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Relativistic Collapse to a Schwarzschild Sphere*
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Analytical models of spherically symmetric, nonstatic processes, including relativistic collapse to, and
explosion from, a central body, are constructed by joining three simple space-time metrics across surfaces of
discontinuity. The tetrad or dyadic formulation of the junction conditions, implied by the postulate of
admissible coordinates, is employed to match the solutions.

I. INTRODUCTION

'HE interior Schwarzschild solution describing a
static (rigid, nonrotating) sphere of perfect fluid

at constant density is the simplest analytic metric
known for a finite gravitating body. It has not usually
been noticed that the field equations allow an arbitrary
function of time to be introduced into this metric,
without destroying the properties of simplicity, rigidity,
and constant density, but resulting in a time-dependent
pressure field. ' VVe have exploited this time dependence,
together with the Oppenheimer-Snyder solution for a
collapsing "dust cloud, " to construct idealized models
of spherically symmetric, nonstatic processes such as
accretion or relativistic collapse onto a central body.
The models are of sufficient simplicity to permit exact
analytical solution of the entire gravitational problem,
making comparison of the predictions of general rela-
tivity with Newtonian and post-Newtonian theory for
the dynamics of the models unambiguous, even in
extreme relativistic regimes.

The complete solutions are obtained by piecing to-
gether three diferent, well-known, space-time metrics
across surfaces of discontinuity. All junction conditions
required by the Lichnerowicz postulate of admissible
coordinates' are satisfied. The metrics, however, are
expressed in "nonadmissible" co-moving coordinates
and the fitting is actually accomplished using these
coordinates and the tetrad or dyadic formulation of the

*This paper presents results of one phase of research carried
out at the Jet Propulsion Laboratory, California Institute of
Technology, under Contract No. NAS7 —500, sponsored by the
National Aeronautics and Space Administration.

'See, however: A. H. Taub, Recent Developments in General
Relativity (The Macmillan Company, New York, 1962},p. 449.

A. Lichnerowicz, Theories Relativistes de la Gravitation et de
l'Slectronzagndtisme (Masson et Cie. , Paris, 1955).

junction conditions. ' Derivation of the metrics in
dyadic form and application of the dyadic continuity
conditions are given in Secs. II and III.

The three metrics employed are: I, the interior
Schwarzschild with constant density p, but time-
dependent pressure; II, the Oppenheimer-Snyder solu-
tions4 for the spherically symmetric motion of incoherent
matter; and III, the exterior Schwarzschild solution.
Figure 1 is a schematic space-time diagram of the
simplest combination of these. It represents a contract-
ing spherical dust cloud (region II, outer boundary Zr),
condensing and accreting on the surface Z3 of a growing
Schwarzschild sphere (region I, below dashed line) to
build the final configuration, a static SchwarzschiM
sphere of radius r (region I, above dashed line, bound-
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FIG. 1. Contraction of dust cloud to Schwarzschild sphere.
The notation is explained in the text.

' F. B.Estabrook and H. D. Wahlquist, J. Math. Phys. (to be
published).

4 J.R. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939).
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FIG. 2. Contracting or exploding shell.

ary Z2). On Z2 the matter undergoes a phase transforma-
tion from the incoherent state of zero pressure and vary-
ing density to the interior state of varying pressure and
constant density p, . In Sec. IV we give a complete sum-
mary of the metrics appropriate to Fig. 1. Some other
possible mosaics of these metrics are shown in Figs. 2—5;
their analytical descriptions can also be constructed
using the methods described.

II. THE DYADIC EQUATIONS FOR
SPHERICAL SYMMETRY

The general dyadic equations for timeline congru-
ences' are specialized to the present case by imposing
several conditions. The matter is to be nonrotating
(Q=O), and we shall adopt nonrotating axes (&a=0).
Spherical symmetry is imposed by representing the only
distinguished spatial direction at every point with a
unit, radial, 3-vector u, and expressing all vectors and
dyadics in terms of it. In particular then the spatial
gradient of any scalar must be expressible as

With these assumptions the set of dyadic equations
reduces to the following (relativistic units, c=42rE=1,
are used):

~= (20+~)(o—
V) ~= 3(—2~+~)~ ~(P—+p)

O. = —8O.+0 (-,'0+0.)—n —-', (a'+ a2 —qa),

(20+~) = (2~—+~)' (2p—+~) P+—~~,

(2p+~) = 3(—20+~) (2p+~+2P),
where the dot signifies proper-time derivative; and

(2~+~)'= 3n~—, (ap+~)'= —3«
n'+- —(20+~)' 3~(—20+~) 2(sp—+~)+3~

P'= (P+p—)&

If we now introduce co-moving spatial coordinates
(r,|P,X), the spherical metric can be written in the form

A@2 — y 2d(2+) 2—dp2+R2—(@2+sfn2$ dX2) (9)

where R denotes the usual radial curvature coordinate
and P, 8, and E are functions of r and t only. It follows
from the general discussion of co-moving coordinates in
the dyadic formalism' that the metric coefFicients are
here related to the dyadic variables by the equations

6/8= —('28+0)+3o., 8/R= 20+0, -
4'/4 = —o, R'/R=21, .(10)

R2792—(20+&)2+2(-'p+&)J=1

while for the coordinates themselves we have, of course,

r'=|P=x=0, t'=f'=&'=0

with
W$= f'u, (1) and

r'=6, t=Q,
(2) so that for any scalar, say $(r, t),

and the gradient of u itself as

Vu=2l(l —uu) . (3)
8$ 8( 8$ BPr'=8-
8r Br Bt 83

T= —pl. (6)

5 F. S. Estabrook and H. D. Wahlquist, J. Math. Phys, 5,
1629 (1964).

The remaining kinematical variables of the matter tal~e

the forms
a= uu, 5=-',el+0 (1—3uu), (4)

where a is the absolute acceleration, 8 is the expansion,
and a. is the shear. Similarly, the electric and magnetic
components of the Acyl tensor, represented by two
symmetric traceless dyadics, must have the forms

A=u(l —3uu), 8=P(I—3uu), (5)

and it can be shown from the equations that, in fact,
in the present case P=0. Finally, for a co-moving fra, me
of reference, the momentum density vanishes (t=0)
while the remaining components of the Einstein tensor
will include p, the local proper energy density, and the
stress dyadic for a perfect Quid,

Each of the three regions used in these models is
characterized by diBerent further specializations. In
region I we want to describe a rigid Quid with constant
density (8=0 = p= p'=0), and since the space-time of
the interior Schwarzschild solution is conformally flat,

Fzo. 3. Accretion or partial explosion.

~ H. D. Wahlquist and F. S.Kstabrook, J. Math. Phys. 7, 894
(1966); also, Jet Propulsion Laboratory, California Institute
of Technology, Pasadena, California, Report No. 32—868, 1966
(unpublished) .
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IIL THE DYADIC JUNCTION CONDITIONS
FOR SPHEMCAL SYMMETRY

Having obtained the metrics and physical quantities
for each region, expressed in terms of intrinsic co-moving
coordinates, the remaining task is to join them together
properly at the three surfaces of discontinuity Z&, Z&,

and Z3. This problem is usually formulated theoretically
in terms of admissible coordinates, ' for which the metric
tensor itself and its Grst derivatives are everywhere

continuous. When such coordinates can. be discovered,
the matching problem is quite simple. In general, of
course, the co-moving coordinates used here will not
satisfy the requirements of admissibility. To proceed,
however, by searching for a set of admissible coordi-
nates valid for all three regions leads to considerable
difhculties, not the least of which arise from the facts
that the metrics of regions I and II are not explicit,
but involve several functions as yet arbitrary, and that
the forms of the boundary surfaces themselves are not
yet completely specified. In practice this problem can
be handled quite straightforwardly by turning to a
tetrad or dyadic formulation of the junction conditions,
which can be specially adapted to the matching of
metrics expressed in co-moving coordinates. The general
formalism of this approach is developed in Ref. 3,
where it is shown that the continuity conditions used
below are equivalent to, and in fact guarantee, the
existence of admissible coordinates without explicitly
employing them.

When the 29 general dyadic junction conditions of
Ref. 3 for motion normal to spatial boundaries are
written for spherical symmetry and co-moving frames
of reference, the following set of seven continuity condi-
tions results:

FlG. 4. Multiple bursts of accretion
or explosion.

we also have n=0. From Kq. (10) we find B=O and,
since the scale of the co-moving r coordinate is as yet
unspecified, we may pick R=r. The entire set of equa-
tions is now readily integrated and leads to the following
results:

2
3P8f (13)-

8—F(t)—
P ps

3F(t)—8 3F(t) 8—
where p, is the constant energy-density and F(t) is an
arbitrary function of time.

In like manner for the incoherent matter of region II,
we put P =a= 0, set the scale of the time coordinate by
putting ttt= 1 (so that trr is proper time on the matter
world lines), set the scale of the r coordinate by picking
r=R on the surface Z3, and Gnd

8R —' f(r)
4 =1, ~=f(r)

Br R

1 (8R) R h'(r) h(r)
o.=-, -',8+o =—, p= sp+~=

3 bR R f(r)R' R'

R'= f(r) R= +L—1+f'(r)+2h(r)/R]'", (14) (18a)

(18b)

(18c)

(18d)

(18e)

(18f)

(18g)

(cot/)/R,

VI:~+V(38+o)j,

'yLv'g+ 38+trj
pc y'vu'+y'v+ a+ u (-',8—2o)j,

V'v(P+p),

v'l v'p+p],

3p+t}.,

where f(r) and h(r) are arbitrary functions of r only.
Partially integrating the expression for 8 we may write

8 (r, ttt} —
h (r)

——}/2

—1+f'(r)+2 dx g(r), —(15)

thereby introducing one more function g(r) which de-
termines the surface Z~, for having chosen r =R on Z3,
the equation of Z~ in terms of the coordinates of region
II becomes

trr+g(r) =0.
where each of these expressions must be continuous

(16) across the boundary. The quantity u is the proper,

In region III, which being empty, offers no physically
preferred timelike congruence, we adopt the timelike
isometry for our reference frame so that, in addition to
P= p=0, we have 8=o =0, all time derivatives vanish,
and we may again set r=E. The equations then lead
directly to the usual exterior Schwarzschild metric with

Fn. 5. Collapse to smaller Schwarz-
schild sphere (supernova process).

r=R, 8= (1—2M/R)'t', y=1/8,
tt =8/R, a= M/8R2, a =M/R'.
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so from Eq. (13)
Pz I ~.=0, (20)

F (~z) I ~.=&(r-)= (1—Sp.r-')'"

However, since Ii may depend only on time, this result
actually determines Ii throughout the part of region I
above the dashed line of Fig. i. Remembering that 8
and 0 vanish in both regions I and III, Eq. (18c)
requires that also uzzz

——0, while Eqs. (18b), (18d), and

(18g) all reduce to the single condition

JIf=3p,r '.
Turning to Zl and again writing out both sides of the

junction conditions, this time for regions II and III,
we first find uzz

——0 [Eq. (18f)$, so that r =r„ is also the
cquRtlon of Zy ln lcglon II. Using thc cxpI'csslon foI' 8
[Eq. (14)], other junction conditions give

radial 3-velocity of the moving spherical 2-surface as
observed fram the co-moving frame of reference on each
side and y=(1—u') '". We assume throughout that
the angular coordina, tes P and X are propagated con-
tinuously across all boundaries, so the first expression
simply requires that E also be everywhere continuous.
Equa, tions (18a)—(18d) ensure that the intrinsic first
and secand fundamental forms of the boundary are
unique. Equations (18e) and (18f) are the usual rela-
tivistic Rankine-Hugoniot relations in a symmetric
form, and Eq. (18g) requires continuity of a certain
combination of curvature components involving both
Einstein and YVeyl tensors.

The simplest situation occurs at Z2, between regions
I and III. Writing Eq. (18e), for instance, we have

'Yz ui(pi+pi) ~z, ='Yzzz uzzz(pzzz+pzzz) ~z» (19)

but since pm ——pzzz=0 and (pz+pz)&0, we find uz=0,
pi=i. Thus, this boundary must be Axed in the co-
Inovlng frame of 1cglon I and its cqURtion can bc
written r=constant, or specifically r=r . Similarly
writing out both sides of Eq. (18f) we find that

two functions on this boundary which remain arbitrary.
In other words for each choice of two such functions
and the two parameters p, and r, we obtain a unique
solution for a model of the type depicted in Fig. 1. The
physical signi6cance of this is perhaps most clearly seen

by interpreting the functions as (1) the amount of
matter crossing Zs and accreting in region I per unit
time, and (2) the velocity of impact of this matter at
Z~. Since we impose no thermodynamic constraints at
Z3, other than the local conservation of energy-mo-
mentum given by the Rankine-Hugoniot relations, both
of these quantities can be specified. Recalling the
definition of the velocities appearing in the junction
conditions, the two quantities can be written as p, vl

and (uz —un)/(1 —uzuzz), respectively; so it is con-
venient to adopt as arbitrary functions the two velocities

N(r) —= uz, (26)

the velocity of the surface of the growing sphere, and

Pzlr, = P.»—
pzz I,,=p,~(1—u')/(I —u),

while Eqs. (18b) and (18c) determine f(r) as

the velocity of impact of the dust, both relative to the
static matter of region I. Since the time coordinates of
I and II will not agree on Z3, whereas we have arranged
that the r coordinates do coincide there, we express the
velocities as functions of r along Z3 as indicated. Note
that for either accretion or explosion (Fig. 1 upside
down) we have»~0.

The result of applying the junction conditions is now
to express the unknown physical variables and the
previous arbitrary functions in terms of N(r) and zI(r)

From Eqs. (18e) and (18f) we get the energy-mo-
mentum relations in more familiar form

h(r„) =-',p,r„'=M,

f(r~) =Vzzz&zzz,

Rnd thUs solve foI' vIII Rs

(23)

and Eq. (18g) gives

Iz(r) =-,'p, r'.

1—2h(r)/r zi'

(r) =—
1—u'(r)

(30)

(31)

f(r-)- Inserting pz from Eq. (13) into Eq. (28} we get(23

The remaining condition Eq. (18d}vanishes identically
lIl II, so that lt simply bccoIIlcs thc eqURtlon of motion
of the collapsing spherical 2-surface in region III; it is
in fact just the equation for a timelike radial geodesic
as would be expected.

When the junction. conditions are applied. at the
internal boundary Zg, we find that we @re still left with

1—u(r)u(r}—
F(fz)

~ z, =&z
1—3u(r)u(r)

(32)

but by using the equation of Z~ [Eq. (36)], the right
side of this equation can be converted to a function of
tz only which then gives F(tz) throughout the time-

dependent part of region I (below dashed line of
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Fig. 1). Similarly from Eq. (14) we have

BE. p,

Br zs pII z3

(33)

equation of the boundary Z3 which is

"- [1—3u(x)v(x)]
ds.

u(x) [1——;p.a]
(4o)

and using Eqs. (15) and (29) we get Letting dZ3 represent interval in the surface Z3 we find

dg (r) (1—uv)

dr u(1 v'—)'"(1 '—
p r-')'"

(34)

(1—u')
dZ22 = — dr'+ r2dQ'.

u'(1 —-', p, r')
(41)

The equation for the boundary Z2 is simply r = r and
Integrating and adjusting the constant so that tII=O has the intrinsic metric
at the triple point of Fig. 1, we have

f(y) =
rm

d~2'= —(1 2p.y—m2) dtl'+rm'd~'
[1—u(x)v(x)]

u(g)[1 v2(g)71/2[1 2 g2]l/2
dx. (35) The pressure field in I is given by

~ ~ ~

(42)

Finally, the equation for Z3 in region I is

dr
dtI=—

81 2, u(r)

so that, also setting tI=O at the triple point, we have

(1—-', p, ')' '—F(tl)
P(y, tl) =p.

3F(t ) (1—-,'p, r'—)'"

and on the boundaries

P &2 Pauv) P &2

(43)

(44)

"- [1—3u(x) v(x)]
dg.

u (x)[1—-,'p, x']

IV. SVMMARY

(36)

Region G

(1—v') c/R '
dS2 = dtII2+- dr'+R2d02 (45)

(1——,'p, r') ctr

with R(r, t») given implicitly by

u„=u(r ), v„=v(r„) . (37)
ancl

In this section we collect the previous results to give
a summary of the metrics and physical quantities for
the type of models depicted in Fig. 1. The solutions are
specified by the two velocity functions u(r) and v(r) on
Z3, which are arbitrary to within some broad constraints
discussed at the end, and it is convenient to define

II v2 (y) 2p y2 y8 1/2

+2Pg—
1—v'(r) x

1—u(x) v(x)
dx (46)

u(x) [1—v'(x)]'"(1——,'p, x')'"

Region I
d22 1[3F(t ) (1 '2p y2)1/2]2dt 2

+[1 2p y2] ldy2+r2dQ2 (38)
with

1—u(r)v(r)
F(tl) = (1—

a p y')'" (tl(0)
1—3u(r) v(r),= 2 (Il) (39)

(1 2 y 2)1/2 (t»o).

The equations as written are equally valid for either
contracting or expanding models.

The space-time metrics and physical quantities in
the three regions of Fig. 1 are the following.

BE -~2 2p r2 r3 —1/2

2+ 2Ps
g

I
v Iu(1 —")'"(1—l p.")'"

R-~2 2 2 P ——3/23psr
+ 2P8

1—l,' X

r 1d e —-pr
X p,—+—— dx . (47)

s 2 dr 1—'v

[1—u(x)v(x)] —-dx (48)
u(x)[1—v'(x)]'"(1—-'p x')'"

The equations for the boundaries of region II are, for
Z2, r =R, or from Eq. (46),

dZI' ———dtll'+R'(r, tll) dQ'

The inequalities here would reverse for an expanding giving Eq. (41) again for dZ2, and for ZI, r r,„,so that
motion. The function of r in the first expression for F
is to be converted to a function of tI by means of the
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or, again using Eq. (46),

dZ»'=—
p 2 2p r 8 r 3-—»

+2p.— dR'+ R2dQ2.
&m

The proper density in region II is given by

(49)

and thus from the first factor of Eq. (47),

~p,r2& @~&1.

,'v' -M—(r)/r & 0

(57)

The left inequality here may be rewritten in an obvious
notation as an energy constraint

and on Z3,

r' BE.
p(r, tir) =p.—

E. Br

px, ——p.u(1 —v2)/(2t —v) .

(50)

(51)

required to ensure that the matter of region II comes
from (or goes to) infinite distance. The second factor
of Eq. (47) also must be prevented from vanishing,
which it might do if

Region III

X 1——;p,— dx (54)

giving Eq. (49) again for dZ22.

Certain constraints must be imposed on the parame-
ters and velocities if these solutions are to be complete
and everywhere regular with no further boundaries.
First, to describe the situation of Fig. 1, rather than
Fig. 2, we must choose v(0) =0. Second, to ensure that
0&p(r, tr) & ~, we must have

L3(1-2p.r2)'/2- 13
0&(—uv)&

3L1—(1—lp.r')'/2j

and it follows from this that

-';p,r 2&8/9, (56)

which is the usual limit for the interior Schwarzschild
solution. Next, from Eq. (50) we must have IIR/Br) 0,

3f 3E
ds2 = —1—2—dtxIr2 1—2— dE2 E2dQ2 ~2

E. R
with

crI —3p 8' ~
3

The boundary equations for this region are: for Z~,
R=r, giving Eq. (42) for d&2' (with tr=trrr on &2);
and for Z»,

(1 2p r 2)1/2 a v2 '2p-r 2 r 2-—1/2

4»r=— +2P.—
(] v 2)1/2 1 v 2

'v2 ——
p r~

dr 1—n'
(59)

became sufficiently negative (all other terms of the
factor are positive). Such behavior of the energy on Z2

leads to shells of matter overtaking others (intersection
of the world lines in region II), violating the assumption
of incoherent matter in II.

It may be noted from Eq. (39) that, in general, a
discontinuity of the pressure in region I occurs at the
surface ti =0 (the dashed line of Fig. 1).Physically, this
would appear as a shock wave of infinite speed, resulting
from the sudden cessation of accretion at r=r . The
discontinuity is removed by setting I =0, which corre-
sponds simply to vanishing density at the outer bound-
ary of the collapsing cloud as is evident from Eq. (51).
Letting u(r) =0 anywhere, however, gives rise to some
difficulties with the coordinate r in region II and on

Z3 at such points. These can be handled by using instead
anewcoordinate r defined, forinstance, by dr= (pz, ) 'dr.

For arbitrary choices of the functions N(r) and v(r),
satisfying the foregoing constraints and I =0, the
models may still have the acausal feature that the sur-

faces of constant pressure in I are spacelike. This is a
not surprising result of the incompressibility of the
matter in region I. For such Quids, in the words of
Sommerfeld, ' the pressure takes on the rather un-

physical character of a "Lagrangian multiplier. . . a
reaction against the condition of incompressibility. . .
without energetic consequence". Nevertheless, here its
contribution to the gravitational field is fully included.

'A. Sommerfeld, Mecllaeics of Deformsabte BoChes (Academic
Press Inc. , New York, 1950), p. 91.


