
0.219
0.194
0.209
0.200
0.215
0.223
0.196
0.227
0.190
0.190
0.167
0.169
0.211
0.186
0.193
0.196
0.184
0.212
0.183
0.169
0.161
0.187
0.178
0.140
0.145
0.161
0.157
0.158
0.146
0.133
0.129
0.159
0.135
0.110
0.140
0.133
0.108

ST'

1.005
1.150
1.052
1.033
1.037
0.828
1.019
1.090
0.947
0.954
1.126
0.959
1.116
0.673
1.026
0.919
0.760
0.971
0.838
0.982
0.969
0.753
1.092
0.699
0.831
0.657
0.762
1.114
0.728
0.882
0.886
0.782
1.076
0.738
0.756
0.763
1.055
0.857
0.598
0.826
0.988
0.858
0.911
0.808
0.766
0.804
1.200
0.765
0.641
1.222
0.895
0.691
1.269

0 (10—32

RADAR cm2/BeV

0.837
0.867
0.874
0.857
0.862
0.847
0.852
0.833
0.841
0.818
0.826
0.802
0.809
0.789
0.794
0.776
0.781
0.764
0.769
0.752
0.757
0.761
0.743
0.749
0.732
0.736
0.716
0.722
0.727
0.707
0.711
0.716
0.697
0.701
0.681
0.686
0.691
0.669
0.674
0.679
0.657
0.662
0.666
0.640
0.646
0.652
0.616
0.624
0.633
0.587
0.596
0.605
0.555

5.237
6.002
5.976
5.730
5.720
4.478
4.790
5.251
5.002
4.733
5.555
5.121
5.831
3.757
4.421
4.285
3.S75
4.017
3.816
4.252
4.615
3.801
4 480
3.650
3.610
2.918
2.953
4.482
3.729
3.948
4.198
3.864
4.941
3.996
3.480
3.335
4.496
4.173
2.853
3.178
3.855
3.822
4.039
3.528
3.179
3.131
4 339
3.522
2.596
3.825
3.701
2.805
3.938

Qe

sr) (%)

4

5
4
5
6
7
7
7
7
7
7
7
7
7
7
8
8
7
7
7
7
8
8
8
8
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9

10
10
10
10

Scattered energy.
d Radiative correct factor.

b Electron events per quantameter count.
~ Statistical error.

' Correction factor for target-cup scattering.
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d20 do.

dAd+ f dA eIastic (Ref. 4)

spinel

where d L&'f is the bin width.

Absolute Normalization

The data were taken in such a way that absolute cross
sections were obtained. In this paper we do not discuss

the details of solid-angle determination, monitoring,
etc., which are fully treated in Ref. 3. For convenience,

the data consisting of a set of values of E. were normal-

ized to the elastic cross sections measured in Ref. 2 by
the formula

DATA

The data are presented in Tables I, II, and III at
incident energies (E;) of 2.358, 2.988, and 4.874 BeV,
respectively. The laboratory scattering angle (0) is 31'
in each case.

Column 1 contains the values of the scattered energy
at which electrons were detected. This scattered energy,
E'y is the central energy of the detection bin. The actual
bin widths were 0.0157, 0.0146, and 0.0144 times Ef
for Tables I, II, and III, respectively. For each table,
the third entry for Ef is the elastic scattered energy.

Column 2 contains the observed counting rate, elec-
tron events per quantameter count, for electrons
scattered from the hydrogen-filled Mylar cup.

TAsx,E II. DiGerential cross sections for L&', =2.988 BeV.

QMf

(BeV) ST
o (10 " (Error

RAD cm' jBeV sr) in 'P0) (BeV)
0. (10 " (Error

RAD cm'/BeV sr) in %}

2.098
2.076
2.054
2.032
2.010
1.988
1.966
1.945
1.924
1.904
1.883
1.863
1.843
1.823
1.803
1.783
1.764
1.745
1.726
1.707
1.688
1.670
1.652
1.634
1.617
1.599
1.581
1.564
1.547
1.531
1.515
1.498
1.481
1.465
1.449
1.433
1.418
1.403
1.388
1.372
1.357
1.342
1.328
1.314
1.300
1.286
1,272
1.258

0.202
0.630
0.877
0.644
0.334
0.191
0.154
0.131
0,101
0.074
0.216
0.286
0.381
0.464
0.465
0.405
0.401
0.390
0.339
0.373
0.372
0.388
0.393
0,413
0.428
0.428
0.508
0.541
0.576
0.656
0.650
0.567
0.588
0.548
0.522
0.561
0.559
0.548
0.561
0.629
0.639
0.667
0.625
0.684
0.682
0.647
0.679
0.611

1.135
1.252
1.268
1.249
1.169
1.044
0.960
0.876
0.706
0.953
1.006
1.075
1.128
1.156
1.151
1.121
1.114
1.103
1.063
1.080
1.074
1.078
1.076
1.083
1.087
1.083
1.115
1.124
1.133
1.152
1.148
1.120
1.126
1.108
1.097
1.108
1.105
1.110
1.110
1.123
1.124
1.129
1.116
1.130
1.129
1.116
1.124
1.102

0.468
0,860
0.991
1.062
1.083
1.072
1.027
0.972
0.930
0.909
0.905
0.904
0.916
0.928
0.937
0.943
0.956
0.944
0.960
0.980
0.984
0.951
0.907
0.940
0.897
0.878
0.872
0.882
0.872
0.889
0.901
0.905
0.904
0.903
0.892
0.875
0.884
0.859
0.832

0.255
0.622
1.025
1.55
1.99
1,99
1.65
1.55
1.44
1.19
1.34
1.35
1.45
1.49
1.62
1.71
1.78
2.14
2.36
2.62
3.08
2.98
2.45
2.68
2.37
2.21
2.42
2.46
2.40
2.53
2.97
3.08
3,27
3.05
3.38
3.34
3.22
3.34
2.88

13
7
6
5

3

4

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

3
3

1.244
1.231
1.217
1.204
1.191
1.178
1.165
1.152
1.140
1.128
1.115
1.103
1.091
1.079
1.068
1.056
1.045
1.033
1.022
1.011
1.000
0.989
0.978
0.967
0.957
0.947
0.937
0.927
0.917
0.907
0.897
0.887
0.877
0.867
0.858
0.849
0.840
0.831
0.822
0.813
0.804
0.795
0.786
0.778
0.770
0.761
0.753

0.601
0.609
0.579
0.577
0.556
0.574
0.575
0,568
0.563
0.562
0.528
0.600
0.557
0.577
0.557
0.557
0.532
0.496
0.556
0.545
0.533
0.488
0.503
0.483
0.487
0.500
0.500
0.450
0.460
0.487
0.433
0.533
0.472
0.517
0.472
0.437
0.487
0.430
0.425
0.393
0.403
0.438
0.393
0.443
0.380
0.373
0.377

1.096
1..098
1.085
1.082
1.072
1.077
1.075
1.069
1.065
1.061
1.043
1.074
1.054
1.063
1.051
1.050
1.036
1.013
1.046
1.039
1.030
1.002
1.025
0.995
0.995
0.998
0.993
0.952
0.956
0.973
0.927
0.998
0.956
0.985
0.951
0,919
0.958
0.908
0.901
0,864
0.872
0.938
0.855
0.905
0.837
0.825
0.826

0.845
0.820
0.809
0.811
0.804
0.794
0.799
0.786
0.774
0.778
0.764
0.772
0.755
0.733
0.743
0.721
0.729
0.707
0.717
0.690
0.659
0.671
0.647
0.654
0.645
0.645
0.637
0.642
0.621
0.630
0.603
0.612
0.576
0.590
0.538
0.555
0.502
0.517
0.531
0.476
0.494
0.436
0.451
0.400
0.412
0.426
0.379

2.89
2.88
2.72
2.75
2.64
2.73
2.78
2.72
2.68
2.71
2.49
2.99
2.68
2.75
2.69
2.65
2.56
2.39
2.72
2.59
2.45
2.25
2.30
2.20
2.21
2.31
2.30
2.03
2.04
2.27
1.85
2.55
2.06
2.42
1.97
1.85
1.98
1.73
1.78
1.44
1.57
1.65
1.42
1.55
1.23
1.29

19

3
3
3.5
3.5
3.5
4.0
4.0
4.8
5.5
5.5
5.5
6
6
6
5.2
5.2
5.2
5.5
5.5
5.5
5.5
6
6
6
6
6
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
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Column 3 contains the correction factor to be applied
because of target-cup scattering. It is computed, using
Eq. (15), and is equal to RrI /Ro.

Column 4 contains the correction factor to be applied
because of radiative corrections. This is computed using
the Perez y Jorba recipe and is equal to 0/0. .„.In prac-
tice, the data for 0- „,were graphically smoothed, and
thus interpolated for equally spaced values of Ef,
viz. , AE~ ——0.020 BeV. This value of AE~ was about the
same size as that of the bin width, and was small enough
to show the structure of the resonances. Then for each
of these values of Ef, the correction factor 0/o „,was
obtained and this factor was then interpolated (linearly)
to the actual value of Ef that appears in column 1.

Column 5 contains the final value of the nonradiative
inelastic cross section d o/dodEf and is expressed in
10 "cm'/BeV sr.

Column 6 contains the statistical error in percent.
These are listed. separately from the systematic errors,
so that the shape of the spectrum can be easily seen.

The following systematic errors also appear. These,
however, will not produce spurious peaks.

For the radiative corrections, we expect the error to
vary from 5% for the 1238 resonance to about 15%
for the most inelastic regions. The error comes from the
peaking approximation used, and we have estimated
pessimistically the uncertainty at the higher resonances
since the correction depends on previously corrected
data and also on interpolated corrected data.

An error of 5% is assigned to the type of energy bin
width determination as discussed near Eq. (16a), viz. ,
the overlapping of the slat counters.

The uncertainty resulting from the hysteresis of the
magnet is less than 0.1%.

The remaining contribution to the systematic error
is the uncertainty in the measured elastic-cross-section
sections used. to normalize the inelastic data. These
were given as 8%, 8.5%, and 14% for E;=2.358,
2.988, and, 4.874 BeV, yielding for the total systematic
errors 11 to 18%, 11 to 18%, and 16 to 22%.

Normalizing factors fcf. Eq. (18)) were found to be
conveniently expressed, as

E=«/d"
I b.X 1/&.~~Er,

where wEr =AEr. The values of F are 2L4/Er, 6.21/Er,
and 57.9/Er, respectively.

An additional error of at most 0.3% was introduced
into the bin width by averaging over the five slats after
a given energy bin was centered, on each in turn, be-
cause the tilt of the slat counters to the perpendicular
to the magnet axis was neglected and because the dis-
persion in energy was approximated by a constant, viz. ,
AEf/Ef —0.00718 per inch.

This value of AEI/Er per in.ch was the average for
the dispersion through a distance of 6 in. centered,
about the central slat and was the same for effective
lengths of the magnet of 54, 53, and. 52 in.

TABLE III. Differential cross section' for 8;=4.874 BeV.

Ey
(aeV) ST

0
(10 '2 (Error

RAD cm'/BeV sr) %)
2.858
2.82g
2.798
2.768
2.738
2.708
2.678
2.649
2.620
2.592
2.564
2.536
2.509
2.482
2.455
2.428
2.401
2.375
2.349
2.324
2.299
2.274
2.249
2.224
2.201
2.177
2.153
2.130
2.107
2.084
2.061
2.038
2.016
1.994
1.973.
1.951
1.930
1.909
1.888
1.868
1.848
1.828
1.808
1.179
1.769
1.750
1.731
1.712
1.693
1.676
1.657
1.640
1.622
1.604
1.586
1.569

0.00104
0.00154
0.00226
0.00162
0.00063
0.00056
0.00058
0.00103
0.00182
0.00243
0.00233
0.00192
0.00198
0.00211
0.00262
0.00266
0.00418
0.00397
0.00438
0.00450
0.00482
0.00503
0.00490
0.00506
0.00614
0.00631
0.00564
0.00643
0.00654
0.00608
0.00594
0.00644
0.00692
0.00710
0.00736
0.00706
0.00730
0.00769
0.00753
0.00745
0.00686
0.00710
0.00768
0.00778
0.00758
0.00727
0.00807
0.00791
0.00804
0.00778
0.00804
0.00838
0.00814
0.00743-
0.00694
0.00787

1.035
1.062
1.081
1.060
0.949
0.884
0.972
1.206
0.900
1.013
0.995
0.956
0.951
0.944
0.971
0.964
1.018
1.005
1.010
1.007
1.009
1.008
1.000
0.998
1.016
1.015
0.998
1.008
1.006
0.993
0.986
0.993
1.000
1.002
1.006
1.000
1.004
1.010
1.007
1.007
0.995
0.998
1.007
1.008
1.006
1.002
1.014
1.014
1.016
1.012
1.016
1.019
1.017
1.007
0.998
1.014

0.977
1.045
1.158
1.131
1.098
0.961
0.967
0.981
1.040
1.059
1.083
1.063
1.050
1.040
1.015
1.009
1.001
0.997
1.013
0.997
0.988
0.979
0.970
0.958
0.936
0.963
0.961
0.956
0.946
0.935
0.933
0.933
0.921
0.904
0.889
0.883
0.884
0.8g2
0.879
0.877
0.875
0.872
0.865
0.860
0.851
0.833
0.848
0.829
0.804
0.776

0.0118
0.0285
0.0418
0.0622
0.0574
0.0402
0.0419
0.0457
0.0623
0.0649
0.1112
0.1034
0.1143
0.1174
0.1243
0.1305
0.1264
0.1312
0.1660
0.1700
0.1496
0.1726
0.1755
0.1607
0.1540
0.1750
0.1911
0.1974
0.2054
0.1960
0.2055
0.2197
0.2142
0,21.02
0.'1906
0.1985
0.2190
0.2242
0.2194
0.2114
0.2398
0.2365
0.2416
0.2342
0.2429
0.2514
0.2508
0.2241
0.2036
0.2286

38
26
17
12
11
12
12
11
10
10
8
8
8

7
7
7
7
7
6
6
5
5
5

4

That the effect of this error on the resolution function
is negligible can easily be seen by superimposing Ave
resolution functions, each similar to Fig. 4 and displaced,
one after the other by 0.15%.

Figures 7, 8, and 9 show the differential cross sections
as functions of scattered energy for incident energies of
2.358, 2.988, and 4.874 SeV, respectively, and scatter-
ing angles of 31' before radiative corrections have been
made, i.e., only the target-wall corrections have been

a These data are normalized to an elastic scattering cross section 0.8 ofRef. 4 because of new measurements of elastic scattering.
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e = 51' E,=P.,558 BeV
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FIG. 7. Spectrum of inelastically
scattered electrons for 0=31' and
E;=2.358 BeV (data of Table I).The
dashed line shows the radiative cor-
rection applied.
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BeV (data of Table III). These data
are normalized to an elastic scattering
cross section 0.8 of Ref. 4 because of
new measurements of elastic scattering.

Excitation of the M*= 1238-MeV Resonance

The most obvious feature of the scattered electron
spectra, after the elastic scattering itself, is the peak at
the mass %*=1238MeV. This is well known, has been
the object of previous studies, and will now be discussed.
A treatment based on relativistic dispersion relations
of the photoproduction of this resonance was 6rst

TAax.E IV. Differential cross section d'0./dQdBy in 10 "cm'/BeV sr,
averaged over DE=150 MeV centered on X=325 MeV.

q' (F

21.4
25.9
35.3
40.1

31'

no measurement
4.93

no measurement
1.24

90'

0.855
no measurement

0.236
no measurement

applied. The radiative correction, in the form (0' „.—0)
is represented by the dashed line.

The G factor, as used in Eq. (16) for the target-wall
scattering correction, had. the values 0.670, 0.760, and
0.890 for the three incident energies, respectively,

Other data, shown in Table IV, including the
35*=1238-MeV resonance owly, were taken at 31' and
90'. These are presented as averages over the resonance,
and are averaged over an interval ~%=150 MeV,
centered. on E=325 MeV.

presented. by Chew, Goldberger, Low, and Nambu'
(CGLN). This was later extended to electroproduction
by Fubini, Nambu, and Wataghin' (FNW) and further
reined by Zagury, ' and by Adler. "

The CGLN theory assumes that the (3,3) resonance
dominates the dispersion integrals and. the resonance
position is taken from experiment. Then an effective-
range relation is obtained for the resonant I' phase
shift and the small S, D, and nonresonant I' phases are
derived. The theory was applied firstly to pion-nucleon
scattering and then to photoproduction. FNK, using a
static model, extended, the theory to electroproduction.

In its simple form, the theory had only a qualitative
success. A modified form was first used by Hand. ' Hand
recognized that the relation between pion-nucleon
scattering and photoproduction is more definite than
other features of the theory and took. pion-nucleon
phases from the experiment. He thereby achieved the
first good success of the theory in fitting the total cross
sections with no free parameters.

More recently, Hohler" has retained the Born terms
and the resonant amplitud. e and. neglected the contribu-

7 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957).

8 S. Fubini, Y. Nambu, and V. Wataghin, Phys. Rev. 111,329
(1958).

9 N. Zagury, Phys. Rev. 145, 1112 (1966).' S. Adler, in Proceedings of the Argonne International Con-
ference on Weak Interactions, 1965, Argonne National Labora-
tory Report No. ANL-7130 (unpublished).

~' G. Hohler and W. Schmidt, Ann. Phys. (N. Y.) 28, 34 (1964).
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tion of the small phases, which calculation was in any
case open to question. He obtained good fits to diQeren-

tial cross section and polarization data, except near
0=0', where the small terms are important. Adler follows
the treatment of Hohler and extends it to electroproduc-
tion. The results are equivalent to those of Hand, but he
uses a better approximation for electroproduction than
the static model of FNW, and his results diRer athigh-
momentum transfers.

The relation between photoproduction and pion-
nucleon scattering inherent in CGLN and exploited
by Hand, Hohler, and now by Zagury and Adler, was
foreshadowed in a theorem due to Fermi and Watson:
The phase of the photoproduction amplitude must be
the same as that of the pion-nucleon scattering ampli-
tude until inelastic channels in the scattering open up.
This holds only for the Erst (M = 1238 MeV) resonance;
the higher resonances show great inelasticity and an
equivalent relation has not been found.

The isobar model of Gourdin and Salin, "extended to
electroproduction by Loubaton, " is superficially dif-
ferent. The results are, however, equivalent. The model
automatically satisfies the Fermi-Watson theorem, and
the parameters are fitted to pion-nucleon scattering.
Likewise, inelasticity limits its usefulness to the first
resonance.

An examination of the equations of FNW shows that
the dominant part of the electroproduction amplitude
is indeed the resonant (3,3) term. The principal varia-
tion is according to the formula

7"
de& (fO+e cd

df)tdEf ~BeV sr

E; =2.358 BeY

I ~ ~ ~

f& M"(Bev) f5

d o f0 cm

d&dEf BeV sr

2.5—

I I

E.= 2.988 BeV

f.5—

FIG. 10. Excitation of the resonance M~ = 1238 MeV compared to
Adler's theory, for the data of Fig. 7 and Table I.

with a slight falloff at higher-momentum transfers.
(It is in the details of this falloff that Adler and Zagury
improve on FNW. )

Now G~v (q') is not completely determined. Although
Gjr„(q') is measured by the elastic cross sections con-
comitant to this experiment, G~„(q ) is quite poorly
known at high-momentum transfers. The best guess
available is that the form factors are well approximated
by a "4-pole fit.""Some more recent elastic electron-
proton data" suggest that G~„may be lower than sug-
gested by this 4-pole 6t.

Figures 10, 11, and 12 show the absolute differential
cross sections for the resonance M*=1238 MeV com-
pared to Adler's theory. (Adler and Zagury agree, so
it is only necessary to compare to one of them). The
data lie 30 to 100% above the calculated curve —a fact
already noted by Hand' at lower-momentum transfers.
The theory of Adler uses a value of G~z given by the
4-pole 6t (Table VII). The 4-pole fit gives a value for

's M. Gourdin and Ph. Salin, Nuovo Cimento 27, 193, 309
(1963).

'3 J.P. Loubaton, Nuovo Cimento 39, 591 (1965).
14 L. H. Chan, K. W. Chen, J.R. Dunning, N. F. Ramsey, J. K.

Walker, and Richard Wilson, Phys. Rev. 141, 1298 (1966)."W. Bartel, B. Dudelzak, H. Krehbiel, J. M. McElroy, U.
Meyer-Berkhout, R. J. Morrison, H. Nguyen-Ngoc, W. Schmidt,
and G. Weber, Phys. Rev. Letters 17, 608 (1966).

0.5—

0
f.o

f

1.2
f

f 5 ~ I4' = M'(BeV)
'

Fro. 11.Excitation of the resonance M*= 1238 MeV compared to
Adler's theory for the data of Fig. 8 and Table II.

l

d~~ (f0 secm2
Y

dfldEf L BeV Sr J.08— E; = 4.874 BeV

.06—
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ho
l
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I
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Fro. 12. Excitation of the resonance M*=1238 MeV compared
to Adler's theory for the data of Fig. 9 and Table III. Adler's
calculations are normalized to a 4-pole fit to elastic scattering
(Ref. 4) which lies about 1.4 times the present elastic-scattering
results. His calculations are therefore high.

(G~„)'higher than the data of Ref. 4 by 20o7o and higher
than the data to which this work is now normalized by
50%. Thus the discrepancy is larger than appears
directly in Fig. 12. We consider agreement with this
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FIG. 13. 0'0 for M*= 1238 MeV
as a function of momentum
transfer.

-OA

-0.8—

-l.2—

-l.6—
l I I I l I I I I l l I I I I I I I i i i I

l5 30 45 60
q fermi

75

accuracy at these high-momentum transfers as a re-
markable triumph of theory.

There seems to be a shift in the position of the peak.
towards higher values of M* from the 1220 MeV pre-
dicted by the theory (the theoretical peak is riot at the
mass 1238 MeV). This shift is about 2—', % in 3II* and we
believe it is largely real. The magnet calibration was
checked (to better than 0.5%) with elastic scattering
(M=938 MeV) and we believe the magnet's effective
length and field gradient to be reproducible to 0.4%

and 0.3%, respectively, as functions of the magnet
current.

Vfe could interpret the comparison of theory and
experiment as a measure of LG~~(q')]'. I'rom what we
have just said LG~v(g') J' must be raised by 30% and
G~z(q') by 15% to fit the data. Since G~„(q') is fixed,

Glair must be increased 30% from the 4-pole fit.
FNW predicts that there is no electric quadrupole

excitation of the resonance, but there is evidence for a
3—5% admixture of the electric quadrupole and the mag-
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6 ~ I I I

l
I & I I

l
f I I i

l
I I I I

[
I I I I

Fzo. 14. 0-~ for III*=1238 MeV
as a function of momentum
transfer.
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t i i i l
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netic dipole excitation. This evidence comes from the
angular distribution of recoil protons in m' photoproduc-
tion at resonance using polarized photons" and the
equivalent experiment with electron scattering, the
angular distribution of the protons in coincidence with
electrons scattered inelastically from protons exciting
the resonance. '~

Associated with the electric quadrupole excitation
there will be, in general, some longitudinal (scalar)
excitation. This can be separated by an angular-distri-
bution method, just as Gz and G~ may be separated in
elastic scattering.

Hand' already showed that irp/oz (0.3 at F2=5 F '.
By use of our measurements at 0=90' (Table IV), we
can put upper limits on ro as shown in Table V. We
plot 00 and O.z against q' in Figs. 13 and 14, together
with the theory (o p ——0 and solid line for o r). Our data
are nowhere near precise enough to find the expected
value of 0 p from the known electric quadrupole
excitation.

General Theory of Resonance Excitation

Although the theory of excitation of the resonance at
M*= 1238 MeV is good, no such theory exists for higher
resonances. In pion-nucleon scattering, inelastic channels
are open" and there is considerable inelasticity in the
scattering amplitude. The Fermi-Watson theorem does
not then apply and a dispersion theory such as that of
CGI N cannot be easily justified.

Some general statements can, however, be made about
the excitation of resonances. These are well known in
the realm of nuclear physics and are extensively used.
We here refer to a review paper by Barber. " In the
nuclear-physics problem, the approximation is usually
made of no nuclear recoil (for elementary particles
this is the static model). A multipole expansion may
then be carried out in the laboratory reference frame.
The results derived are va1id in the long-wavelength
limit qr&&1, where r is the interaction radius, which is
presumed to be of the order of the nuclear radius ro.
In elementary-particle physics, the results derived in
the long-wavelength limit are sometimes called thresh-
old conditions and we are usually far from qr«1.

The calculations of 0& involves the squared matrix
element

TABLE V. Experimental ~r and op for fV*(1238}
(in 10 "cm'/BeV sr).

gp (P-2l

25.9
40.1

0.98~0.25
0.59~0.2

0'0

0.5&0.8
0.0a0.36

or(q2, E)= (q/E)22 pa, (E),

q 2l—2 ~2

op(qp, E)=2 — o,(E)—
1+1 E E'

l q'
=2 ——or(gp, E).

1+1E' (22)

Bjorken and Walecka'0 derive similar formulas for cr~

including nuclear recoil. However, they find (again for
the case where electric multipoles dominate)

«(P,E)=2(~/(l+1))(&2/Vp*')~r(V', E) (23)

In the static model and long-wavelength limit, thi. s is
the same as Eq. (22) because qp* E for M*=——M and
q'=0.

We note the kinematical relationship

ltl*l~*= lel3I (24)

This makes it immaterial which initial or final nucleon
system reference frame we use for Eqs. (21) and (22),
provided that E is measured in the same frame. At
q2 P

I
«*I/E*=

I ql/E=1. (25)

Equation (23) depends on the following theorems
(Ref. 20):

lim (Li /82 )=—(/ —1)// for l&~2,
l q.

*
l 0

The full calculation" yields for magnetic transitions of
order / (sometimes called abnormal parity transitions):

~r(V', E)= (q/E)"~. (E)
~p(g', E)=0;

and for electric transitions of order l (often called
normal parity transitions) except monopole:

ii(sr) 1'«(~V)p(r)
)

and

lim (Li„/Ei+) =1
le*i ~ o'

for l ~& 0,

where p(r) is an interaction density which is nonzero
only for r&ro, and p is the 3-dimensional momentum
transfer.

"D. J. Drickey and R. F. Mozley, Phys. Rev. 136, B543
(1964).

1' C. W. Akerlof, W. W. Ash, K. Berkelman, and M. Tigner,
Phys. Rev. Letters 14, 1036 {1965).

» A. Donnachie, . A. T. Lea, and C. Lovelace, Phys. Letters 19,
146 (1965}.

» W. C. Barber, Ann. Rev. Nucl. Sci. 12, 1 (1962).

(26)

where M~~, , E~~, and L~~ are the magnetic, electric, and
longitudinal (scalar) multipole coeKcients, respectively.

When qo* ——0, it can be shown that all the L~~
vanish"; thus the L/Z behavior for small

I
q"

I
breaks

~o J. D. Bjorken and J. D. Walecka, Ann. Phys. (N. Y.) 38, 35
(1966}.

» S. Adler (private communication).
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( BeV/c)~ for example, we 6nd that

jr(qr)e zrdsr cc q I p(qs) I
s. (29)

0
0

q~ (geV/c

Fxe. 15. q()' and q()*' as a function of q' at a mass M*= l512
MeV, illustrating the difhculty of choosing q()~ in the formula
of Kq. (22) or Eq. (23).

down and it is not known what the theoretical ratio of
o p/rrr 1s.

For curiosity's sake, the ratios of os/2or according to
various prescriptions are given for three points of
interest in Table VI. Likewise, the behavior of qo and
go~' as functions of q' is shown in Fig. 15.

The formulas given above for the long-wavelength
limit (threshold condition) certainly do not apply to
our case where

I qIr 1 (and do not even apply well for
nuclear physics). One must multiply Eqs. (21) and (22)
by some arbitrary form factor. At 6rst sight, it is not
clear that we have achieved anything by all this
maneuvering; we started with an arbitrary function
or(q', E) and still have an arbitrary function F'(q', E).
But the form factor is now expected to be characteristic
of the nucleon size. If we refer back to Eq. (20), we may
guess the interaction density to be equal to the nucleon
size. This may be approximated (Ref. 3) by an exponen-
tial e "" which is the Fourier transform of the form
factor:

The relevant form factor is clearly the magnetic vector
form factor Gsrv(q'), and we 6nd therefore the recipe
of Eq. (19) which we found earlier was the dominant
term in the FNW dispersion-theory calculation, but
not including the kinematic factors included. by Adler.

For the other resonances, the theory is less certain
for many reasons. At the start of this work, resonances
were known at DE*=1512 MeV (I=-', , I=-,' ) and
Me = 1688 MeV (I=-', , L= —',+) from pion-nucleon
scattering and photoproduction. Since then, phase-
shift analyses of pion-nucleon scattering' have shown
the existence of other resonances superimposed at these
energies. The disentanglement of their contributions to
photoproduction has not been performed, and it would
be harder for electroproduction (for which there are less
data). We shall proceed to analyze the data on the sup-
position of only these two (old) resonances —plus a
background —and endeavor to derive what information
we can. As we shall see, no amount of contribution of
the npw resonances can affect a peculiarity of the excita-
tion at JI/I*= 1512 MeV.

Another uncertainty is what form factor to use for
these resonances. For a resonance dominated by trans-
verse excitation, the magnetic form factor is probably
appropriate since the "magnetic form factor" is the name
given to the transverse elastic form factor. But a
transition to a state of I=—', could involve Gsre(q') more

strongly than Gsrv(q'). Now,

2Gsre(q') =Ger„(q')+Ger (q')
=G~. (q') —

I
G~.(q') I

G~q therefore involves a subtraction of two numbers of
the same order of magnitude and is very poorly known.
For the longitudinal excitation to I=-', state, probably
Gzs(q') becomes important and the electric form factors
are hardly known at all at the momentum transfers of
interest here. For the sake of denihteness, and for no

according to
P(qs) ~

I 1+qs/(0. 72)]—s (27) TABLE VII. Comparison of form factors.

j,(qr)e ""d'r ~ IF(q') I' (28)

Tmrz VI. Theoretical 00/2or for the resonance N*(1512).

(3eV/c}'
Prescriptio

i/(i+1) q~/~~
~/(~+1) q'/qo'

I:~/9+ 1)lq'/qo*'

0.797

0.797
0.295
9.96

1.31

1.18
0.312

601.0

3.30

2.96
0.262
4.12

For the magnetic dipole transition to %~=1238 MeV,

q2

(BeV/e)'

0,996
1.55
3.61
0.791
1.31
3.30
0.649
1.138
3.06
0.424
0.822
2.69

6~v'(q')/~~v'(0}

0.0300 0.0319
0.00861 0.0114
0.000730 0.0012
0.0494 0.0515
0.0152 0.0171
0.000972 0.00160
0.0750 0.0751
0.0217 0.0237
0.00126 0.0019
0.154 0.151
0.0461 0.0477
0.00190 0.0027

1-parameter 4-pole
I Eq. (27)j (Ref. 14)

Gzv(q')/Gev(&)

o.o462 o.o716
0.0265 0.0312
0.0059 0.00637
0.0689 0.1010
0.0254 0.0445

—0.0051 0.00760
0.0921 0.1370
0.00352 0.0570

—0.0042 0.00897
0.1516 0.2344
0.0648 0.0981

—0.0022 0.01156
4-pole 1-parameter
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FIG. 16. Spectrum of nucleon excitation from Fig. 7, showing decomposition into resonances.

other reason, we have chosen to compare our results to
G~r(q') as for the M~=1238-MeV case. Table VII
shows how the form factors G~y and G~y might change
for two its which are not far from known data {but
note that at g' 4 (HeV/c)' the 1-parameter fit } Eq.
(27)] does not fit the data to which this experiment is
normalized} .

Bxeit-Wignex Fits and Multiyole Fits

The problem arises of the size of the resonant contri-
bution relative to the nonresonant contribution. We
understand the 6rst resonance well enough to know that
4 of the photoproduction cross section at the peak is
nonresonant. We can see this most easily from the state-
ment that the transition y+p —& p+m' is entirely reso-
nant, and from Clebsch-Gordan coeKcients is twice
the resonant cross section in y+p ~ e+~+. Yet these
two cross sections are experimentally equal, and hence
there is a nonresonant background in y+p ~ e+x+
equal to ~ of the total p-absorption cross section.

The nonresonant part falls somewhat faster vith
increasing momentum transfer than the resonant part
and is probably small at q'=90 F '. In the detailed
comparison with theory made earlier for the irst reso-
nance, the nonresonant background is, of course,
included.

The crude separation of the resonances discussed
below is based on the assumption that the widths re-
main the same as the value at q'=0, and is therefore
somewhat arbitrary. In view of these reservations, and
those discussed earlier, we still endeavor to make"some
physical interpretation of the data.

After the radiative corrections were carried out by
the Perez y Jorba method, the resonant part of the
scattering was estimated from the shapes of the
resonances. In trying to determine whether or not a
resonance exists, only the statistical errors in Figs. 16,
17, and j4.8 are significant because the radiative, solid
target, and shower-eKciency corrections give smooth
curves. The full width at half-height was calculated a

~
E; = 2,988 BeY Ir}

d 0

50 dQd Ef

1920+ 92 1688+ 70 1512+ 65 1238 +?2

(Mev)

4.0—

3,0-

1,0—

Oe9
I

1.0 1,2 1.3 1,4 1,5 1,6 1.7 Q3 1.9
= Ef (Bev)

FIG. 17. Spectrum of nucleon excitation from Pig. 8, showing decomposition into resonances.
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d 0
dQdEf

BeV sr 1920+ 92 1688 + 70
I 1
I ~
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I

I

1238+ 72

M (Mev)

0.2—

O, I—

0
1.7 1.8 1.9

l

2.0
I
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Ef ( Bev)
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Fzo. 18. Spectrum of nucleon excitation from Fig. 9, showing decomposition into resonances.

d'o AF'/4

dEfdO resonant (Ef Eras) +F /4
(31)

500

400-
Oy

(y b)
300—

200—

priori, for each of the four resonances, LS*(1238),
X*(1512),X*(1688),and Ã~ (1920)j and at each of the
three incident energies (2.358, 2.988, and 4.874 BeV),
assuming widths of 130, 140, 145, and 185 MeV,
respectively.

The scattered energies and widths at which these
resonances were expected to be observed were calculated
from kinematics. To these were added in quadrature the
width of the elastic peak (i.e., at corresponding incident
energies) to obtain the expected experimental width of
each resonance at each incident energy.

Half of the resonant contribution was then assumed to
be the difference between the cross section at the peak of
the resonance and the average of the cross section, a
half-width either side of the peak. These amplitudes
are shown in Table VIII. The crudeness of this method
introduces large uncertainties which have been esti-
mated to be anywhere from a factor of 1~ to a factor of
4, depending on how clearly the resonance stands out.

If we assume a resonant structure of the form

we find the average from E...——',F to E„,+-,'F to be

drr/dQ
~ resonant/F&g = a%A (32)

For some purposes, it is more convenient to use the
cross section integrated over the resonance, i.e.,
d0/dQ~ „„„„,„,„„.Accordingly the values of

This permits us to use the peak amplitude in estimating
the multipole Gts.

The nonresonant contribution to the scattering was
then assumed to be what was left after the contributions
of the four resonances were removed. Figures 16, 17,
and 18 show the inelastic spectrum after radiative cor-
rections (the points with the bars), the contribution of
each resonance (smooth bell-shaped curves), the as-
sumed nonresonant scattering (dashed line), and the
reconstructed spectrum, i.e., the sum of the assumed
nonresonant and of all four resonances (single smooth
line).

Figure 19 shows the total cross section for photopro-
duction as compiled from the data for

p+v ~ p+~'
~ 8+sr+
—+ p+7r++sr-
-+ p+7r++sr +7r'+ (ysro)

~ rs+sr++7r++~-+ (q~o)
—+ P+2sr++2sr + (ysro)
-+ rI,+37r++2rr
—+ strange particles,

100-

0,5 1.0 1.5 Z.O
t t ' I

&,0 . 4 0
K (eeV}

A F'/4
dI'g ———,'vrA

(Er E)'+F'/4—
I"'&G. 19. Total photoproduction cross section taken from

existing data.

are given in Table IX.
The values of o-~ used in the multipole fits were
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Res

TABLE VIII. Areas under the resonances, -', OAF
(10 Ss cm'/sr).

100

-ae(Ip-28~rII2)

R"
. Qq'-, K)G'„„(o)

G Mv(q

I I I I I I I I I I I I I

1.238
1.512
1.688
1.920

2.358

0.92
0.98
0.89
0.09

2.988

0.312
0.36
0.33
0.04

4.8'14

0.0082
0.0069
0.0078
0.0112 (upper

limits)
o HANO

+ THIS WORK NEW DATA

OLO DATA

PHOTOPRODIIQTION

obtained from the data in Table VIII and the following
formulas:

For N*(1238) and $*(1920), according to Eq. (1)
and the rule stated after Eq. (23),

rP~/dada' =~r(q', E)rr(8,q', E); (34)

and for Ee(1512) and E*(1688), according to Eqs. (1)
and (23),

2l g
=(rr(q', E) 1' (8,q', E)+ —1' (8,q', E)

3+1 E'
(35)

and I= 1 or 2 for Ã*(1512) or 1Ve(1688), respectively.
The values for o.r(q', E) thus obtained are given in
Table IX.

As a test of Eqs. (21) and (22) the values of the
logarithm of o.r/Gwvs are plotted against the logarithm
of

I q'I for constant Me. The results are shown in Figs.
20, 21, and 22.

By reason of the previously indicated arguments
about change in angular momenta, isotopic spin, and
parity, we expect the excitation of the resonances to go
as indicated by the dashed lines.

Comparison of these assignments (summarized in
Table X) with Figs. 20, 21, and 22 shows rather re-
markable agreement considering the approximations
that entered into the calculations. A possible deviation
exists at 1512, where the electric dipole excitation pre-
diction does not simultaneously 6.t the photoproduction
and electroproduction data. The new resonances would

I I I I I III
s 3 s t 10 20 50 50 TO 500

I q~l
s

K

FIG. 20. The resonant %*=1238-MeV cross section plotted
against (I q I

/E)' showing the fall away from the magnetic dipole
dependence. Data from two runs are shown.

be excited by electric monopole and dipole excitation.
Possible reasons for the discrepancy are the replacement
of qs~ by E Luse of Eq. (22) instead of (23)j and use
of G~~ instead of G~g.

I I l I I I

IO—
~(q, K) GMv(0)

G~ (q~)

N (~5I2)

CONCLUSIONS AND SPECULATIONS

The excitation of the resonances at M*=1238 MeV
agrees reasonably with theory and further work can
identify details. A separation of 00 and O.z by measure-
ments of this type, or by the distribution in the azimuthal
angle qI of the outgoing protons, can give information

TABLE IX. "Theoretical" 0.p{g~,E) in 10~' cm' as extracted
from Eqs. (35) and (36). ~ THIS WORK

P MOTOPRODUCT ION
Resonance Momentum transfer g~ (BeVjc)~ 0.996
X=0.346 BeV O'T 1.06

M* =1238 MeV

1.55
0.62

3.61
0.0520

Resonance Momentum transfer
K =0.746 BeV

M*=1512 MeV

Resonance Momentum transfer
K =1.045 BeV

M+ =1688 MeV

Resonance Momentum transfer
K =1.50

M+ =1920 MeV

a' (B«/~)'
O'T 0,34

q& (Bevgc) & 0.649
&T 0.32

qg (Bev/I,")g 0,424
OT 0.032

1.31
0.15

1.138
0.11

0,822
0.021

3.30
0.0046

3.06
0.0061

2.69
0.0016

7()

.5'

ELECTRIC

DIPOLE

I I I I I I

3 -' 5 7 IO(I I
i~ 20

~ «K)
Fro. 21. The resonant &~=1512-MeV cross section plotted

against (IqI/E)' showing the unusually high-eiectroproduction
cross section.
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alues of radiation kerne s iThen,

o,„,(E. ;,Ef)=
@y+Q

dEy'I'o-I'dE'

BeV ') given by

( /~)Do(r /or~) —&]

'orken, and t e rs

for q'=1 (BeV/c)' Z'=1 13eV.
Ey+b,

E ' dEf'PoP+dEi

dEf'PoP+

th
'

l 6 and assumethe intervaIntegrate over th

dE

PoP. (A. 4)

E'/E

0.99
0.9
0.8
0.7
0.6
0.5

Hand

3.26
0;298
0.135
0.080
0.057
0.042

8jorken

2.9
0.302
0.144
0.089
0.064
0.048

1st approx.

3.30
0.330
0.165
0.110
0.082
0.066

Note that
A/E;, f«1, S«1. Hence

o „,(E;,Ef)~ 1o „, ;,E ~(1+2o ink/Ef)a(E, ,Ef)

in 8' and higher, we haveif we drop all terms in 8 an

by1 Dn(Ef'/Ef) j" '
dEy'

Egr(s,)

0 (8'), (AS)—~b 1n= """'f'=1+~f»(~/Ef)+

dE,'P(E;,E,', o,)o (E, f)

dEf'o(E, ,Efr)P(Ef. ,Ef, f . (A8)
and, similarly,

1 Dn( E;/E)i" '

1(~)

Eg

Also note that

"-*dEf' Dn(Ef'/Ef

~f+~ Ef 1'(4)

/E )'—(ln(Ef+~)/Ef)'= (lnEf max f

n E max/Ey)] [b 1na/Zy]

b') 1+8 ln——+0(8)=1—6 1n~ ln ~+0(b

S')j (A

Ey+6
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