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Inelastic Scattering of Electrons by Protons*
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The inelastic scattering of electrons by protons has been measured at incident electron energies up to
5 BeV/c and momentum transfers ¢2=4(BeV/c)% Excitation of known nucleon resonances at M =1238,
1512, 1688, and possibly 1920 MeV have been observed. The calculations for the resonance at M =1238 MeV
have been compared with calculations by Adler based on the dispersion theory of Chew, Goldberger, Low,

and Nambu. The agreement is good. Qualitative models are discussed for the other resonances.

INTRODUCTION

HE inelastic scattering of electrons was shown by
Franck and Hertz to be a useful technique for
studying atomic structure. By studying the energy
spectrum of scattered electrons, they were able to
measure the excitation spectrum of atoms. In the
terminology of modern high-energy physics, this would
now be called missing mass spectroscopy.

The application of this method to the study of the
proton and its excited states was begun by Panofsky
and Allton! and was extended by Hand.2 These authors
studied the excitation of the pion-nucleon (nucleon
excited state) at a mass of 1240 MeV and with quantum
numbers, /=%, J=3%t up to a momentum transfer
¢®=18 F2[0.7(BeV/c)*]. Hand failed to find evidence
of excitation of other resonances.

In this work, the excitation of the 1240-MeV reso-
nance is studied up to a momentum transfer ¢=90 I~?
[3.61(BeV/c)*] and the excitation of the resonances at
masses of 1512, 1690, and 1920 MeV are observed.
These are compared with such theoretical calculations
as are available. There is good agreement except for
the excitation of the resonance at 1512 MeV, which is
too great to be understood. This paper extends and
supersedes a preliminary communication of these
results.®

KINEMATICS AND ONE-PHOTON EXCHANGE

Throughout this paper we will use a notation close
to that of Hand.2 Some of the kinematic quantities are
clear from the diagram of Fig. 1. At these momentum
transfers, elastic scattering is believed to proceed
primarily by one-photon exchange. It is therefore
reasonable to assume that the inelastic scattering also
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proceeds by one-photon exchange. Then the cross
section for inelastic scattering can be shown to be
separable?:

@20 /dQAE ;= Ttransverse (6,¢%K ) transverse (%K)

+T'scalar (0792:K)0'scalar (92,K) ) (1)

where

a KE

T'transverse = FT= — {2—[-*—*———
dr® ¢* EL 14(g0%/¢%)
a K Ey

cot?(6/2)
Pscalar= P0=— —
4r? ¢* E; [1+(90*/¢%)]
K=qo—¢*/2M = (M**—M?)/2M .

cot?(6/2) :l

We abbreviate or=octransverse ; 70=0scalar.

The relation between K and M* is independent of the
4-momentum transfer ¢%. At ¢*=0 (photoproduction),
K is the laboratory photon energy. For electroproduc-
tion, it is therefore called the virtual photon energy.

In the metric used here, the square of the 4-momentum
transfer is positive for scattering:

@P=4E;E; sin?(36). (2)

If we use quantities in the center-of-mass system of
the outgoing nucleon system M*, we find the fourth
component of the 4-vector q:

qo*= (M*—M?)/2M*—¢*/2M*, ©)
whereas, in the laboratory, '
qo= (M2 — M2 /2M + /2. @
The normalization of the I' factors is such that
or(0,K)=0,(K), ©)

which is the photoproduction cross section at the

F1c. 1. A diagram to aid in
understanding the kinematics
of inelastic ep scattering.
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photon energy K. The T' factors have the dimensions
of the number of virtual photons per BeV steradian.

The experimental aim is therefore to determine
or(¢®K) and ¢¢(¢%,K) over a range of values of ¢* and
K (or, equivalently, ¢* and M*).

APPARATUS

The experiment was done concurrently with the
experiments on elastic electron-proton and quasielastic
electron-deuteron scattering previously reported,* and
used the same apparatus.

The electrons from the internal beam of the Cam-
bridge electron accelerator impinged on a liquid-
hydrogen target ; the scattered electrons passed through
a quadrupole spectrometer onto a scintillation counter
bank. A threshold Cerenkov counter and a shower
counter helped to distinguish electrons from pions.
Pions could only be detected by knock on (m-e scatter-
ing) in the Cerenkov counter and by charge exchange in
the shower counter.

Figures 2 and 3 are, respectively, vertical and
horizontal schemes of the experimental setup. The
liquid-hydrogen target was contained in a vertical
cylinder of Mylar or Dupont H film which was centered
about £ in. inside the equilibrium orbit of the circulating
beam. At the end of the acceleration cycle, the rf was
turned off and the electrons spiraled inward until they
penetrated the target. The incident flux was monitored
by a quantameter and an ion chamber which observed
the forward bremsstrahlung from the electron beam
hitting the target.

The scattered electrons passed through a single
quadrupole magnet with a center plug and were focused
along a horizontal line. Several long, thin scintillation
counters were arranged parallel to this line, thus making
available several momentum acceptance bins simultane-
ously. Placed after these “slat’” counters, as they were
called, was a gas Cerenkov counter which was used as a
threshold counter to distinguish electrons from heavier
charged particles. Finally, there were two large scintil-
lation counters, the latter of which was used as a shower
counter to distinguish the high-energy scattered elec-
trons from low-energy knock-on electrons and pions.

An electron was counted when the following condi-
tions were met. Counters Cy, Cs, and either Csq, C7, OF

LIQUID  HYDROGEN
OR DEUTERIUM TARGET

F1c. 3. Arrangement of counters
showing a typical electron trajectory,
side view.
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FiG. 2. Layout of the experimental apparatus, top view.

Css, C7p had to register in coincidence, which meant
a charged particle had crossed the median plane of the
quadrupole magnet somewhere between C, and Ci.
Such an event was called a fourfold count. A count from
Cy was demanded in coincidence with this; such an
event was called a fivefold count. A count from the
Cerenkov counter in coincidence with a fivefold opened
a gate to the pulse-height analyzer to receive the output
from the shower counter Cio. If the signal from the
shower counter was above the bias level set for it, then
the coincidence of fivefold plus Cerenkov plus Cio,
called a slat drive signal, was produced. If a slat
counter, i.e., counters C, through Cs, registered in
coincidence with the slat drive signal, an electron count
was registered in the appropriate momentum bin.

This apparatus has been described in great detail
in Ref. 4. Some additional details of importance for the
inelastic spectrum follow.

Spectrometer Calibration

The magnetic-field gradient and effective length of
the quadrupole magnet as a function of current were

LEAD SHEET

s Ko=)

COUNTER BANK SHOWER

4 K. W. Chen, J. R. Dunning, A. A. Cone, N. F. Ramsey, J. K. Walker, and Richard Wilson, Phys. Rev. 141, 1267, 1286 (1966).
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supplied to an accuracy of 0.29, by Paul Cooper, ]Jr.
These were measured by a long flip coil and by Hall-
probe measurements. A graphical interpolation of these
points was the basis for calculating the curve of scattered
energy focused at a distance of 63 in. from the face of
the magnet (the center of C,in Fig. 3) versus the current
through the magnet. This curve was recalibrated by
noting the position of the elastic peak as a function of
the spectrometer current. The recalibrated curve shows
that the magnet did not saturate as rapidly as the
interpolation of Cooper’s data would suggest.

At the focal point of 63 in., the average percentage
change in momentum is 0.7189%, per inch.

Now the slat counters (C; through Cs in Fig. 3) were
1.5-in. wide in the direction of momentum resolution,
and this corresponds to about 1.19, for dp/p. However,
because of their finite height (5 in.), the slats detected
particles outside this momentum bite. Therefore, in
order to compute the momentum resolution properly,
the efficiency of the slat counters must be taken into
account. The method is as follows. Take a portion of the
spectrum which is relatively flat. Let N equal the
number of bins in which counts are accepted. Suppose
there are really » counts per bin. Then Nz is the ideal
total number of counts. Let f be the fractional overlap
on one side of a slat into the next bin. Let S equal the
sum of the actual slat counts; let T" equal the total in
peak, i.e., the number of events which triggered any or
all of the slats simultaneously. Then we have

Nu(142f)=S,
and
Nu+n2f=T; (6)
hence
2f=N(S—T)/(NT-S).

Then 1.08%, times (1+42f) is the actual dp/p for the
slats.

This method implies no more than about a 5%, error
in the momentum bite per slat.

The Counter Bank Tilt

The small but finite angular acceptance of the
spectrometer led to a spread in the energy of scattered
electrons. During the experiment, the slats were tilted
in the horizontal plane so that all the elastic events
would appear in one slat (neglecting resolution function
and radiative tails for the present). The”same tilt of
the counter bank also ensured that all inelastically
scattered electrons of the same value of K appeared in
the same slat. We see this from a kinematic calculation
as follows:

E—K

T+ (/M) (1—cost)
OF (E/M) sind
96 14+ (E/M)(1—cosb)’

!

v,

et al.
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Fic. 4. Comparison of the calculated and measured resolution
function of the spectrometer.

therefore,
oF’ (E/M) siné

= e, (7)
E 1+ (E/M)(1—cosh)

which is independent of E’ and K for constant E.
Figure 4 shows the calculated resolution of the spec-
trometer compared with the measured elastic scattering.

Pion Rejection

High-energy pions have a mean free path of about
8 in. in lead and could, therefore, be counted in the
spectrometer not only by traversing the spectrometer
according to the design, but also by penetrating the
shielding and the central plug. The background of these
pions was very large. B

Pions could count in the threshold Cerenkov counter
by their knock-on electrons, particularly if they had
penetrated the absorber. They could count in the
shower counter by charge exchange. It was important
to ensure that pions were not being detected in this
experiment.

In the elastic-scattering experiment,?® absolute cross
sections were measured. Accordingly, it was necessary
to detect small pulses in the Cerenkov counter and
shower counter to ensure their efficiency. Only relative
measurements were needed in this work, so that only
events with large pulses in both the shower counter
and Cerenkov counter were included.
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A lead filter of %-in. Pb (3 radiation lengths) was
inserted in the scattered beam near the target at each
momentum setting of the spectrometer. With this
thickness, no more than 19, of the electrons emerge
with energies greater than one-half of the incident
energy; since we only studied electrons from half the
elastic scattered energy upwards, this filter effectively
removes the electrons. However, high-energy pions
are reduced by only 109,.

It was verified that this filter indeed leaves the pions
by observing the background without the Cerenkov
counter, or shower counter, or at a momentum setting
above the elastic peak where only pions penetrating
the shielding or scattering off the pole tips could count.
The background was hardly affected by the presence
of the filter. We were, therefore, able to show that the
background of pions was always less than 109, of the
total counts and usually close to zero. When we tried
to observe excitation of the mass 1512-MeV resonance
at §=90° and ¢#=1 (BeV/c)?, the background as
determined by the lead filter was too large and the
attempt was abandoned.

Radiative Corrections

This has been called, in the past, the correction for
wide-angle bremsstrahlung. We prefer to regard it as
part of a general radiative correction calculation.

Although the most thorough discussion of radiative
processes is that of Bjorken,® an easier procedure to
follow is described by Perez y Jorba.® Experimentally,
we measure a Cross Section omeas(Ei,Es)=d%/(dQE;)
for finding a scattered electron of energy E;. We are
interested in a hypothetical cross section which we
would measure if there were no radiative processes.
Electrons radiate both before and after scattering. Thus,
Omeas(Ei,E) includes contributions from o(E;E;")
(where E;>E;) weighted by a radiation kernel
K 4(E{ ,E;) for radiation of a photon of energy E; —E;
(radiation after scattering). Similarly, there is a term
in o(E/,E;) for (E;>E;) which is due to radiation
before scattering. There is also the usual Schwinger
correction which corresponds to inelastic events
o (E+E;) with radiation out of the detector bin width A,

According to the Perez y Jorba recipe, therefore,

Omens(Ei,Ef) =0 (E;,Es) (1—8)

E{—AE
+/ KB (Ei,E,;I)O' (Ei’,Ef)dEi’
0

+ K4(E/,Ep)o(ELE{)AE/, (8)

Ef+AE

where o (E;,Ey) is the cross section for scattering without
radiating, (1—3) is the Schwinger correction term, K g

8 J. S. Bjorken, Ann. Phys. (N. Y.) 24, 201 (1963).
¢ J. Perez y Jorba, Orsay Report No. 1108, 1964 (unpublished).
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Fi1c. 5. A kinematic diagram relating the incident and final
electron energies, showing the region that must be measured to
make a radiative correction.

is the radiation kernel for radiation before scattering,
and K 4 is that for radiation after scattering. These K’s
are calculated in the peaking approximation using the
formula developed by Hand.?

Here 6 is given by

2/ E; 13\/ ¢ 17
et HeE5)
7L\ AE 12/\ m2 36

E/a 1 q? (E:i—E/)*
Ky = - [ln 14
E;wE—~E/| m? E*—E/
2E; 2E;
X[ln %ln<1 } ):” , (9
m M
E;«a 1 2 (Ef—Ey)?
P {mq 14 D)
Ef WEf'—Ef m? E/Ef

2E; 2E;
Xl:ln %ln(1+ >]} .
m M

Here A is the bin width at the detector.

We must also add a small (59%) addition to K 4, K5,
and 6 for the real physical radiators present in the
experiment.

Thus to evaluate the corrected cross section o (E;,E;),
we must know o (E;,E;’) at all values of E;’ from E; up
to the elastic scattering value and o¢(E/,E;) at all
values of E;/ from E; down to the elastic-scattering
value. The correction thus becomes an iterative
procedure.

This is made clear by reference to Fig. 5. This is a
kinematic diagram of the incident energy versus the
scattered energy. Clearly, all elastic-scattering events
lie on a line on this plot. Inelastic events all lie to the
left of this line, with smaller E;.
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When we consider the determination of the correction
for a point, E;, E; in this plot, we see that the line
integrals of Eq. (8) are the horizontal and vertical lines
in this figure. Now, since we need to know o (E;,Ey) at
every point on the line, we see we must know
omess(Ei,Es) at all points in the shaded region before
we may start the iteration.

o(Ei,Ey) is clearly known for elastic scattering by
using the form factors from Ref. 3; for inelastic scatter-
ing, it may be determined at any momentum transfer
and K using data for lower momentum transfers and
lower K. For the evaluation we must interpolate between
known points. This is done using Eq. (1) for the in-
elastic or elastic scattering and interpolating the elastic
form factors according to Ref. 2 and the inelastic cross
section ¢z according to the formula Gy?(g)*, where
the value of / is chosen from the two known points at
the end of the interpolation range. This procedure
approximates the expected theoretical behavior of the
cross section.

The radiative corrections have been evaluated using
different bin sizes A and using slightly different radia-
tion kernals K4, Kg. The results are insignificantly
different.

Attempts were made to calculate the radiative cor-
rection according to the recipe of Bjorken.’® However,
the results gave o=~~21.1 omess, contrary to physical
intuition and to the Perez y Jorba calculation, which
gives 020.9 gmeas. The two methods should be equiva-
lent (see the Appendix), though that of Bjorken is
harder to apply. We believe that our attempts to calcu-
late with the Bjorken recipe were subject to an unknown
source of error and should, therefore, be ignored.

TREATMENT OF DATA

Two principal subtractions are to be made on the raw
data, viz., target-wall scattering and the radiative cor-
rections. Subtraction of detected pions in the scattered
beam was carried out by the lead-filter technique
described above and was always small. Electrons arising
from charge-symmetric processes (e.g., Dalitz pairs)
were subtracted off by observing the positron cross
section at various points along the spectra. This sub-
traction was also small. The subtracted counts had to
be corrected for the shower-counter efficiency at the
particular bias and energy of the electron. These
efficiencies were measured by observing the shower-
counter spectrum for elastically scattered electrons at
comparable energies.

False kinematic coincidences such as that diagrammed
in Fig. 6 were suppressed by demanding a signal from

MAGNE
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one of the slat counters. The recipe followed then was:
(1) to obtain the counts from hydrogen alone after wall
subtraction; (2) to subtract counts with the field
reversed; (3) to correct for background pions using the
lead filter; (4) to normalize the inelastic counting rates
to an absolute cross section by comparing them with
the elastic counting rate; (5) to correct for shower
counter efficiency; and (6) to compute the radiative
corrections.

Target-Wall Backgrouud

The fractions of electrons scattered from the target
wall varied from 10 to 209, of the total scattering. This
fraction was determined by measuring the distribution
of the beam across the target using the beam clipper
as described in Ref. 3 ; from this we deduce directly the
fraction of bremsstrahlung from the hydrogen, G. The
calculation then proceeds as follows.

Let N be the number of counts for a given run, Q the
charge collected by the quantameter, and R=N/Q the
counts per unit charge. More precisely, let Nz~ equal
the number of positron counts in the reversed field
subtraction, N+ equal the number of positron counts
in the reversed field runs. Let N+ be similarly defined
for the Mylar cup of the H film (target-wall scattering).
Let Qn equal the quantameter charge due to brems-
strahlung in the hydrogen, let Q be the same for the
target wall. Let G=Qx/(Qu~+Qu) be the fraction of
bremsstrahlung for Ha.

This G is obtained from a knowledge of the shape of
the target cup and measurements of the amount of
bremsstrahlung as a function of the amount of target
exposed to the beam.

Note then that the raw counting rate Ry is given by

_N v +Ngt+Ny+ Nyt
Ou+Qu '

The counting rate from the solid target of the same
material as the target wall is also measured;

Ryr= Ny +Nart)/Qu . (11)

This should be the same number for the target wall
alone. The reversed field for H, plus target wall is

(10)

Rot= (Ngt+Nu)/(Qut+Qu). (12)
The reversed field for the target wall alone is
Ryt=Nu/Qu. (13)
The number that is wanted is
Ry==Nu/Qx. (14)

Solving for this in terms of the measured quantities, we
obtain

Ry= G_l[(Ro—Ro"') - (1 —G) (RM—RM+)] . (15 )
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Consider the two limiting cases:

(4) Rt

=0,

(B) Ru*=Rat,

Ry =G [Ro— (1—G)Ry]—R:*/G,

RH_=G_1[R0— (I*G)RMJ—RO_’-

(16)

7

In practice, there is not much difference, since Rgt is
always about 5%, or less of Ry.
The correction is listed as a multiplicative correction

and includes the correction to the monitoring as well as
that due to scatter from the walls. This somewhat dis-
guises its real form, which we therefore now discuss.
From Eq. (17), we note that when G=0.9 (909, of the
bremsstrahlung from hydrogen which is true for E=5
BeV) and Ry= R, we have 109, of the scatters due to
the target walls, yet the multiplicative correction is near
unity. The correction differs from unity when the frac-
tion of events scattered from the target walls is different
from the fraction of the bremsstrahlung from the walls.

Tasie 1. Differential cross sections for E;=2.358 BeV.

Ep o (1072 Ae Egp o (10722 Ae
(BeV) R® STe RAD4 cm?/BeV sr) (%) (BeV) RP STe RAD4 cmz/BeV sr) (%)
1.774 0.213 1.27 0.983 0.283 1.005 0.837 5.237 4
1.754 0.598 1.40 0.973 0.270 1.150 0.867 6.002 4
1.735 0.862 143 0.962 0.288 1.052 0.874 5.976 4
1.716 0.485 1.38 0.952 0.283 1.033 0.857 5.730 4
1.698 0.160 1.17 0.942 0.275 1.037 0.862 5.720 4
1.680 0.119 1.04 0.931 0.271 0.828 0.847 4478 5
1.662 0.084 0.83 0.922 0.231 1.019 0.852 4.790 4
1.643 0.0758 0.745 0.350 0.260 10 0.912 0.239 1.090 0.833 5.251 5
1.624 0.0955 0.881 0.398 0.446 14 0.901 0.255 0.947 0.841 5.002 6
1.607 0.0800 0.744 0.652 0.523 14 0.891 0.243 0.954 0.818 4.733 7
1.591 0.109 0.928 0.833 1.155 12 0.882 0.236 1.126 0.826 5.555 7
1.573 0.116 0.948 0.938 1.435 12 0.872 0.259 0.959 0.802 5.121 7
1.556 0.145 1.046 1.027 2.187 11 0.863 0.248 1.116 0.809 5.831 7
1.539 0.189 1.142 1.072 3.295 10 0.853 0.268 0.673 0.789 3.757 7
1.522 0.236 1.204 1.045 4.267 8 0.844 0.203 1.026 0.794 4421 7
1.506 0.293 1.254 1.078 5.813 7 0.835 0.221 0.919 0.776 4,285 7
1.490 0.277 1.234 1.072 5.436 7 0.826 0.219 0.760 0.781 3.575 7
1.473 0.352 1.284 1.018 6.904 6 0.817 0.194 0971 0.764 4.017 7
1.457 0.274 1.222 0.937 4.756 6 0.808 0.209 0.838 0.769 3.816 7
1.441 0.230 1.171 0.993 4104 6 0.799 0.200 0.982 0.752 4252 8
1.426 0.233 0.977 0.920 3.286 7 0.790 0.215 0.969 0.757 4,615 8
1.411 0.203 1.200 0.894 3.440 7 0.782 0.223 0.753 0.761 3.801 7
1.395 0.213 1.106 0.880 3.322 7 0.774 0.196 1.092 0.743 4.480 7
1.380 0.208 1.026 0.881 3.049 7 0.765 0.227 0.699 0.749 3.650 7
1.365 0.194 1.122 0.879 3.126 8 0.757 0.190 0.831 0.732 3.610 7
1.350 0.196 1.187 0.885 3.454 8 0.748 0.190 0.657 0.736 2918 8
1.336 0.207 1.032 0.900 3.255 7 0.740 0.167 0.762 0.716 2.953 8
1.321 0.194 1.344 0.891 3.970 7 0.732 0.169 1.114 0.722 4482 8
1.307 0.225 0.991 0.906 3.501 7 0.724 0.211 0.728 0.727 3.729 8
1.292 0.201 1.252 0.915 4.023 7 0.716 0.186 0.882 0.707 3.948 8
1.279 0.219 1.078 0.928 3.919 7 0.709 0.193 0.886 0.711 4198 8
1.265 0.209 1.196 0.921 4.165 7 0.701 0.196 0.782 0.716 3.864 8
1.250 0.219 1.351 0.936 5.054 7 0.693 0.184 1.076 0.697 4,941 8
1.237 0.249 1.141 0.950 4,982 6 0.686 0.212 0.738 0.701 3.996 8
1.223 0.241 1.412 0.945 6.019 5 0.679 0.183 0.756 0.681 3.480 8
1.210 0.279 1.125 0.953 5.720 5 0.671 0.169 0.763 0.686 3.335 8
1.197 0.262 1.188 0.947 5.717 4 0.664 0.161 1.055 0.691 4,496 8
1.184 0.259 1.275 0.953 6.221 4 0.657 0.187 0.857 0.669 4173 8
1.117 0.273 1.142 0.932 5.830 4 0.649 0.178 0.598 0.674 2.853 8
1.158 0.260 1.079 0.892 5.110 4 0.642 0.140 0.826 0.679 3.178 9
1.146 0.239 1.133 0.911 5.120 4 0.635 0.145 0.988 0.657 3.855 9
1.134 0.232 1.157 0.874 4954 4 0.628 0.161 0.858 0.662 3.822 9
1.121 0.231 1.064 0.888 4.686 4 0.622 0.157 0911 0.666 4.039 9
1.109 0.215 1.150 0.862 4,669 5 0.615 0.158 0.808 0.640 3.528 9
1.097 0.216 1.103 0.861 4.564 5 0.608 0.146 0.766 0.646 3.179 9
1.085 0.209 1.164 0.858 4.753 5 0.602 0.133 0.804 0.652 3.131 9
1.074 0.212 1.114 0.873 4.797 5 0.595 0.129 1.200 0.616 4.339 9
1.106 0.207 1.446 0.863 6.154 5 0.589 0.159 0.765 0.624 3.522 9
1.050 0.254 1.080 0.889 5.464 4 0.582 0.135 0.641 0.633 2.596 9
1.039 0.239 1.238 0.889 6.022 4 0.576 0.110 1.222 0.587 3.825 10
1.027 0.255 1.092 0.896 5.851 4 0.570 0.140 0.895 0.596 3.701 10
1.016 0.245 1.110 0.842 5.490 4 0.563 0.133 0.691 0.605 2.805 10
1.005 0.242 1.267 0.874 6.576 4 0.557 0.108 1.269 0.555 3.938 10
0.994 0.283 1.076 0.862 5.690 4

Scattered energy.

4 Radiative correct factor.

b Electron events per quantameter count.

o Correction factor for target-cup scattering.
 Statistical error. & P €
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Absolute Normalization

The data were taken in such a way that absolute cross
sections were obtained. In this paper we do not discuss
the details of solid-angle determination, monitoring,
etc., which are fully treated in Ref. 3. For convenience,
the data consisting of a set of values of R were normal-
ized to the elastic cross sections measured in Ref. 2 by
the formula

Rina 1

d% (da)
dAdEf 4/ elastic (Ref. 4) Rl AEI,

(18)

where AE; is the bin width.
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DATA

The data are presented in Tables I, II, and III at
incident energies (E;) of 2.358, 2.988, and 4.874 BeV,
respectively. The laboratory scattering angle (9) is 31°
in each case.

Column 1 contains the values of the scattered energy
at which electrons were detected. This scattered energy,
Ey; is the central energy of the detection bin. The actual
bin widths were 0.0157, 0.0146, and 0.0144 times E;
for Tables I, II, and III, respectively. For each table,
the third entry for Ey is the elastic scattered energy.

Column 2 contains the observed counting rate, elec-
tron events per quantameter count, for electrons
scattered from the hydrogen-filled Mylar cup.

Tastre II. Differential cross sections for E,=2.988 BeV.

A A
E; o (102  (Error E; o (1072 (Error

(BeV) ST RAD cm?/BeVsr) in %) (BeV) R ST RAD cm?/BeVsr) in%)
2.098 0.202 1.135 1.244 0.601 1.096 0.845 2.89 3
2.076 0.630 1.252 1.231 0.609 1.098 0.820 2.88 3
2.054 0.877 1.268 1.217 0.579 1.085 0.809 2.72 3.5
2.032 0.644 1.249 1.204 0.577 1.082 0.811 2.75 3.5
2.010 0.334 1.169 1.191 0.556 1.072 0.804 2.64 3.5
1.988 0.191 1.044 1.178 0.574 1.077 0.794 2.73 4.0
1.966 0.154 0.960 1.165 0.575 1.075 0.799 2.78 4.0
1.945 0.131 0.876 1.152 0.568 1.069 0.786 2.72 4.8
1.924 0.101 0.706 1.140 0.563 1.065 0.774 2.68 5.5
1.904 0.074 0.953 0.468 0.255 13 1.128 0.562 1.061 0.778 2.71 5.5
1.883 0.216 1.006 0.860 0.622 7 1.115 0.528 1.043 0.764 2.49 5.5
1.863 0.286 1.075 0.991 1.025 6 1.103 0.600 1.074 0.772 2.99 6
1.843 0.381 1.128 1.062 1.55 5 1.091 0.557 1.054 0.755 2.68 6
1.823 0.464 1.156 1.083 1.99 4 1.079 0.577 1.063 0.733 2.75 6
1.803 0.465 1.151 1.072 1.99 3 1.068 0.557 1.051 0.743 2.69 52
1.783 0.405 1.121 1.027 1.65 4 1.056 0.557 1.050 0.721 2.65 52
1.764 0.401 1.114 0.972 1.55 4 1.045 0.532 1.036 0.729 2.56 5.2
1.745 0.390 1.103 0.930 1.44 4 1.033 0.496 1.013 0.707 2.39 5.5
1.726 0.339 1.063 0.909 1.19 4 1.022 0.556 1.046 0.717 2.72 5.5
1.707 0.373 1.080 0.905 1.34 4 1.011 0.545 1.039 0.690 2.59 5.5
1.688 0.372 1.074 0.904 1.35 4 1.000 0.533 1.030 0.659 2.45 5.5
1.670 0.388 1.078 0.916 1.45 4 0.989 0.488 1.002 0.671 2.25 6
1.652 0.393 1.076 0.928 1.49 4 0.978 0.503 1.025 0.647 2.30 6
1.634 0.413 1.083 0.937 1.62 4 0.967 0.483 0.995 0.654 2.20 6
1.617 0.428 1.087 0.943 1.71 4 0.957 0.487 0.995 0.645 2.21 6
1.599 0.428 1.083 0.956 1.78 4 0.947 0.500 0.998 0.645 2.31 6
1.581 0.508 1.115 0.944 2.14 4 0.937 0.500 0.993 0.637 2.30 5
1.564 0.541 1.124 0.960 2.36 4 0.927 0.450 0.952 0.642 2.03 6
1.547 0.576 1.133 0.980 2.62 4 0.917 0.460 0.956 0.621 2.04 6
1.531 0.656 1.152 0.984 3.08 3 0.907 0.487 0.973 0.630 2.27 6
1.515 0.650 1.148 0.951 2.98 3 0.897 0.433 0.927 0.603 1.85 6
1.498 0.567 1.120 0.907 2.45 3 0.887 0.533 0.998 0.612 2.55 6
1.481 0.588 1.126 0.940 2.68 3 0.877 0.472 0.956 0.576 2.06 6
1.465 0.548 1.108 0.897 2.37 3 0.867 0.517 0.985 0.590 242 6
1.449 0.522 1.097 0.878 2.21 3 0.858 0472 0.951 0.538 1.97 6
1.433 0.561 1.108 0.872 2.42 3 0.849 0.437 0.919 0.555 1.85 6
1.418 0.559 1.105 0.882 2.46 3 0.840 0.487 0.958 0.502 1.98 6
1.403 0.548 1.110 0.872 2.40 3 0.831 0.430 0.908 0.517 1.73 6
1.388 0.561 1.110 0.889 2.53 3 0.822 0.425 0.901 0.531 1.78 6
1.372 0.629 1.123 0.901 297 3 0.813 0.393 0.864 0.476 1.44 6
1.357 0.639 1.124 0.905 3.08 3 0.804 0.403 0.872 0.494 1.57 6
1.342 0.667 1.129 0.904 3.27 3 0.795 0.438 0.938 0.436 1.65 6
1.328 0.625 1.116 0.903 3.05 3 0.786 0.393 0.855 0.451 1.42 6
1.314 0.684 1.130 0.892 3.38 3 0.778 0.443 0.905 0.400 1.55 6
1.300 0.682 1.129 0.875 3.34 3 0.770 0.380 0.837 0.412 1.23 6
1.286 0.647 1.116 0.884 3.22 3 0.761 0.373 0.825 0.426 1.29 6
1.272 0.679 1.124 0.859 3.34 3 0.753 0.377 0.826 0.379 1.19 6
1.258 0.611 1.102 0.832 2.88 3
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Column 3 contains the correction factor to be applied
because of target-cup scattering. It is computed, using
Eq. (15), and is equal to Rg~/R,.

Column 4 contains the correction factor to be applied
because of radiative corrections. This is computed using
the Perez y Jorba recipe and is equal t0 0/0meas. In prac-
tice, the data for omess were graphically smoothed, and
thus interpolated for equally spaced values of Ey,
viz., AE;=0.020 BeV. This value of AE; was about the
same size as that of the bin width, and was small enough
to show the structure of the resonances. Then for each
of these values of Ey, the correction factor ¢/omess Was
obtained and this factor was then interpolated (linearly)
to the actual value of E; that appears in column 1.

Column 5 contains the final value of the nonradiative
inelastic cross section d%¢/dQdE; and is expressed in
1032 cm?/BeV sr.

Column 6 contains the statistical error in percent.
These are listed separately from the systematic errors,
so that the shape of the spectrum can be easily seen.

The following systematic errors also appear. These,
however, will not produce spurious peaks.

For the radiative corrections, we expect the error to
vary from 59, for the 1238 resonance to about 159
for the most inelastic regions. The error comes from the
peaking approximation used, and we have estimated
pessimistically the uncertainty at the higher resonances
since the correction depends on previously corrected
data and also on interpolated corrected data.

An error of 59 is assigned to the type of energy bin
width determination as discussed near Eq. (16a), viz.,
the overlapping of the slat counters.

The uncertainty resulting from the hysteresis of the
magnet is less than 0.19,.

The remaining contribution to the systematic error
is the uncertainty in the measured elastic-cross-section
sections used to normalize the inelastic data. These
were given as 89, 8.59,, and 149, for E;=2.358,
2.988, and 4.874 BeV, yielding for the total systematic
errors 11 to 189, 11 to 189, and 16 to 229%,.

Normalizing factors [cf. Eq. (18)] were found to be
conveniently expressed as

F= dO'/dQ’oble/Relef’

where wE;=AE;. The values of F are 21.4/E;, 6.21/E;,
and 57.9/Ey, respectively.

An additional error of at most 0.39, was introduced
into the bin width by averaging over the five slats after
a given energy bin was centered on each in turn, be-
cause the tilt of the slat counters to the perpendicular
to the magnet axis was neglected and because the dis-
persion in energy was approximated by a constant, viz.,
AE;/E;=0.00718 per inch.

This value of AE;/E; per inch was the average for
the dispersion through a distance of 6 in. centered
about the central slat and was the same for effective
lengths of the magnet of 54, 53, and 52 in.
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TasiE III. Differential cross section® for E;=4.874 BeV.

a A
Ey (1072 (Error

(BeV) R ST RAD cm?*/BeVsr) %)
2.858 0.00104 1.035

2.828 0.00154 1.062

2.798 0.00226 1.081

2.768 0.00162 1.060

2.738 0.00063 0.949

2.708 0.00056 0.884

2.678 0.00058 0.972 0.977 0.0118 38
2.649 0.00103 1.206 1.045 0.0285 26
2.620 0.00182 0.900 1.158 0.0418 17
2.592 0.00243 1.013 1.131 0.0622 12
2.564 0.00233 0.995 1.098 0.0574 11
2.536 0.00192 0.956 0.961 0.0402 12
2.509 0.00198 0.951 0.967 0.0419 12
2482 0.00211 0.944 0.981 0.0457 1
2.455 0.00262 0.971 1.040 0.0623 10
2.428 0.00266 0.964 1.059 0.0649 10
2.401 0.00418 1.018 1.083 0.1112 8
2375 0.00397 1.005 1.063 0.1034 8
2.349 0.00438 1.010 1.050 0.1143 8
2.324 0.00450 1.007 1.040 0.1174 8
2.299 0.00482 1.009 1.015 0.1243 7
2274 0.00503 1.008 1.009 0.1305 7
2.249 0.00490 1.000 1.001 0.1264 7
2.224 0.00506 0.998 0.997 0.1312 7
2.201 0.00614 1.016 1.013 0.1660 7
2177 0.00631 1.015 0.997 0.1700 6
2.153 0.00564 0.998 0.988 0.1496 6
2.130 0.00643 1.008 0.979 0.1726 5
2.107 0.00654 1.006 0.970 0.1755 5
2.084 0.00608 0.993 0.958 0.1607 5
2.061 0.00594 0.986 0.936 0.1540 4
2.038 0.00644 0.993 0.963 0.1750 4
2.016 0.00692 1.000 0.961 0.1911 4
1.994 0.00710 1.002 0.956 0.1974 4
1.973 0.00736 1.006 0.946 0.2054 4
1.951 0.00706 1.000 0.935 0.1960 4
1.930 0.00730 1.004 0.933 0.2055 4
1.909 0.00769 1.010 0.933 0.2197 4
1.888 0.00753 1.007 0.921 0.2142 4
1.868 0.00745 1.007 0.904 0.2102 4
1.848 0.00686 0.995 0.889 0.1906 4
1.828 0.00710 0.998 0.883 0.1985 4
1.808 0.00768 1.007 0.884 0.2190 4
1.179 0.00778 1.008 0.882 0.2242

1.769 0.00758 1.006 0.879 0.2194 4
1.750 0.00727 1.002 0.877 0.2114 4
1.731 0.00807 1.014 0.875 0.2398 4
1.712 0.00791 1.014 0.872 0.2365 4
1.693 0.00804 1.016 0.865 0.2416 4
1.676 0.00778 1.012 0.860 0.2342 4
1.657 0.00804 1.016 0.851 0.2429 4
1.640 0.00838 1.019 0.833 0.2514 4
1.622 0.00814 1.017 0.848 0.2508 5
1.604 0.00743 - 1.007 0.829 0.2241 5
1.586 0.00694 0.998 0.804 0.2036 7
1.569 0.00787 1.014 0.776 0.2286 7

» These data are normalized to an elastic scattering cross section 0.8 of
Ref. 4 because of new measurements of elastic scattering.

That the effect of this error on the resolution function
is negligible can easily be seen by superimposing five
resolution functions, each similar to Fig. 4 and displaced
one after the other by 0.159,.

Figures 7, 8, and 9 show the differential cross sections
as functions of scattered energy for incident energies of
2.358, 2.988, and 4.874 BeV, respectively, and scatter-
ing angles of 31° before radiative corrections have been
made, i.e., only the target-wall corrections have been
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6:31° E;=2,358 BeV (10732 cm%BeV sr)
420
’ | dﬂdg 8
” l “ ll I ll || ‘I it ””' iyl l I F16. 7. Spectrum of inelastically
“‘ ll l”l lll ‘l ll et Pl 6 scattered electrons for #=31° and
N I E;=2.358 BeV (data of Table I). The
il ! 2! -4 dashed line shows the radiative cor-
12 rection applied.
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e e e, AR
1 1 1 L1 1 [ I S b S PR oo B N |
0.6 0.8 1.0 2 14 e 18 E; (BeV)
©:31° Ez2,988BeV
| i ¢ (10732 cm¥/BeV 'sr)
| 2 2 440
| | 11 dcQ 2
| I'lnillu”'ll;'n”'"lmx'“l‘ TR Y ¥ dade’ T iy
|, TR, I'1*® Fe. 8. For Fig. 7, 0=31°, E;=2.988
. 1 Heo BeV (data of Table II).
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IR . S F1c. 9. For Fig. 7,0=31°, E;=4.874
| e, o2 BeV (data of Table II1). These data
SN A o are normalized to an elastic scattering
LRI 2 o1 cross section 0.8 of Ref. 4 because of
O . f new measurements of elastic scattering.
T SRl tntalek St S B! [ R TR B
16 1.8 2.0 2.2 2.4 2.6 2.8 Eq (BeV)

applied. The radiative correction, in the form (cmeas—0)
is represented by the dashed line.

The G factor, as used in Eq. (16) for the target-wall
scattering correction, had the values 0.670, 0.760, and
0.890 for the three incident energies, respectively.

Other data, shown in Table IV, including the
M*=1238-MeV resonance only, were taken at 31° and
90°. These are presented as averages over the resonance,
and are averaged over an interval AK=150 MeV,
centered on K =325 MeV.

Excitation of the M*=1238-MeV Resonance

The most obvious feature of the scattered electron
spectra, after the elastic scattering itself, is the peak at
the mass M*=1238 MeV. This is well known, has been
the object of previous studies, and will now be discussed.
A treatment based on relativistic dispersion relations
of the photoproduction of this resonance was first

Tasie IV. Differential cross section d%/dQdE; in 1073 cm?/BeV sr,
averaged over AK =150 MeV centered on K =325 MeV.

()
¢ F?) 31° 90°
214 no measurement 0.855
25.9 493 no measurement
35.3 no measurement 0.236
40.1 1.24 no measurement

presented by Chew, Goldberger, Low, and Nambu’
(CGLN). This was later extended to electroproduction
by Fubini, Nambu, and Wataghin® (FNW) and further
refined by Zagury,® and by Adler.?

The CGLN theory assumes that the (3,3) resonance
dominates the dispersion integrals and the resonance
position is taken from experiment. Then an effective-
range relation is obtained for the resonant P phase
shift and the small .S, D, and nonresonant P phases are
derived. The theory was applied firstly to pion-nucleon
scattering and then to photoproduction. FNW, using a
static model, extended the theory to electroproduction.

In its simple form, the theory had only a qualitative
success. A modified form was first used by Hand.2 Hand
recognized that the relation between pion-nucleon
scattering and photoproduction is more definite than
other features of the theory and took pion-nucleon
phases from the experiment. He thereby achieved the
first good success of the theory in fitting the total cross
sections with no free parameters.

More recently, Hohler' has retained the Born terms
and the resonant amplitude and neglected the contribu-

7G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957).

1;SSS)Fubml Y. Nambu, and V. Wataghin, Phys. Rev. 111, 329
: ® N. Zagury, Phys. Rev. 145, 1112 (1966).

10S. Adler, in Proceedings of the Argonne International Con-

ference on Weak Interactions, 1965, Argonne National Labora-

tory Report No. ANL-7130 (unpubhshed)
11 G, Hohler and W. Schmidt, Ann. Phys. (N. Y.) 28, 34 (1964).
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tion of the small phases, which calculation was in any
case open to question. He obtained good fits to differen-
tial cross section and polarization data, except near
6=0°, where the small terms are important. Adler follows
the treatment of Hohler and extends it to electroproduc-
tion. The results are equivalent to those of Hand, but he
uses a better approximation for electroproduction than
the static model of FNW, and his results differ at high-
momentum transfers.

The relation between photoproduction and pion-
nucleon scattering inherent in CGLN and exploited
by Hand, Héhler, and now by Zagury and Adler, was
foreshadowed in a theorem due to Fermi and Watson:
The phase of the photoproduction amplitude must be
the same as that of the pion-nucleon scattering ampli-
tude until inelastic channels in the scattering open up.
This holds only for the first (M = 1238 MeV) resonance;
the higher resonances show great inelasticity and an
equivalent relation has not been found.

The isobar model of Gourdin and Salin,? extended to
electroproduction by Loubaton,® is superficially dif-
ferent. The results are, however, equivalent. The model
automatically satisfies the Fermi-Watson theorem, and
the parameters are fitted to pion-nucleon scattering.
Likewise, inelasticity limits its usefulness to the first
resonance.

An examination of the equations of FNW shows that
the dominant part of the electroproduction amplitude
is indeed the resonant (3,3) term. The principal varia-
tion is according to the formula

ore[Guv () Tlal?, (19)

with a slight falloff at higher-momentum transfers.
(It is in the details of this falloff that Adler and Zagury
improve on FNW.)

Now Gy (¢?) is not completely determined. Although
Garp(g?) is measured by the elastic cross sections con-
comitant to this experiment, Garn(¢?) is quite poorly
known at high-momentum transfers. The best guess
available is that the form factors are well approximated
by a “4-pole fit.”* Some more recent elastic electron-
proton datal® suggest that G, may be lower than sug-
gested by this 4-pole fit.

Figures 10, 11, and 12 show the absolute differential
cross sections for the resonance M*=1238 MeV com-
pared to Adler’s theory. (Adler and Zagury agree, so
it is only necessary to compare to one of them). The
data lie 30 to 1009, above the calculated curve—a fact
already noted by Hand? at lower-momentum transfers.
The theory of Adler uses a value of Guy given by the
4-pole fit (Table VII). The 4-pole fit gives a value for

(11926%' Gourdin and Ph. Salin, Nuovo Cimento 27, 193, 309

13 J, P. Loubaton, Nuovo Cimento 39, 591 (1965).

1 T,. H. Chan, K. W. Chen, J. R. Dunning, N. F. Ramsey, J. K.
Walker, and Richard Wilson, Phys. Rev. 141, 1298 (1966).

15 W. Bartel, B. Dudelzak, H. Krehbiel, J. M. McElroy, U.
Meyer-Berkhout, R. J. Morrison, H. Nguyen-Ngoc, W. Schmidt,
and G. Weber, Phys. Rev. Letters 17, 608 (1966).
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E;=2.358 BeV

d2n (IO‘32 crnz)
dNdEf \Bev st

I | |

1
14 M*{Bev) 15

Fi1c. 10. Excitation of the resonance M*=1238 MeV compared to
Adler’s theory, for the data of Fig. 7 and Table I.

d?o (1632 cnt )

dNdEf BeV sr
3 T T T T T T T
E.= 2.988 BeV
25— -
2+ -
1.5 —
= —
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0 1 1 1 ! 1 1 1
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13 1.4
—— M¥*(BeV)

Fic. 11. Excitation of the resonance M*=1238 MeV compared to
Adler’s theory for the data of Fig. 8 and Table II.

T T T T
d%n (\O'Mcm2
dndEg \'BeV sr )

o8l E; = 4.874 BeV

06—

04—

02—

q2

=3.61 (Bev/c)?

10 X 12 1.3 14 ¥eey) 5

Fic. 12. Excitation of the resonance M*=1238 MeV compared
to Adler’s theory for the data of Fig. 9 and Table III. Adler’s
calculations are normalized to a 4-pole fit to elastic scattering
(Ref. 4) which lies about 1.4 times the present elastic-scattering
results. His calculations are therefore high.

(Garp)* higher than the data of Ref. 4 by 209, and higher
than the data to which this work is now normalized by
50%. Thus the discrepancy is larger than appears
directly in Fig. 12. We consider agreement with this
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FiG. 13. oo for M*=1238 MeV

T as a function of momentum
1 transfer.

accuracy at these high-momentum transfers as a re-
markable triumph of theory.

There seems to be a shift in the position of the peak
towards higher values of M* from the 1220 MeV pre-
dicted by the theory (the theoretical peak is not at the
mass 1238 MeV). This shift is about 239, in M* and we
believe it is largely real. The magnet calibration was
checked (to better than 0.5%) with elastic scattering
(M =938 MeV) and we believe the magnet’s effective
length and field gradient to be reproducible to 0.4,

1028 cm?

L
60 75

and 0.39), respectively, as functions of the magnet
current.

We could interpret the comparison of theory and
experiment as a measure of [Guw (¢%) 2. From what we
have just said [Garv(¢®) ] must be raised by 30% and
Guv(g®) by 15% to fit the data. Since Garp(¢?) is fixed,
Garn must be increased 309 from the 4-pole fit.

FNW predicts that there is no electric quadrupole
excitation of the resonance, but there is evidence for a
3-59%, admixture of the electric quadrupole and the mag-

6T TT T T T T T T T T T T T T T
U'T {

TR SRS TS SRS RO U W w'

Fic. 14. o7 for M*=1238 MeV
4 as a function of momentum
transfer.

q? fermi”

2
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netic dipole excitation. This evidence comes from the
angular distribution of recoil protons in 7° photoproduc-
tion at resonance using polarized photons® and the
equivalent experiment with electron scattering, the
angular distribution of the protons in coincidence with
electrons scattered inelastically from protons exciting
the resonance.’”

Associated with the electric quadrupole excitation
there will be, in general, some longitudinal (scalar)
excitation. This can be separated by an angular-distri-
bution method, just as Gg and Gy may be separated in
elastic scattering.

Hand? already showed that o¢/07<0.3 at ¢?=35 F2,
By use of our measurements at §=90° (Table IV), we
can put upper limits on oo as shown in Table V. We
plot ao and o7 against ¢* in Figs. 13 and 14, together
with the theory (so=0 and solid line for o7). Our data
are nowhere near precise enough to find the expected
value of oo from the known electric quadrupole
excitation.

General Theory of Resonance Excitation

Although the theory of excitation of the resonance at
M*=1238 MeV is good, no such theory exists for higher
resonances. In pion-nucleonscattering, inelastic channels
are open!® and there is considerable inelasticity in the
scattering amplitude. The Fermi-Watson theorem does
not then apply and a dispersion theory such as that of
CGLN cannot be easily justified.

Some general statements can, however, be made about
the excitation of resonances. These are well known in
the realm of nuclear physics and are extensively used.
We here refer to a review paper by Barber.!* In the
nuclear-physics problem, the approximation is usually
made of no nuclear recoil (for elementary particles
this is the static model). A multipole expansion may
then be carried out in the laboratory reference frame.
The results derived are valid in the long-wavelength
limit ¢r<<1, where 7 is the interaction radius, which is
presumed to be of the order of the nuclear radius 7.
In elementary-particle physics, the results derived in
the long-wavelength limit are sometimes called thresh-
old conditions and we are usually far from ¢r<1.

The calculations of o7 involves the squared matrix
element

/jz(qf)yzo(0'¢')p(7)d3 2

o, (20)
lq]

op <

where p(7) is an interaction density which is nonzero
only for r<rq, and q is the 3-dimensional momentum
transfer.

(11966!4)). J. Drickey and R. F. Mozley, Phys. Rev. 136, B543

1 C. W, Akerlof, W. W. Ash, K. Berkelman, and M. Tigner,
Phys. Rev. Letters 14, 1036 (1965).

18 A. Donnachie, A. T. Lea, and C. Lovelace, Phys. Letters 19,
146 (1965).

¥ W. C. Barber, Ann. Rev. Nucl. Sci. 12, 1 (1962).
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TasLE V. Experimental o7 and o for N*(1238)
(in 107%2 cm?/BeV sr).

¢ (F2) or o0
25.9 0.984-0.25 0.5+0.8
40.1 0.594-0.2 0.0-4-0.36

The full calculation® yields for magnetic transitions of
order / (sometimes called abnormal parity transitions):

or(¢’,K) = (¢/ K)o, (K),
0o (q2’K) =0;

and for electric transitions of order ! (often called
normal parity transitions) except monopole:

or(¢%,K) = (¢/K)* 0, (K),

(21)

212 2
q

EUV(K)

l1q
70(¢%K)=2—|—
I+11K

2

I q
=2——07(¢%K).

IH1K? 22)

Bjorken and Walecka®® derive similar formulas for op
including nuclear recoil. However, they find (again for
the case where electric multipoles dominate)

oo(¢K) =20/ (+1))(¢*/ 9*or (¢, K) . (23)

In the static model and long-wavelength limit, this is
the same as Eq. (22) because go*=K for M*~M and
¢#=0.

We note the kinematical relationship

|q*| M*=|q| M. (24)

This makes it immaterial which initial or final nucleon
system reference frame we use for Egs. (21) and (22),
provided that K is measured in the same frame. At
¢*=0,

lq*|/K*=q|/K=1. (25)

Equation (23) depends on the following theorems
(Ref. 20):

lim (Li/Ey)=—(—1)/l for 1>2,

lg¥|—0

lim l(LH‘/EH") =1

lg¥[—0

for 120,

and
My —|g*|t for 121, (26)

where My, Eiy., and Ly, are the magnetic, electric, and
longitudinal (scalar) multipole coefficients, respectively.

When ¢¢*=0, it can be shown that all the L,
vanish?; thus the L/E behavior for small |g*| breaks

( 2 ].) D. Bjorken and J. D. Walecka, Ann. Phys. (N. Y.) 38, 35
1966).
2 S, Adler (private communication).
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Fic. 15. ¢o* and ¢¢* as a function of ¢? at a mass M*=1512
MeV, illustrating the difficulty of choosing ¢o* in the formula
of Eq. (22) or Eq. (23).

down and it is not known what the theoretical ratio of
oo/or is.

For curiosity’s sake, the ratios of o¢/207 according to
various prescriptions are given for three points of
interest in Table VI. Likewise, the behavior of ¢¢* and
¢o™ as functions of ¢? is shown in Fig. 15.

The formulas given above for the long-wavelength
limit (threshold condition) certainly do not apply to
our case where |¢|7~1 (and do not even apply well for
nuclear physics). One must multiply Eqgs. (21) and (22)
by some arbitrary form factor. At first sight, it is not
clear that we have achieved anything by all this
maneuvering; we started with an arbitrary function
or(g%,K) and still have an arbitrary function F?(¢%,K).
But the form factor is now expected to be characteristic
of the nucleon size. If we refer back to Eq. (20), we may
guess the interaction density to be equal to the nucleon
size. This may be approximated (Ref. 3) by an exponen-
tial ¢ which is the Fourier transform of the form
factor:

F(g) <[1+¢/(0.72) T, 27

according to

< |F(g)|*. (28)

I / Jo(gr)ed%
For the magnetic dipole transition to M*=1238 MeV,

TaBLE VI. Theoretical oo/2¢7 for the resonance N*(1512).

¢ (BeV/c)?

Prescription 797 1.31 3.30
1/ 0+ l)%qﬂ/K2 0.797 1.18 2.96
1/ (141) 1¢*/ 90 0.295 0.312 0.262
1/ (14-1) 1%/ go** 9.96 601.0 4.12
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for example, we find that

! / Jilgr)edr (29)

2
«g?| F(¢?)|*.

The relevant form factor is clearly the magnetic vector
form factor Guv(¢?), and we find therefore the recipe
of Eq. (19) which we found earlier was the dominant
term in the FNW dispersion-theory calculation, but
not including the kinematic factors included by Adler.

For the other resonances, the theory is less certain
for many reasons, At the start of this work, resonances
were known at M*=1512 MeV (I=3%, J=%") and
M*=1688 MeV (I=%, J=35t) from pion-nucleon
scattering and photoproduction. Since then, phase-
shift analyses of pion-nucleon scattering'® have shown
the existence of other resonances superimposed at these
energies. The disentanglement of their contributions to
photoproduction has not been performed, and it would
be harder for electroproduction (for which there are less
data). We shall proceed to analyze the data on the sup-
position of only these two (old) resonances—plus a
background—and endeavor to derive what information
we can. As we shall see, no amount of contribution of
the new resonances can affect a peculiarity of the excita-
tion at M*=1512 MeV.

Another uncertainty is what form factor to use for
these resonances. For a resonance dominated by trans-
verse excitation, the magnetic form factor is probably
appropriate since the “magnetic form factor” is the name
given to the transverse elastic form factor. But a
transition to a state of =% could involve G s(¢?) more
strongly than Gy (¢%). Now,

2Gus(@) =Gup () F+Gun(g?)
=Gup () — | Gaa(P)] .

Gu s therefore involves a subtraction of two numbers of
the same order of magnitude and is very poorly known.
For the longitudinal excitation to =% state, probably
Gris(g?) becomes important and the electric form factors
are hardly known at all at the momentum transfers of
interest here. For the sake of denifiteness, and for no

(30)

Tasre VII. Comparison of form factors.

¢

BeV/®  Gurt()/Guv(0) Gav (¢)/Grv (0)
0.996 0.0300 0.0319 0.0462 0.0716
1.55 0.00861 0.0114 0.0265  0.0312
3.61 0.000730 0.0012 —0.0059  0.00637
0.791 0.0494 0.0515 0.0689  0.1010
1.31 0.0152 0.0171 0.0254  0.0445
3.30 0.000972 0.00160 —0.0051 0.00760
0.649 0.0750 0.0751 0.0921 0.1370
1.138 0.0217 0.0237 0.00352  0.0570
3.06 0.00126 0.0019 —0.0042 0.00897
0.424 0.154 0.151 0.1516  0.2344
0.822 0.0461 0.0477 0.0648 0.0981
2.69 0.00190 0.0027 —0.0022 0.01156

1-parameter 4-pole 4-pole 1-parameter
[Eq. @)1 (Ref. 14)
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F16. 16. Spectrum of nucleon excitation from Fig. 7, showing decomposition into resonances.

other reason, we have chosen to compare our results to
Guv(g?) as for the M*=1238-MeV case. Table VII
shows how the form factors Gxv and Ggy might change
for two fits which are not far from known data {but
note that at ¢>~4 (BeV/c)? the 1-parameter fit [Eq.
(27)] does not fit the data to which this experiment is
normalized}.

Breit-Wigner Fits and Multipole Fits

The problem arises of the size of the resonant contri-
bution relative to the nonresonant contribution. We
understand the first resonance well enough to know that
1 of the photoproduction cross section at the peak is
nonresonant. We can see this most easily from the state-
ment that the transition y4-p — p-4=° is entirely reso-
nant, and from Clebsch-Gordan coefficients is twice
the resonant cross section in y4p — n+=+. Yet these
two cross sections are experimentally equal, and hence
there is a nonresonant background in y+p— ntnt
equal to 1 of the total y-absorption cross section.

' 1

The nonresonant part falls somewhat faster with
increasing momentum transfer than the resonant part
and is probably small at ¢?=90 F-2, In the detailed
comparison with theory made earlier for the first reso-
nance, the nonresonant background is, of course,
included.

The crude separation of the resonances discussed
below is based on the assumption that the widths re-
main the same as the value at ¢?=0, and is therefore
somewhat arbitrary. In view of these reservations, and
those discussed earlier, we still endeavor to make some
physical interpretation of the data.

After the radiative corrections were carried out by
the Perez y Jorba method, the resonant part of the
scattering was estimated from the shapes of the
resonances. In trying to determine whether or not a
resonance exists, only the statistical errors in Figs. 16,
17, and 18 are significant because the radiative, solid
target, and shower-efficiency corrections give smooth
curves. The full width at half-height was calculated e

Ej=2,988BeV sr

b t — ) t i k t i —t
1920 * 92 688t 70 1512 £ 65 123872
’ M* (Mev)
d’o
50 9QdEf -
(10'32cm2)
BeV sr
40

0.9

1.8
—Ef (BeV)

F16. 17. Spectrum of nucleon excitation from Fig. 8, showing decomposition into resonances.
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d2c
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Bev ST 1920 ¢ 92 1688 * 70 1512 £ 65 1238+ 72
} } M* (Mev)
0.2 b N
O.l+- .
0
1.7 18 19 20 24 22 2,3 24 25 26 2.7
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F16. 18. Spectrum of nucleon excitation from Fig. 9, showing decomposition into resonances.

priori, for each of the four resonances, [N*(1238),
N*(1512), N*(1688), and N*(1920)] and at each of the
three incident energies (2.358, 2.988, and 4.874 BeV),
assuming widths of 130, 140, 145, and 185 MeV,
respectively.

The scattered energies and widths at which these
resonances were expected to be observed were calculated
from kinematics. To these were added in quadrature the
width of the elastic peak (i.e., at corresponding incident
energies) to obtain the expected experimental width of
each resonance at each incident energy.

Half of the resonant contribution was then assumed to
be the difference between the cross section at the peak of
the resonance and the average of the cross section, a
half-width either side of the peak. These amplitudes
are shown in Table VIIIL. The crudeness of this method
introduces large uncertainties which have been esti-
mated to be anywhere from a factor of 1% to a factor of
4, depending on how clearly the resonance stands out.

If we assume a resonant structure of the form

& AT?/4

= , 1)
dE/dQ resonant (Ef" Eres)2+ P2/4

500 T T T T T T T T

400

200

100+

3.0
K{(Bev) -

I'1c. 19. Total photoproduction cross section taken from
existing data.

we find the average from Fpes— 3T t0 Eres--1T" to be
dU/dQ | resonant/FEj = %’"’A . (32)

This permits us to use the peak amplitude in estimating
the multipole fits.

The nonresonant contribution to the scattering was
then assumed to be what was left after the contributions
of the four resonances were removed. Figures 16, 17,
and 18 show the inelastic spectrum after radiative cor-
rections (the points with the bars), the contribution of
each resonance (smooth bell-shaped curves), the as-
sumed nonresonant scattering (dashed line), and the
reconstructed spectrum, i.e., the sum of the assumed
nonresonant and of all four resonances (single smooth
line).

Figure 19 shows the total cross section for photopro-
duction as compiled from the data for

p+y— pta°
— ntat
— ptrtta—
~ prtrtait (o)
— ntrttatr4 (y7?)
— p+ 2774277+ (v7®)
— n4-3nt4- 27~
— strange particles.

For some purposes, it is more convenient to use the
cross section integrated over the resonance, i.e.,
do/dQ| over resonance. Accordingly the values of

e AT?/4
Ey=3mA

d (33)
—w (Bf—Eres)?+1%/4

are given in Table IX,
The values of o7 used in the multipole fits were



156

TaBLE VIIL. Areas under the resonances, 7AT

(10722 cm?/sr).
\I\ncident
energy

(BeV)
Resonance

(BeV) 2.358 2.988 4.874
1.238 0.92 0.312 0.0082
1.512 0.98 0.36 0.0069
1.688 0.89 0.33 0.0078
1.920 0.09 0.04 0.0112 (upper

limits)

obtained from the data in Table VIII and the following

formulas:
For N*(1238) and N*(1920), according to Eq. (1)
and the rule stated after Eq. (23),

d?0/dQAE;= ch(q2,K)I‘T(0, %K) ; (34)

and for N*(1512) and N*(1688), according to Egs. (1)
and (23),

d%

21 ¢*
=0 21K)[P (0y 2)K)+_'”— —T (8’ Z;K)] )
d0dE, r@ K| T Kt Tl
(35)

and /=1 or 2 for N*(1512) or N*(1688), respectively.
The values for or(¢%K) thus obtained are given in
Table IX.

As a test of Egs. (21) and (22) the values of the
logarithm of ¢7/Guv? are plotted against the logarithm
of |¢?| for constant M*. The results are shown in Figs.
20, 21, and 22.

By reason of the previously indicated arguments
about change in angular momenta, isotopic spin, and
parity, we expect the excitation of the resonances to go
as indicated by the dashed lines.

Comparison of these assignments (summarized in
Table X) with Figs. 20, 21, and 22 shows rather re-
markable agreement considering the approximations
that entered into the calculations. A possible deviation
exists at 1512, where the electric dipole excitation pre-
diction does not simultaneously fit the photoproduction
and electroproduction data. The new resonances would

TaBLE IX. “Theoretical” or(¢%K) in 10728 cm? as extracted
from Egs. (35) and (36).

Resonance Momentum transfer ¢2 (BeV/c)2 0.996 1.55 3.61
K =0.346 BeV ar 1.06 0.62 0.0520

M*=1238 MeV

Resonance Momentum transfer g2 (BeV/c)2 0.797 1.31 3.30
K =0.746 BeV T 0.34 0.15 0.0046

M*=1512 MeV

Resonance Momentum transfer g2 (BeV/c)2 0.649 1.138 3.06
K =1.045 BeV ar 0.32 0.11 0.0061

M*=1688 MeV

Resonance Momentum transfer g¢2 (BeV/c¢)?2 0.424 0.822 2.69
K =1.50 or 0.032 0.021 0.0016

M*=1920 MeV
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F1c. 20. The resonant M/*=1238-MeV cross section plotted
against (|q|/K)? showing the fall away from the magnetic dipole
dependence. Data from two runs are shown.

be excited by electric monopole and dipole excitation.
Possible reasons for the discrepancy are the replacement
of go* by K [use of Eq. (22) instead of (23)] and use
of Gyv instead of Ggs.

CONCLUSIONS AND SPECULATIONS

The excitation of the resonances at M*=1238 MeV
agrees reasonably with theory and further work can
identify details. A separation of ¢ and o7 by measure-
ments of this type, or by the distribution in the azimuthal
angle ¢ of the outgoing protons, can give information

T T T T T T 1711 T
T
(107%%cm?) §
Orld®,K) G (O) N"(s12)
10 G2, (a?) |
B < B
71 y -
5— -
3—. - -
2+ ® THIS WORK : i
o PHOTOPRODUCTION
1 o —
P S ELECTRIC .
) DIPOLE - T 7
5 ! N T N O O A A
. L —
5 7 10(|q '/K) 20

Fic. 21. The resonant M*=1512-MeV cross section plotted
against (|q|/K)? showing the unusually high-electroproduction
cross section.
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Fic. 22, The resonant M*=1688-MeV cross section showing
a fit to electric quadrupole excitation.

on the electric quadrupole admixtures as a function of
momentum transfer.

Similar separation at the higher resonances should
confirm the assumption that longitudinal transitions
play an important role in the production of some of
these resonances.

It is interesting to speculate on the excitation of
higher resonances. According to present ideas, these
should be of high spin corresponding to Regge recur-
rences (rotational states) of the nucleon and the
M*=1238-MeV state. They should then stand out more
strongly in electroproduction than photoproduction
because of the factor (g7)* in or. But this increase has
its limits ; the relative enhancement in electroproduction
should really be considered as a suppression of higher
multipoles in photoproduction. When ¢r~1, the thresh-
old behavior clearly breaks down. But a naive use of
Eq. (20) suggests a relative enhancement of a factor
of 20 for a J=11/2 resonance with mass 3 BeV for a
momentum transfer of ~10 (BeV/c)%

Tasre X. First-order multipole dependence of resonances.

Power of ¢
N*(1238), Magnetic dipole, 2 =2
N*(1512), Electric dipole 21—-2=0
N*(1688), Electric quadrupole 2-2=12
N*(1920), Magnetic quadrupole, 2 =4
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The use of a high-energy accelerator (e.g., SLAC) is
clearly indicated for this study both for reaching the
high-momentum transfer and for reducing the radiative
corrections.
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APPENDIX
Radiative Corrections

Bjorken writes down a formula relating omeas (Fi,Er)
and o (E;,E;):

E; ©
O meas Ei,Ef):/ dEzlf dE,«’P(E,-,EJ,&O
0 Ey

XU(Ei,)Ef,)P(EfI:Ef’sf) ) (Al)
where P(E,E',5) is the probability of an electron of
energy E radiating to produce an electron of energy E’
with radiator é.

To include internal radiative effects in the peaking
approximation

a
8, y=—[In(g¥/m?)—1T41;,|In2, (A2)
™

where #; ; are the thickness of the physical radiators in
the path of the incident (final) beam in radiation
lengths.

Bjorken approximated

(n(E/E) I
ET(5)

P(E,E5)= (A3)

" EWE/E

for small 6. Now replace

E; o Ef+A
[ el [ [
0 0 Ey Ey Ep+A

where A is the bin size as in the Perez y Jorba recipe.

Ei—A E;
+ , and

Ei—A
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Then,

E; Es+A
O meas (Ei,Ef) = / dE,z/ dEf’PO’P
Ei—A Ey

E;—A Eg+A E;
+ / dE/ / dE/PsP+
0

Ey E:—A

dE/

0

Ei—A ©
X/ dEf'P(IP-*—/ / PoP.
Ef+A 0 Ef+A

Integrate over the interval A, and assume

A/E, K1,

(A4)

1.
Note that

Ef+A
/ dE
E;

and, similarly,

By 1 [In(E/E/) %! A
/ dE/— [——(—/)—]f_\:l—l- 8;In—+0(8%) . (A6)
E—A Ei P

I'(8:) E;
Also note that
Ermax 4B/ [In(E//Eg) 17
/ E/ I'(8))
= (InE; max/ E7)*— (In(Es+A4)/Ey)?

= [0 In(Ef max/ Ep)] — pl6 InA/Ey)

1 Dn(Ef'/Ef)]‘”'l_ A)“
"B/ TG <Ef

= n@/EN =14-6,In(A/Ef)+0(8%), (AS)

Ef+A

i m“>+0(52)_[1+,5 1n§-f+0(6)*{!

=1—¢ ln(ln
!

=8[In(InE; mex/ Ef)—InA/E;+0(8%)]. (A7)
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TaBLE XI. Values of radiation kernels (in BeV™) given by
Hand, Bjorken, and the first approximation

_(e/m)[In(g*/m?) —1]
K_WE—E’
for =1 (BeV/c)?, E=1 BeV.

E'/E Hand Bjorken 1st approx.
0.99 3.26 2.9 3.30

0.9 0.298 0.302 0.330
0.8 0.135 0.144 0.165
0.7 0.080 0.089 0.110
0.6 0.057 0.064 0.082
0.5 0.042 0.048 0.066

Hence if we drop all terms in 6% and higher, we have

O meas (Eulzf)E (1+ 26 lnA/Ef)a (EnEf)

Ei—A
+ / dE/P(E;E/ 8;)o(E{ ,Ey)
0

+ f AE/o(EoE/)P(ESEpS). (AS)
Er+A

This shows that to first order in « the Perez y Jorba
recipe is equivalent to the Bjorken recipe.

We note here that an additional calculation using
the Perez y Jorba recipe with a bin size AE=0.01 BeV
gave the same results as the calculation with AE=0.02
BeV.

We also note that a calculation using the Perez y
Jorba recipe with Bjorken’s radiation kernels instead
of Hand’s gave corrected cross sections which differ
by less than 19, from the quoted results. A comparison
of the radiation kernels for the two cases (Table XI)
shows that the differences are unimportant. At first
sight, the difference of the Bjorken recipe in the first
line seems inconsistent with Eq. (A8) and the statement
derived therefrom. In Eq. (A8) the approximation is
made that §<<1 which is invalid when E’ is close to E.



