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Some Relativistic Oddities in the Quantum Theory of Observation
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Vanderbilt University, nashville, Tennessee

(Received 14 November 1966)

The orthodox quantum theory of observations is summarized and then applied to particle detection.
Probabilities and state vectors are worked out for instantaneous observations, at stated times, by one
counter, two counters, and three counters. The same cases are then examined in the context of a relativistic
theory. It is found that, if attempts are made to detect a given particle in two space-time regions that have
space-like separation, the nonrelativistic probability formulas have to be supplemented by additional
conditions, and the wave function of the particle being detected becomes ambiguous and noncovariant.
This ambiguity does not affect any probabilities for observations whose effect on the wave function has
already been taken into account, and these are, by implication, the only observations whose probabilities
could possibly be affected by the ambiguities in question. Possible consequences of these results are briefly
discussed.

L THE ÃONRELATIVISTIC THEORY
OF OBSERVATIONS

KT us erst summarize the orthodox nonrelativistic
~ account of an instantaneous measurement of a

complete set V of commuting observables, performed
on a microscopic system S. We shall suppose that there
is a macroscopic apparatus A which interacts very
briefly and strongly with S at time t, (being turned on

only for a very short time at t,), and that later a second
apparatus A' performs the actual observation by
"observing" and recording the state in which A has
been left by its interaction with S.The division between
A and A' is quite arbitrary; it marks the stage in the
chain of cause and eQect at which one stops using the
Schrodinger equation to calculate fully determined state
vectors, and introduces the unpredictability of the meas-
uring process.

It is normally assumed that, before t„ the Schro-
dinger state vector of the system 5+A is a product:

I+'(~)&= I s«)&18(')& (1)

where the Grst factor pertains to S and the second. to A.
The brief interaction of S and A converts this vector
into a sum of products:

where the sum covers all sets e of eigenvalues of the
observables V, the c, are c-number constants, the S,
are a set of orthonormal time-dependent states of S
which, at time t, are eigenstates of V with the indicated
eigenvalues ~:

and the A„are orthonormal time-dependent states of A.
The initial state of S can be expanded in terms of the

I 5,) at times before t, :

In order to get the right probabilities for the various

j.56

eigenvalues e, one must assume that

ol
lb. l'= Ic.l'

Cy=6 8

Thus, the final state vector of 5+A is still that of s,

pure state; it is uniquely determined by the Schrodinger
equation from the initial state. In principle, there might
be interference among the various terms of the sum,
which would inQuence a simultaneous probability dis-
tribution of variables of S and variables of A. In fact,
the macroscopic nature of A would cause such inter-
ference to be unobservable.

Regardless of this question, there cannot be inter-
ference among the terms of the sum in any distribution
of variables of 5 atone, for one would calculate such a
distribution by summing or integrating over all the
variables of A, and the orthogonality of the states of A
labeled by diferent values of e would eliminate the
interference terms in the distribution of S. Thus, after
the interaction, the state of S alone (or of A alone) is a
statistical mixture; the diferent eigenstates of V com-
bine incoherently.

The "observation" of A by A' is the real observation
in this account. Its outcome cannot be predicted by
means of the Schrodinger equation, but only the proba-
bilities lc„l' of various outcomes. The state of A is a
statistical mixture, and A' "finds out" which of the
possible states in the mixture is the correct one. This
process eliminates all the

I A„& except one; it reduces the
state vector I@r) of S+A to one term, and then re-
places the c, of that term by a constant of absolute
value 1. This reduction is rejected in the mixture that
describes S, by the elimination of all components except
one IS„), which is then the correct state of 5 after the
measurement. In repetitions of the measurement on
similarly prepared systems, the state of S+A, or the
mixture describing either S or A alone, is the same on
every occasion, but A' "discovers" different eigenvalues
on diferent occasions. Possibly its action on any given
occasion depends on hidden variables, but at the present
stage of knowledge this action cannot be predicted.
1377



I. BLOCH

In the foregoing account the term "statistical mix-
ture" has been used ambiguously, in both of its common
meanings. Before A' enters the discussion, the post-
interaction state of 5 (or of A) is spoken of as a sta, —

tistical mixture because it is really a superposition, but
with coefficients that are themselves orthogonal vectors
and thus eliminate interference. But then the action of
A' on the mixture is spoken of as a discovery of which,
among several alternative states, is the right one, as if
the mixture were describing a situation in which there
is one and only one correct state vector for A, and the
mixture description were being used simply because
one did not know which state is the right one. In cal-
culating probabilities, one gets the same answers for a
given mixture, whether the mixture is used because one
does not know the right state, or because the state is in
fact a superposition with orthogonal coeKcients.

If there had been no A', so that no observation of S
took place, one would use the entire mixture describing
S in calculating the probability distribution of results
of a later measurement on S, getting simply a sum of the
partial distributions that come from the various indi-
vidual ~5„). If A' is there to eliminate all the com-
ponents of the mixture except one, one decides that all
the partial distributions were mistaken on this occasion,
except the one that came from the surviving component
of the mixture; the aggregate of occasions in which a
given result v' has been obtained gives the partial
distribution derived from ~5„).The later distribution
of variables of S, following measurements in which ul/

the eigenvalues of V have been obtained with their
respective probabilities

~
c„~, is just what it would have

been if S had simply interacted with A and there had
been no A' to make observations.

In fact, on account of the complexity of the macro-
scopic system A, each of the

~
A„) and

~
8) should itself

be regarded as a mixture rather than a pure state. But
as long as all the states entering the mixture corre-
sponding to each given v are orthogonal to all the states
in the mixture corresponding to each other z, the
foregoing arguments remain valid and lead to the
conclusions that have been stated.

Once one has worked out this account of an ideal
observation, one can simplify it for future use by moving
the division between A and A' right up to the point of
interaction with S, i.e., by eliminating A altogether.
Then one abbreviates the narrative by speaking of a
rapid "collapse" of the state of S at time t„ from a,

superposition of ~5„) to a single ~5„).

H. THE NONRELATIVISTIC THEORY OF
OBSERVATIONS MADE BY COUNTERS

A. A Single Counter

If one wishes to apply the foregoing analysis to
counter experiments, one must realize that a counter
with 100% eRciency at all energies is a device for meas-

uring J', the projection operator into the sensitive
volume of the counter: The counter tells whether 8=0
(the particle is outside the counter) or P=1 (the
particle is inside the counter). Since P alone is far from
being a complete set of commuting observables for S,
it should be supplemented by the remainder of a com-
plete set, for which remainder we now use the symbol
8' with eigenvalues m. Thus the complete set is now P,
8", and the initial state of S can be written

I&(&))= Z Z ~-.IS-.(&)),

where p denotes an eigenvalue of P, the n ~ are c-
number constants, and the sum extends over the com-
plete time-dependent orthonormal set ~5„„) each of
which is, at time t„an eigenstate of P and a,ll the lV:

The initial state of the combined system 5+A is as
expressed in Eq. (1). The probability of a given value
p' being obtained. in the measurement of P is

6'(P')=Z l~-n I'.

The probabilities of the two possible values, 0 and |,
can be expressed also as the initial expectation values
of the corresponding projection operators E' and 1—P.

Since A is a device for measuring P, it must have two
sets of states, quiescent and "having-counted" states,
which sets can be labeled by the two eigenvalues of P
(0 and 1) and can be distinguished from each other by
the "observer" A'. The complexity of the macroscopic
system A ensures that there will be many states in each
of these sets; in addition to the label J' which di6er-
entiates the two sets, there is another label e which
distinguishes among the diRerent orthonormal states
~A~„(t)) in each set. We shall assume that A' is in-
sensitive to this second label, that it responds only to
the value of p and thus collapses the sta, te onto one P
va, lue, leaving the state of A as a sum over the second
index, and the state of S as a sum over m. Despite the
insensitivity of A', it is still possible that the interaction
between A and S establishes a partial or total corre-
lation between w values and values of m; conceivably a,

different A' might have gained more information about
the state of S. Ke shall simplify our work by assuming
that, after S and A have interacted, there is no corre-
lation of states of A with m values, beyond that required
by the correlation of w values with p values.

If the interaction Hamiltonian of S with A is

a'= f(~ t.)JP, —

then its effect on the state of 5+A is given by

I e~(t ))= exp( —i'/a) I+'(~-))= &~ I+ (t )) (10)

We shall suppose that the initial state of A contains
only quiescent states ~AO~(t)) with coefficients u„, and.
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that l+f) embodies no correlations except those re-

quired for the measurement of P. We are thus led to
the following form for 0.g.

XZ Ll~..(t.)&~..(~"(t.) I

+ I~o-(t.)P-(~i.(t.) I3, (»)
the unitarity of which is assured by that of the matrices
L, M, and ¹ If we had wanted an 0~ that established
more correlations, we would have written single matrices
labeled by four indices instead of the factored pairs L,
3f and L, ¹ The unitarity of crz requires the presence
of the N term, which can in general produce "un-
counting, or transitions of A from having-counted.
to quiescent states; but with our choice of initial state,
this term produces no effect. Application of O.g to
I%', (t,)& gives a state of the form

I+/(t. )&=Z (Z I~-.l')'"I+.(t.)&=~~I+'(t.)), (»)

where

le, (t.)&=K ~,.la,.(t~)&~„,l~o&(E l~„,lb)-i»

two counters A and 8 will be assumed similar in the
sense that the matrices L, M, and N are the same for
the two.

Now let us consider the case tb& t„or A is turned on
and oG erst, and J3 is turned on and o6 later. The initial
state of the system S+A+B is a product of three
factors. After the operation of Og, the state is that shown
in Eq. (12), multiplied by the state of B. When the
effect of A' is taken into account, the state is one of the
states (13), multiplied by the state of B. This state is
then propagated to the time tb by the propagator
U(tb —t,), which is, for noninteracting systems, a
product of K(tb t,),—which is the propagator for S,
and T(tb —t,)—itself a product —the propagator for
A+B. This state is then the initial state for the ob-
servation at tb, and is thus acted on by the operator 0.&
and then collapsed onto one value of Q.

The probabilities of the two values of P are given in
Eq. (8), and the corresponding states that can follow
the first observation are given in (13). Thus the possible
initial states

I 4;v) for the second observation are

I+io(tb))=K(tb t,) P Iy—oq&ir„«

x 2 l~,.(t,)&~.(p I „,I
)-,

= Co (o)1- »(I —P), le, (t.)&, I@'i(tb))=K(tb —t.) p ly10&I v, n, io

le, (t.)&= P lwI&1.„„.„,, x Q IA „(t )&M„„a„(P
I

„„I')—'».

x 2 l~i-(t )&~-~.(Z l~-il') '"

=9'(I)j-'"P I+,(t.)&. (»)
These are the two normalized states into which IC'/)
can be collapsed by the action of A', i.e., by the action
of a projection operator divided by the square root of
a probability —a nonlinear operation. Our assumption
of minimum correlation of states of A with those of 5
in

I @/& results in each of these
I +v& being a pure state

of S. If o.~ had introduced more correlations, the state
of S in each of the two I%'„& would have been a mixture
in which the interference of diferent eigenstates of lV
would have been reduced or absent.

B. Two Counters

Ip„(o)=(e,.(t ) I1—Qle'. (tb)),

~,(1)=(~'.(tb) IQI+'.(tb)&=1-~.(0)

The two IPv(1) are thus

oPo(1) = P -„„(yoqlKI (t,—t.)QK(t, —t.)

(17)

In the second of these expressions there is no sum over
the q values appearing in

I ypq) because p = 1 implies
q=0. These states can be written as

I e,o(tb) &
= LIP(o) j-i'bU(t, —t.) (1—P)~, le, (t.)&,

I+'i(tb)&=LIP(1)1-'"U(tb-t. )P~.I+,(t.)). (16)

From these one can calculate the probabilities (P„(q)
of the two values of Q, given that P has a certain value

Now we shall suppose that the counter A acts at time
t, as stated above, and that a second counter 8 with
projection operator Q acts similarly at time tb The two.
counter volumes are assumed not to overlap:

P& Vial ~ Q

xi''oq') „.„,(p I „., I
)-,

=,.Z„(y'10IK'(t -t.)Q (18)

In any case, P and Q commute, so they can be taken
as two of a set of commuting observables; we shall let
Y with eigenvalues y be the remainder of the set. The
operator 0~ will resemble rg, mltutis metundis; the

and the 6'„(0) are the complementary probabilities.
The final factors are the reciprocals of the probabilities
of Eq. (8), expressed in forms appropriate to the present
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case. Thus, multiplying by these probabilities, we can
obtain the a priori probabilities «P(p, q) of given pairs

«p(0, 1)= p -„„(yoqlIt («,—«.)
W~Q~Q sC

xQIt (tb «.—) I
y'og'&n„. „.

=g I(yo1IIt(t, —«.)o~(1—P) le;(t.)&l',

««(1, 1)= p „„I-.„„.(y'10IRt(tb «.)—
fthm/~~//y///

XQIC(«b —t,) ly"10&I.„„nb«gb
=2 I (yol I &(«b—t.)o~P

I
+'(t.) &

I'

««(o, o) =p lo„„l'-«p(o, l) =«l (o)—o (o, 1)

=2 I(ypolz(t, -t.)..(1-P) l~, (t.)&l,

which are clearly the same expressions that would be
obtained in an analysis of simultaneous observations.
The final sta, tes (20) turn out to be

I +«(tb) &
= I:a (o,o)]-&"(1—Q) (1—P)o, , I e;(t.)&,

I +„(t,)&= I (p(0, 1)]-'&'(1—Q)Po, ~ I e, («.)),
I+ o(t )&=i+(1,0)]-"'Q(1-P)".I&;(t.)&,

I+»(«») =o
(22)

where t~=t„and the commutativity of the projection
operators with o-g and o-g has been used. The last of
these vectors is indeterminate when taken as the
limiting form of a normalized state, but clearly it should
vanish; i.e., it should not occur in the final state. Thus
these states are just the ones that would be obtained
in the analysis of a single observation of P and Q, with
the effect of the interaction of S with A and 8 being
given by the operator

o (1,o)=P ln», l' —«P(1, 1)= «P(1)—o (1,1)
&aa =&ag a =&a&a. (23)

=p
I &ypolIt(t, —«.),Pl+, («.)& I

.

Here, in taking squares of absolute values, we imply
that the states of the counters are multiplied to give
unity.

The four possible states
I %„,(tb)) that can be present

immediately after t& can be expressed as

I+«(«b)&=L«P(0, 0)] '"(1—Q)o U(t —t.)(1—P)o~
x I

+'(«.)&,

l~„(tb))= L«l (0,1)]-~«'(1—Q)o U(«, —«.)Po,
xl+'(«. )&, (20)

l)~(tb)&=LO'(10)] "'QoaU(tb —t.)(1—P)~g
X

I
+'(t.)&,

I +»(tb) &
=L«p(1, 1)] '"QoaU(tb —«.)Poa I +'(t ))

These states can be written out as in Eq. (15), but we

shall not display them in that form.
The foregoing expressions apply to the case tg&t, .

The case t&= t, can be analyzed as a single measurement
of the two commuting observables P and Q, with the
I' constituting the rest of the commuting set. Alter-

natively, it can be treated as a limiting case of the
successive observations already discussed. If t&= t„ the
propagators U, T, X all reduce to the identity. The
probabilities of Eq. (19) then reduce to

«P(0, 1)=g In„baal',

o (1,1)=0,

~(1,0)=Z I, .I',
~(0,0)=Z I,-I',

So it appears that all probabilities and final states
for simultaneous observations are the same, whether
the observations are treated as a single one, or as a
limiting case of successive observations. The inter-
mediate states (13), (15), and (16) do not appear, since
their duration has become zero.

C. Three Counters

Our last examples will pertain to three similar
counters A, 8, and C, instantaneously turned on at the
respective times t„ tq, and t,. The projection operator
of C will be R, and the three operators P, Q, and R will

be assumed not to overlap. P, Q, R, and Z will be taken
as a complete set of commuting observables for S, with
eigenvectors

I zpqr&.

We shall deal erst with the case of three successive
observations, t, &tb(t, . Now the initial states I%';& at
t, are the states (20), multiplied by the propagator for
5+3+3+0, U(t, —tb) = T(t,—tb)E(t, —tb):

I
~,„(t,)&

=
I

«l (o,o)]-»b U(t.—«,) (1—Q)o,U(«b —t„)
x (1—P)o~

I
e;(t.)),

I%'god(«, ))=L«l'(0, 1)] '"U(t, —tb) (1—Q)ooU(tb —t,)
XPo,

I
~,(t.)&,

l~'. («.)&=I ~(1,0)]-"'U(t.-t )Q .U(« -«.)
X(1 P)ogl+ (t ))—

le; (t,))=L«P(1,1)] '"U(t, —t )Qo- U(t —t.)
XPoa I%';(t.)).

(24)

The probabilities of the two eigenvalues r of E, giver
that certain p and q values have been observed, are
expectation values of R or 1—R, taken over the states
(24). As before, we can convert these to a priori proba-
bilities 6'(p, q,r) by multiplying them by the appropriate
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(P(p,q). The «P(p, q,r) turn out to be

o (0,0,0)=p I(.pqoIR'(«, —» ) (1—Q)

XR'(«,—«.)0&(1—P) Ie, («.)) I',
«l (0,0,1)= a (0,0)—«P(0, 0,0)

=P I (.001 IR'(«.—«,),(1—Q)

XR(«b «)0~(1 P) Ie'(«))I

«p (0,1,0)=p I (spado I
R (».—«,)0BQR (»,—».)

X"(1—P) I~;(«.)) I',

6 (0,1,1)= O (0,1)—O'(0, 1,0)

=p I
(s001

I
z (».—«,)0.,QR'(«, —».)

x ~(1—P) I+;(».)) I', (»)
n (1,0,0) =p I(spqoIR'(«, —«,)0,(1—Q)

XR'(«b» )&AP I+'(» )) I

O (1,0, 1)=6 (1,0)—«l (1,0,0)

=p
I
(s001IE(»,—»~)0B(l —Q)

XE(»t,—»,)O.gP I%';(».)) I',

«P(1,1,0)=g I(spqOIR'(«. —»,)~BQR'(«, —».)

X~~P I+,(».)) I',
O (1,1,1)= O (1,1)—«l'(1, 1,0)

=p I(s001IE(»,—»,)0BQE(»,—».)

x ~PI+i(«.))I'.

The possible states of the system S+2+8+C after
t, are

Ieooo(«, ))= [(P(0 0 0)]-'«'(1—R)0cU(«, —»g) (1—Q)
~BU(», «.) (1 P)0&—

I e;(».)—),
I%'00'(»,))= [(P(0,0,1)] '"RooU(», —»g) (1—Q)

X0BU(»y —»,) (1—P)og I @;(»,)),
Ieoyo(«, ))= [(P(0,1,0)]—'I'(1—R)acU(«, —»,)

XQOBU(»g —»,) (1—P)ag
I
@,(».)),

I 4»(«c)) = P'(0, 1 1)] "R~cU(», »,)—
XQOBU(»g —» ) (1—P)le I

y, (»,)), (26)

I @goo(»,))= [(p(1,0,0)] "'(1—R)0&U(», —»p)

X (1 Q)~BU(«b—».)POA I +;(».)) &

(».))=[«P(1,0,1)]-'"R0BU(».—»b)(1 Q)
0BU(»t, ».)P'~&

I e;(».)), —
I+»0(«.))=[+(1,1,0)] "'(1—R)0cU(».—«)

XQoBU(»g «.)Pop
I 4;(».)), —

I%»(4))= [6'(1)1,1)] 'I'R0 gU(», —»p)

XQOBU(»t, —».)Pa P I%;(».)) .

If in these expressions one sets t,= t~ or t~ = t, thus
reducing one U (or both) to the identity (and sets the
indeterminate vectors equal to zero), one gets the
correct probabilities and state vectors for the corre-
sponding cases of two simultaneous observations with
one other before or after, or of three simultaneous
observations.

III. THE RELATIVISTIC DESCRTPTION OF
OBSERVATIONS MADE BY COUNTERS

In attempting to make the foregoing analysis rela-
tivistically causal and covariant, one immediately
encounters two problems which arise even in the case
of a single instantaneous observation. If one really
applied to a one-body system an instantaneous inter-
action with another system, with space dependence
given by a projection operator like P, then S would
not in general be a one-body system afterward, and the
discussion of later observations would become extremely
complicated. Since we are trying to analyze problems
involving only one particle 5, we must assume that the
rise and fall times of the interaction are long enough
(presumably of the order of 5/mc'), and the boundaries
of the volume of A are fuzzy enough ( A/mc), to
preclude production of new S and S particles, It may
be overelaborate even to mention this matter, since
actual counters do not produce particle pairs by virtue
of being turned on and oG. In any case, such smearing
of the edges of the space-time region of observation
does not seem to vitiate seriously any of the relation-
ships already arrived at. No harm is done by replace-
ment of the 8 function in Kq. (9) by a smoother func-
tion; and although smeared-out operators P, Q, and R
are no longer projection operators, they should act
enough like projection operators in 0~, 0.B, and o.c [if
not in exp( —i'/k)] to be treated as such.

The second problem is one alluded to by signer'.
An interaction which is turned on simultaneously over
the whole of a 6nite volume presupposes a particular
Lorentz frame (perhaps the rest frame of the counter),
and in different frames the turning-on will not be simul-
taneous, but will occur at diferent times in diGe rent
parts of the volume. Thus the description of the
interaction as a function of «, multiplied by a (smeared-
out) projection operator into a space volume, can be
valid only in one Lorentz frame, and our equations will
be val id as they stand only if applied in that frame.
However, they can be I orentz-transformed, and it
would appear that their gross features should persist in
diferent frames; even though there is no upper limit
on the spatial or temporal extension of a given region
of observation, the largest invariant interval within
this region has an invariant ratio to the interval between
one observation and another, and, if this ratio is very
small, each region of observation can presumably be
approximated as a space-time point. There can be

' K. P. VAgner, Am. J. Phys. 31, 6 (j963}.
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ambiguities due to changing time orders of the obser-
vations —a matter that will be discussed below. In any
case, it sholem be all right to calculate state vectors and
probabilities (which are scalars) in the rest frame of
the counters, and then to transform the results to other
frames.

A difhculty which seems more serious than these is
related to the change of the state of S+A from a
product to a sum of products. In using the Schrodinger
picture of time dependence —and arguments like the
following one can be made in the Heisenberg picture
too—one associates a state vector with each three-
dimensional surface t=const. Then the Schrodinger
equation describes how the vector changes from one
such surface to another. In integrating the equation
from initial conditions, in a situation in which an
interaction is turned on at some time t, (say, in the
rest frame of a counter), one calculates a vector that
is unaffected by the interaction at all times before t,.
Then immediately after t, one encounters state vectors
that have been affected by the interaction. In a rela-

tively simple case like that of a potential which is
turned on at f„a particle's wave function (x~g(t))
remains a pure state and is affected only inside and on
the future light cone of the space-time region of inter-
action. But in a case like that of a counter, the state
vector of the whole system S+A was a product before
the interaction; the fact that the I' factor in 0-~ multi-

plies the part of the wave function of S inside the
counter by states

~

A ~„) means that the part outside the
counter, though still multiplied by the same states

~

A o )
as before, is now part of a mixture instead of being part
of a pure state. The state of S has changed instan-
taneously (and noncovariantly) from a pure state to a
mixture, along a surface t=const. This situation does
not appear to be changed in any important way by
the use of some other set of spacelike 3-surfaces in lieu

of the surfaces t=const, for in all such cases the wave

function of S suddenly becomes a mixture all over a
given surface.

Clearly this behavior of the wave function of S
depends on there being a system for S to interact with

that is more complicated than a potential; it must be
a system that has dynamical variables of its own, and
the interaction must be one that can be turned on and
off (at least if our present analysis is to be applicable).
In short, it must be a system which can be used, along
with an "observer" A', as a particle detector capable
of "instantaneous" operation.

The most important feature of a mixture like the

one in question is that the components of it cannot

interfere; i.e., there can be no later interference of the

part of the wave function that is inside the counter at
time t with the part that is outside the counter at that
time. Since such interference could never occur outside

the future light cone of the region of observation any-

way, it would not seem to matter when and where,

outside this cone, the wave function of S became a
mixture.

But problems arise if one imposes two requirements
which seem to be quite orthodox: (1) that every particle
has, at any given space-time point, a unique wave
function, whether pure state or mixture, which trans-
forms under an irreducible representation of the Lorentz
group —or at least each pure state entering the mixture
must transform thus; (2) that one and only one com-

ponent of the mixture in a case like ours is the wave
function of S after the interaction, even though A'

may delay a long time in finding out which component
this is.

The difficulty becomes manifest if one compares the
state of S as calculated in the rest frame of the counter
and then transformed to another frame, with the state
of S as it would have been calculated from the beginning
in the other frame. In this comparison the wave func-
tion of S is ambiguous throughout the region outside
the counter and between the planes t=t and t'=t, ';
there will be two wave functions at each point in this
region, one affected and the other unaffected by the
observation. In particular, if the counter detects the
particle, one of the two wave functions is zero and the
other is not, at any given point in the region.

This contradiction could be avoided if the transition
from pure state to mixture somehow took place along a
light cone or an invariant hyperboloid; but Schrodinger
equations do not seem to lead to such behavior. Possibly
an equation with more than one time variable (such as
the Bethe-Salpeter equation) could resolve the prob-
lem, but the author does not see how such a resolution
would proceed; nor does he know of a many-time equa-
tion that applies to systems as complicated as particIe
detectors.

Since the real use of "collapsed" wave functions is
the prediction of later observations, let us look again
at the probabilities and state vectors worked out in
Sec. II, for cases in which two or three observations
are made at di6erent places and times. If counters A
and 8 act in two space-time regions a and b which
have a timelike separation with t (t~, their time order
is unambiguous. Although the condition PQ=O is
noninvariant, this fact should not affect the validity
of Eqs. (15)—(20), provided the equations are properly
Lorentz-transformed, and the range of summation of
the eigenvalue q is extended to cover the possibility
that p and q may both differ from zero at the same time.
The limit t, =t~ now refers to a single observation with
a single counter, since the two counters have been
assumed similar. Equations (15)—(20) do have the
proper limiting forms for this case.

If the regions a and b have spacelike separation,
one is tempted to treat the two observations as simul-

taneous from the outset, since there can be no causal
inhuence of one on the other, and it would seem a, pre-
condition of the analysis that the counters cannot both
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detect the same particle. However, this formulation
incurs contradictions when applied to three obser-
vations in small regions a, b, and c, with a and c having
timelike separation, and b having spacelike separation
from both a and c. Since a and c have to be treated as
consecutive, b cannot be taken simultaneous with both.

Thus it seems necessary to treat observations in
regions a and b that have spacelike separation as
consecutive observations. One is encouraged to treat
them so by the fact that, nonrelativistically, simul-
taneous observations are a special case of consecutive
ones. Because QK(tq t,)P—=O, the probability (P(1,1)
does vanish, as it should, and all the probabilities in
Eqs. (19) will be scalars if the operators and vectors
in those equations are assigned the proper transfor-
mation properties, as long as tb) t, .

The failure of covariance comes from the ambiguity
of the time order of the space-time regions a and b.'
Their time order can be reversed, but the positive-
energy part of K(f&—t ) vanishes when tb(t If on.e
calculates the probabilities (19) in some frame of
reference in which tb)t and then performs a proper
Lorentz transformation which reverses the time order
of the observations, one finds that all the probabilities
go to zero. Thus, in order to get invariant probabilities,
one must calculate them from different formulas in
these two Lorentz frames, making the substitutions
o, ~ b, A ~B, P~Q, p~q. This procedure is not
necessary in most relativistic calculations that involve
propagators between points with spacelike separation,
because such propagators vanish regardless of the time
order that the points have in a particular Lorentz
frame, and the discontinuity at tb= t, occurs only for
timelike-separated points, whose time order is un-
ambiguous anyway. The peculiarity of the situation
contemplated here is that the probabilities of some
possible results of observations in regions that have
spacelike separation contain propagators from every-
where outside A at t„ to 8 (or everywhere outside P)
at tb, and parts of these regions have timelike
separation.

The calculation of probabilities would be unam-
biguous if one were speaking of a set of counters filling
all space, all turned on briefly over a spacelike surface
and then again over a later spacelike surface. Then
these two surfaces would have a physical significance
that is not possessed by the surfaces t=t, and t=tb,
and there would be no question of reversing their
"time" order by proper Lorentz transformations. Each
set of observations could be treated as simultaneous.
Expressions for probabilities would contain propagators
from a given part of one surface to all parts of the other
lying in the future light cone of that part of the erst,
and there would never be any need to consider propa-
gation into the past. Our two regions a and b could lie
on two such spaceliiM surfaces (or on a single surface);
one can even argue that an observation with a 100%%u~-

eScient counter A is equivalent to an observation with

two counters, A and another which fills all the rest of
space and has projection operator 1—I'. But if the
second counter is not really there, one cannot say
whether it is turned on before or after 8.

The foregoing complication in the calculation of
probabilities may not be regarded as serious; one merely
has to add a proviso to the formulas (19) to the effect
that t„og, etc. by definition pertain to the observation
that is earlier in the particular Lorentz frame that is
being used. But this proviso does not resolve the
ambiguity of the state vectors (16) and (20).

If t, (t~, a vector such as ~4io(t)) appears to develop
in a fairly normal way, considering the discontinuities
attending the process of observation. The initial wave
function behaves normally until t, at which time it
collapses into the volume of counter A; thence it
spreads in accordance with the wave equation of S
alone. It does not "collapse" out of counter 8, for it
does not propagate that far from A by the t'me tb.
Thus it is nonzero over a large region of space before
t„and throughout the future light cone of the region a.

But in a Lorentz frame in which tb(t, (by which we
mean that every point in the region b is earlier than
any point in the region a), if one uses Eqs. (16) and
(20) as they stand, the wave function is ambiguously
given between tb and t„being the initial wave function,
amd the one that has been affected by counter A, and
the one that follows observation b. The probability
that 8 counts is correspondingly ambiguous. If, on the
other hand, one calculates the wave function in this
case (in which counter A counts and counter 8 does
not) by treating observation b as earlier, one finds that
the initial state persists until tb, at which time the wave
function suddenly departs from the volume of counter
8 and becomes correspondingly larger elsewhere; then
it propagates normally until, at time t, it collapses
into counter A, and afterward proceeds without dis-
continuities. This wave function is unambiguous and
corresponds properly to the events; the initial wave
function for the observation at t correctly gives the
probability that A detects the particle in view of the
fact that 8 did not detect it. But clearly it is not what
one would get by applying a Lorentz transformation
to the wave function that describes the same physical
situation in a frame in which t, &tb. It is nonzero over
a large region of space before tb, for a very short time
it vanishes inside counter 8; after t it is nonzero only
inside the future light cone of region a. It is easy to
think of space-time points at which the two functions
are markedly different, in particular, points in and
near the counter 8, shortly before and after tb. If one
wished to use these functions to "predict" the outcome
of an observation, say, in a region c such that b lies at
the midpoint of a straight-line segment from a to c,
the predictions from the two functions would be entirely
different. However, our earlier discussion of probabilities
indicates that the right way to predict results obtained
at c is to use the time order that the three regions a, b,
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and c have in the I orentz frame that one happens to be
using. Thus, if one has t, & tb, then tb& t„and one uses
the vector ~%~p) in Eq. (20) to find that C cannot
detect the particle. On the other hand, if one has t &tb,
then t, (tb, and the vectors (20) are not right; if C has
detected the particle, all these vectors vanish except

~
+pp). Such cases of three observations are manageable

by equations like the set (25), which can be used to
give correct probabilities if a, b, c are defined as coming
in the time order t, & tb& t, . But then the state vectors
(26) have the same sort of ambiguity as do those of
Eqs. (16) and (20).

So wave functions seem to be ambiguous in the
neighborhood of such observations, but they are am-
biguous in such a way as not to affect any predicted
probabilities for the observations whose effects on
states have produced the ambiguity. If one calculates
probabilities and state vectors for some given set of
observations (say, at a and b), the state vectors will

not necessarily give the correct probabilities for a third
observation at c, but if one includes c in the set of
observations from the beginning, one can then work
out correct and consistent probabilities, and state
vectors which, though ambiguous, are still always
consistent with the experimental results that they
embody. Wave functions of S are ambiguous, but not
in such a way as to make any difference. The ambiguity
is gone at all times after both 3, and tb (e.g., at all points
that lie in the future light cones of both a and b), so
that wave functions in this region can be used in the
orthodox way to predict observations that might be
made there, without its being necessary to decide in
advance whether an observation actually ml/ be made.

It might still appear desirable, if only on aesthetic
grounds, to contrive covariant and unique wave func-
tions which correctly correspond to given observational
results. Apparently, though, if counter A detects the
particle 5 in a small space-time region a, a unique and
covariant wave function of S which would permit
correct calculation of probabilities for other detection
experiments would have to be one that vanishes every-
where outside both the past and the future light cones
of a. This function would obviously imply zero proba-

bility of detection of 5 outside these light cones —as
it should —and it would not matter whether one speci-
fied in advance which observations were to be made in

this region. But such a function would be noncausal,
and could not possibly be calculated from a di6erential
equation with initial conditions; at all times before t„
the function would already be inQuenced by the result
of the observation a, which is not even made until t, .
This single function would partake of the properties
of both the predictive and the retrodictive states dis-

cussed by Aharonov et al. ,
' and yet it would be intended

as the wave function of S. Furthermore, if S is looked
for in both regions a and b which have spacelike sepa-
ration, the counter (if any) which detects 5 is the only
one whose actions determine the earlier behavior of the
wave function; the other counter plays no part.

Such functions clearly would be useless in predicting
a priori probabilities, for they would have been pre-
determined by certainties. To calculate probabilities,
one would still have to use a wave equation to determine
an ambiguous wave function whence one could derive
probability formulas like those exhibited above. One
could, if one pleased, then define a teleological wave
function corresponding to any given counter's having
counted (or counting in the future), which would

correctly give conditional probabilities: "If A counts
at t, then the probabilities of 8, C, etc. counting at
times tb, t„etc., are as follows:. . . ."Such a procedure
appears to have little to recommend it.

In any case it appears that either causality or I.orentz
covariance of wave functions must be sacrificed in
situations like those contemplated. Covariance seems
the smaller sacrifice, since it is apparently not required
for the calculation of invariant probabilities.

If arguments like these are to have any application
in the improvement of relativistic quantum theory,
presumably their value will come from their relevance
to the determination of state vectors of interacting
systems. Even if two systems as simple as single
particles interact, one of the particles can be regarded
as the system A which, when observed by a macroscopic
system A', can reveal the state of the other particle.
Much of the foregoing analysis can be applied directly
to such a "counter, " but one important change would
have to be ma, de: the "counter" is "on" all the time,
not just during a very short time interval at t.. The
corresponding problem involving actual counters is one
(common in practice) in which several counters are
turned on for long times, and each is capable of reg-
istering not only the fact of a count, but also the time
at which the count occurs. If such a counter does detect
a particle at some time t, the efIect of such detection
on the particle's wave function ought to be the con-
ventional one of collapsing the function into the counter
volume; what seems less obvious is the effect on the
wave function of eomdetection in a given time interval.
Attempts to analyze this problem are currently under
wa,y. Such an analysis should also avoid what is perhaps
the most unrealistic aspect of the analysis presented
here: Here we have ignored the interaction between 5
and A that takes place even when the counter A is not
turned on.

' Y. Aharonov, P. G. Bergma, nn, and J. I,. Lebowitz, Phys. Rev.
134, 81401 (1964).


