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Calculated angular and energy distributions of the a particles in long-range «-particle fission are pre-
sented. The distributions were obtained from calculated a-particle trajectories based on a three-point-charge
model for the scissioning nucleus. The calculation is two dimensional, and spontaneous fission (no preferred
direction) is assumed. This reduces the number of free variables of the system to seven (except for the mass
ratio). The system is thus parametrized in terms of the following initial dynamical variables: the initial
distance between the fission fragments, the initial position of the « particle (not restricted to the fission axis),
and the initial momenta of the « particle and one of the fragments. Reasonably good agreement with the
experimental distributions is obtained. The calculations support the view that the scission point moves
closer to the light fragment as the mass ratio increases. They also support the assumption that at the mo-
ment of scission the fission fragments have already attained a substantial part of their final velocity.

I. INTRODUCTION

HE preceding paper! describes an experimental

investigation of the emission of long-range a
particles, LRA, in the spontaneous fission of Cf?®2, The
main purpose of the experiment was to obtain quan-
titative information on the configuration of the fis-
sioning nucleus at the moment of scission from the
detailed investigation of the angular and energy dis-
tribution of the « particles as a function of the a-particle
energy, the total fission-fragment energy, and the
fission-fragment energy ratio. It is clear that little
quantitative information on the scission configuration
can be obtained without comparing the experimental
angular and energy distributions with the results of
trajectory calculations based on a given model for the
scissioning nucleus.

It may seem preferable to start from the experi-
mentally observed angular distributions and to obtain
the initial configuration at the moment of scission by
calculating the particle trajectories ‘“backwards” from
the (experimentally measured) final distribution to
their initial positions at the moment of scission. How-
ever, it is easily shown that such a program cannot be
carried out even in principle. Hence an iteration pro-
cedure must be used. One assumes a model for the
scission configuration, proceeds to calculate the a-
particle trajectories, compares the results with the
experimental distribution, and changes the parameters
describing the initial configuration until satisfactory
agreement with the experimental results is obtained.
In practice, the model for the scissioning nucleus may
consist of the distributions for the dynamical variables

1Z. Fraenkel, preceding paper, Phys. Rev. 156, 1283 (1967).
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of the three fragments immediately after their sepa-
ration beyond the range of the nuclear force. A dy-
namical theory of fission should be able to predict these
distributions. Indeed they were calculated for the
binary-fission process in elements lighter than radium
by Nix and Swiatecki? who developed a dynamical
theory of fission based on the classical liquid-drop
model. With suitable approximations regarding the
shape of the nucleus, they were able to derive the
dynamical variable distributions of the two fission
fragments and obtained good agreement with experi-
mental results to the extent that these are available.
Unfortunately, the classical liquid-drop theory in its
present form cannot explain basic features of the binary
fission of elements as heavy as californium or uranium,
let alone LRA fission. Hence the initial distributions
of the kinetic variables of the three fragments must be
arrived at by trial and error. In order to make the
problem at all amenable to present computer tech-
niques, the number of the dynamical variables used to
describe the system of these particles must be very
limited. The minimum number of variables is obtained
when no internal degrees of freedom are allowed and the
three fragments are assumed to behave like three point
charges. In this case the total number of variables
reduces to 12 for a nucleus originally at rest. (For each
of the three fragments there are three spatial variables
describing the position of the center of mass and three
conjugate momenta, making a total of 18 variables.
From this total one must subtract three variables for
the conservation of linear momentum and three vari-
ables for the conservation of angular momentum.) In

% J. R. Nix and W. J. Swiatecki, Nucl. Phys. 71, 1 (1965).
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1306 BONEH,
the case of spontaneous fission (no preferred direction)
the number of free variables is further reduced to 10.
Since nuclear effects are neglected and the velocities
are nonrelativistic, the laws of motion are those of
classical mechanics and electrostatics.

A three-point-charge calculation of the trajectories
of the three fragments in LRA fission has been per-
formed by Halpern.? This author also tried to estimate
the error involved in assuming the fission fragments
to be point charges. He did this by estimating the effect
of higher multipole terms on the motion of the three
particles and found that this effect could safely be
neglected. The present calculation is also based on the
three-point-charge approximation. In addition, it as-
sumes, for the sake of simplicity, the momenta of the
three particles to be in a plane, i.e., the calculation is
two-dimensional. This simplification reduces the num-
ber of free parameters of the problem to 7 (for spon-
taneous fission). The latter assumption was not made
by Halpern, and from his results we conclude that the
restriction to two dimensions does not affect our con-
clusions substantially. Halpern, on the other hand,
neglected the effect of the a-particle recoil on the
movement of the two larger fission fragments, whereas
in the present paper this effect is investigated in some
detail. However, the primary purpose of the present
calculation is to reproduce the experimentally observed
energy and angular distributions of the « particles as
presented in the preceding paper.

In Sec. II we discuss the method of calculating the
trajectories of the three fragments. In Sec. III we show
the dependence of the final (i.e., experimentally mea-
sured) parameters, such as the a-particle energy and its
angle with respect to the fission fragments, on the initial
conditions such as the initial energy and the initial angle
at the moment of scission. In Sec. IV we try to deter-
mine the average initial kinetic energy of the three
fragments at the moment of scission. Based on the
results given in Sec. IV and some assumptions regarding
the initial distributions of the various parameters, in
Sec. V we calculate the final energy and angular dis-
tributions and compare them with the experimental
results.! We summarize our conclusions in Sec. VI.

II. THE CALCULATION

The motion of the three fragments under the influence
of their mutual Coulomb interaction cannot be calcu-
lated in closed form, as is well known from the similar
problem of three bodies in astronomy. The trajectories
must therefore be calculated numerically. We first
replace the differential equations of motion by a set of
difference equations, and with their aid calculate the
motion of the fragments for successive time intervals
At.

2 1. Halpern, CERN Report, 1963 (unpublished).
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The equations of motion are
dX.,;
o =Uj, ¢y
aUs;
m; o =Fy, @

where X; is the jth coordinate X; of the ith particle,
U;; the j component of the velocity U, and F; the 7
component of the force F; acting on the ith particle,
and m; its mass. These equations are replaced by the
difference equations:

X=Xy Uyl )
~ 1
U1.]_n+1 — Ul_jn_{____Fier-]At s (4)
24’”@'
where
N 1
Uijn'-_“ Uij"-i—“—‘pij"Al (5)
",

and F™ is the j component of the force acting on
particle 7 at the position X,

2 X »—X;»
F.i"=e2Zi Z L (6)
= | Xr— X3

The subscript % refers to the two other particles, and
the superscript # refers to the value of the parameter
after the nth time interval.

The size of the time interval is not chosen to be
constant. A constant time interval would result in
either poor accuracy for small # (i.e., when the three
fragments are still close together and their direction of
motion changes rapidly), or in unnecessarily small steps
for large # (when the fragments are already widely
separated and their direction changes only slowly). In
the present calculation, the total time #, after # time
intervals is an exponential function of 7:

tn=toe”“, (7)
and hence the size of the nth time interval is given by
Aty=tn—tp1= ln_1(6a— 1) . (8)

It is seen that the size of the time interval ¢, is a
function of two free parameters, {, and a. The parameter
lo determines the time scale, whereas ¢ determines the
exponential growth. Roughly speaking, the parameter
to determines the accuracy of the calculation at the
beginning of the trajectory (¢=0), whereas a deter-
mines the accuracy towards the end of the trajectory
(¢= ). tp and @ should be so chosen that the accuracy
remains more or less constant during all intervals. For
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the calculations presented here we chose
to=10"" sec,
a=0.1.

Normally the calculation is terminated after 100
time intervals, i.e., after 2.2)X 1078 sec. By that time,
the distance between the particles is more than 10
times their initial distance and hence their potential
energy is less than 1073 times the initial value. The
calculation of 100 time intervals takes approximately
2 sec on a CDC 1604A computer.

Our calculation conserves rigorously the linear and
angular momentum of the system. This is not true for
the total energy of the system. The relative error in the
value of the total energy after 100 time intervals is
approximately 21073,

The initial conditions for the calculation were as
follows: (a) The mass ratio R=my/m; which was
assumed to be equal to the charge ratio, R=Zy/Z,
where the subscript H and L refers to the heavy and
light fission fragment, respectively. We have for C{?%

mH+mL= 248,
Zu+Z1,=96.

(b) The seven initial dynamical variables: (1) The
initial distance D between the two fission fragments.
The line connecting the two fragments is defined as the
fission axis (x axis). (2) The initial velocity of the keavy
fragment Vg in the direction of the fission axis (x axis).
(3) The initial velocity of the two fission fragments in
the y direction is for sake of simplicity assumed to be
zero. The initial velocity of the light fragment is
Vi=VauR, ie., the total momentum of the two fission
fragments is assumed to be zero. Hence the total
momentum of the system is not zero but equal to the
initial momentum of the « particle. The error introduced
by this assumption is negligible. (4) The initial distance
X, of the a particle from the heavy fragment along the
fission axis (x axis). (5) The initial distance ¥, of the
a particle from the fission axis. (6) The initial energy
E, of the o particle. (7) The initial angle 6, between
the direction of motion of the o particle and the di-
rection of the light fragment.

\// -

Fi16. 1. Schematic diagram of the initial
parameters of the calculation.

D
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TaBLE I. “Standard” set of input parameter values.
Input parameter Symbol  Value Unit
1 Mass ratio R 1.4
2 Distance between fragments D 26.0 1078 cm
3 Initial velocity of heavy )
fragment Va 0.5 10° cm/sec
4 Initial distance of & particle '
from heavy fragment X Point ¥ 108 cm
5 Initial distance of & particle
from fission axis Yo 0 1078 cm
6 Initial energy of « particle o 3.0 MeV
7 Initial angle of the « particle
with respect to the fission axis bo 90°

In most of the calculations to follow, the initial
position of the « particle was assumed to be on the
fission axis (¥o=0) and, in particular, at these points
on that axis: Position L: At a distance of 6)X10~% cm
from the light fragment. Position M : At the point of
minimum potential energy (the saddle point of the
potential-energy surface). For this point Zy/ry?
=Z1/r1? where r; is the distance between the « particle
and fission fragment 4. Position H: At a distance of
6X 1078 cm from the heavy fragment.

Figure 1 shows a schematic diagram of the initial
parameters of the calculation.

III. THE DEPENDENCE OF THE FINAL
«-PARTICLE ENERGY AND ANGLE ON
THE INITIAL PARAMETERS

In this section we present a set of figures showing the
dependence of the final a-particle energy and angle with
respect to the light-fragment direction on the various
input parameters. Each graph shows the dependence on
one such variable for fixed values of all other initial
parameters. A single set of such “standard” values for
the seven initial parameters was used for all the graphs
shown in this section. This “standard” set is given in
Table I. It corresponds roughly to the mean “experi-
mental” values of the various parameters as measured
(e.g., R) or as obtained from the results of the present
calculation.

A. Dependence on the Initial a-Particle Energy E.,

Figure 2 shows the final a-particle energy E, as a
function of its initial energy E., for Y,=0 and
V¢=5X10"" cm. The values of all other initial param-
eters are those shown in Table I. Figure 2 shows a very
strong dependence of the final a-particle energy on its
initial value. Thus for ¥,=0 a variation between zero
and 1.0 MeV for the initial energy corresponds to a
variation between zero and 10 MeV in the value of the
final energy. This. “amplification” effect for the a-
particle energy is a basic feature of the LRA fission
process. It shows that the relatively wide experimental
a-particle energy distribution may be the result of a
rather narrow initial a-particle energy distribution,
even if the other initial parameters have also only
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F16. 2. The final
a-particle energy E.
as a function of its
initial energy Eao.
The values of the
initial ~ parameters
(except for E.o and
Yo) are those of
Table I.
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relatively narrow distributions. The reason for the very
strong dependence of the final a-particle energy on its
initial value is the motion of the two other fission
fragments. Because of this motion the force acting on
the « particle is not only dependent on its position but
also decreasing with time. Hence the faster the initial
motion of the o particle, the larger its acceleration at
any given position. Except for very small values of Eqo,
there is little difference between V=0 and ¥V ,=5X 1071
cm. The final a-particle energy E, is zero only if both
E and Y, are zero and X, corresponds to position M.
In all other cases there is little dependence of £, on ¥
even for small values of Eqo.

B. Dependence on the Initial e-Particle Position X;

Figure 3 shows the final a-particle kinetic energy F.,
the final fission-fragment energy Ep, and the total
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F16. 3. The final a-particle energy E,, the final fission fragment
energy Er, and the total energy of the three fragments Er as a
function of the initial distance X, of the « particle from the heavy
fragment. The values of the initial parameters (except for Xo) are
those of Table I.
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energy of the three particles Er as a function of the
initial position X, of the a particle along the fission
axis. The figure shows the a-particle energy E, to be
strongly dependent on its position, i.e., its initial
potential energy, while the dependence of Er on X, is
much weaker. The “amplification effect” which causes
the final a-particle energy to depend very strongly on
its initial kinetic energy as seen in Fig. 2 is not apparent
for the variation of the final a-particle energy as a
function of its initial potential energy. Yet it may be
seen that when the a-particle initial position is near the
heavy fragment (Xo=6X10"" cm, high potential
energy), it receives a larger share of the total energy
Er available than when it is near the light fragment
(X0=20X10"1 cm, lower potential energy). As a result
Ep is lower for Xo=6 than for 20X10~ cm despite
the fact that the total energy Er is higher for the former

T T T T T T T T
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F16. 4. The final angle 6. of the « particle with respect to the
light fragment as a function of the initial position X,. The values
of the initial parameters (except for X,) are those of Table I. Also
slfm}évn are the loci of the most probable values of X, as functions
of R.

position. This also explains the fact that the minimum
of E, and Er occur at different X,.

We show in Fig. 4 the final a-particle angle 8, with
respect to the light fragment as a function of the initial
position X, for four values of the mass ratio R. It is
seen that the final angle 8, is almost linearly dependent
on the initial distance X, from the heavy fragment.
As expected, the angle with respect to the light frag-
ment decreases as the mass ratio increases. (It is seen
that the curve R=1 has a value §,>90° for the sym-
metry point Xo=13X10"% cm and it is not skew-
symmetric with respect to the lines X=13X10"1 cm
and 6,=90° This is due to the fact that 6, is defined
as the final angle between the « particle and the light
fragment as it is measured experimentally, and hence
it includes the recoil angle of the light fragment.)
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Based on Figs. 3 and 4, we obtain the final a-particle
energy E, as a function of the final angle 6, assuming
that the variation of both E, and 6, is due to the vari-
ation of X alone. This graph is shown in Fig. 5 together
with the experimental variation E, (6.) as obtained in
the preceding paper.! It is seen that while qualitatively
both curves have the same shape, the angle dependence
of the calculated curve is much stronger than that of
the experimental one. This discrepancy is in part the
result of the assumption that all initial parameters have
a single value, whereas, in fact E, (8,) should be cal-
culated for distributions of initial values. Some of these
distributions such as N (R) bave been measured experi-
mentally, and others must be obtained from calculations
such as the present one. However, it seems that even
with the true initial conditions there will still remain a
discrepancy between the calculated and experimental
angle dependence of E,. This residual discrepancy may

T T T T T T T T
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F16. 5. The calculated a-particle energy E, as a function of the
final angle 6., as obtained from Figs. 3 and 4. Also shown is the
experimental curve (see Fig. 4 of Ref. 1).

be the result of the three-point-charge approximation
of this calculation. A more realistic assumption for the
shape of the scissioning nucleus and the resulting frag-
ments may remove it. A quite different way of removing
the discrepancy is to assume that the average initial
velocity of the a particles which are emitted near the
fragments is lower than that of the « particles emitted
in the center of the neck. This assumption will be made
below.

C. Dependence on the Initial a-Particle Angle 0,

Figure 6 shows the final a-particle energy E. as a
function of the initial angle 6,. Angles below 8y=230°
and above 6,=150° are of little practical interest for
two reasons: (a) a particles emitted at a small angle
with respect to one of the fragments have a large
probability.of being captured by that fragment. (b)
Because of the sin 6 dependence of the solid angle, the
number of a particles emitted at these angles is quite

ALPHA-PARTICLE TRAJECTORIES
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FiG. 6. The final a-particle energy E, as a function of the initial
angle 6o. The values of the initial parameters (except for 6,) are
those shown in Table I.

small even if isotropic emission is assumed. The small
a-particle energy E, associated with these angles is the
result of the reflection which these « particles do suffer.
Because of the time dependence of the potential-energy
surface which was mentioned above, the almost total
reflection of these particles results in low final energies
E,. It is seen from Fig. 6 that in the region of greatest
interest, 60°<6,<120° the final energy changes by
1 MeV only. One may, therefore, in general neglect
the effect of the initial angle on the final energy E,.

Figure 7 shows the final angle 8, as a function of the
initial angle 6, for three values of the initial energy E .
It is seen that for the initial angles of practical interest,
i.e., 30°<6,<150° the final angle 6, is almost indepen-
dent of the initial angle 6y and of the initial energy E,o.
Because of the mass ratio of R=1.4 assumed for Fig. 7
both 6,=0° and 6,=180° result in 8,=0°. For R=1,
we naturally obtain 6,=180° for an initial angle
60=180°. However only for values of 6, very close to
180° does 6, show a marked dependence on R.
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F1c. 7. The final angle 6, as a function of the initial angle 6, for
three values of the initial energy Eo. All other initial values are
those of Table I.
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Fic. 8. The final a-particle energy E, and the final fragment
energy Er as a function of the initial distance ¥ of the « particle
perpendicular to the fission axis. All other initial values are those
of Table I.

The calculations shown in Figs. 1-6 were also calcu-
lated for ¥y=5X10"1 cm (all other initial parameters
as above). The results do not differ markedly from those
calculated with ¥,=0. The variation of E, and Er as
a function of Y is seen in Fig. 8 for the initial conditions
of Table I except for ¥. We note that E.(Y,) reaches
a maximum and then decreases towards the limit
E,=E, as Y, approaches infinity.

We may summarize our analysis of the initial param-
eters Fa9, Xo, and 6y by concluding that as a first
approximation we may assume 0, lo be independent of
Eqo and 0y and lo be a linear function of X, We may
further conclude that an initial distribution of E.o and
6o alone cannot result in the relatively wide experi-
mentally observed angular distribution N (6,) such as
seen in Fig. 2 of the preceding paper. This distribution
is predominantly the result of distribution in the initial
position X of the « particle.

D. Dependence on the Initial Fragment Velocity
Vg and the Initial Fragment Separation D
Figure 9 shows the final a-particle energy E, as a
function of the initial velocity Vg and initial separation

-13
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F1G. 9. The final a-particle energy Eq as a function of the initial
fragment velocity Vi and the initial fragment separation D. All
other initial values are_those of Table I.
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D of the fission fragments. It is seen that £, is an almost
linearly decreasing function of both variables.

The question now arises whether a realistic initial
distribution of Vi or D (or both) can result in a dis-
tribution of the a-particle final energy which is in agree-
ment with the experimental result or whether in addi-
tion a distribution of E,o, the initial kinetic energy of
the « particle, must be assumed. To answer this ques-
tion, the distribution N(E,) was calculated assuming
all initial parameters to correspond to the values of
Table I, except for Vg, which was assumed to vary so
as to yield for the total initial kinetic energy of the two
fragments Ero a Gaussian distribution:

1 (Ero—Ero)*
O el L

o?

where Epo=239.1 MeV for R=1.4. This value of Ero
was chosen so as to yield 187 MeV for the total energy
of the three-particle system, and the standard deviation
was assumed to be =12 MeV. Both values correspond
roughly to the experimental values for the total kinetic
energy and standard deviation of the three-particle
system. The resultant distribution N(E.) of the a-
particle kinetic energy is shown in Fig. 10 together with
the experimental curve for this energy range. It is seen
that the calculated distribution is much narrower than
the experimental one.

A similar calculation was made assuming Vg to be
fixed (Vy=0.5X10° cm/sec), whereas a Gaussian
distribution was assumed for the initial fragment
separation D. Again, the mean value and standard
deviation were chosen so as to correspond to the
experimental values for the total kinetic energy dis-
tribution. A curve similar to Fig. 10 was obtained for
N(E.).

The calculations were repeated for E4o=1.0 MeV

N (E o) Arbitrary Units
@
T

Fic. 10. The calculated distribution N (E,) assuming the initial
fragment kinetic-energy distribution to be given by Eq. (9) and
all other initial values to be those of Table I. Also shown is the
experimental distribution N (E,) for the energy range in question
(see Fig. 3 of Ref. 1).
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with all other input parameters unchanged. Again
curves similar to Fig. 10 were obtained.

We may thus conclude that in order to obtain the
experimental distributions for the final a-particle energy
E, and the final fragment energy Er, distributions of
substantial width must be assumed for both E,, the
initial a-particle kinetic energy, and Vy or D, or both
of the latter variables.

IV. THE KINETIC ENERGIES OF THE
«-PARTICLE AND FISSION FRAG-
MENTS AT THE MOMENT
OF SCISSION

In the preceding section we discussed the dependence
of the final a-particle kinetic energy and angle on the
initial values for the kinematical variables of the system.
The set of initial values refers to a time =0 which may
be chosen to coincide with any moment in the LRA-
fission process equal to or later than the moment of
scission. Conversely, if a set of initial values (such as
the “standard” set of Table I) gives good agreement
with experimental results, this only proves that at a
given moment the kinematical variables of the system
coincide with these initial conditions. However, it does
not give us in general any information about the values
of the kinematical variables at the moment of scission.
In order to obtain information on the moment of scis-
sion, we must find the “earliest” set of initial values
which gives agreement with the experimental results
for t=oo. It is @ priori not obvious that an “earliest”
set of initial values can be found (except for the trivial
one corresponding to zero kinetic energy of the three
particles) from the examination of the experimental
distributions. Thus clearly no such set can be found for
binary fission. However, for LRA fission, information
on the moment of scission can be obtained from the
correlation between the a-particle energy and the fission
fragment kinetic energy and also from the angular
distribution of the « particles. This fact makes the
investigation of LRA fission of general interest for the
physics of fission.

The particular interest in the kinetic energies of the
two fragments at the moment of scission is partly due
to the fact that the statistical theory of fission* assumes
this energy to be very small (less than 0.5 MeV), and
this theory is not valid if the kinetic energy of the
fragments at scission is considerably larger than 1
MeV. Because of the condition that any set of initial
values for the kinematical variables should result in
final kinetic energies of the fission fragments and the
a particle which correspond to the mean experimental
values, it suffices to determine the size of one of the
variables E,o, Vg, or D at the moment of scission in
order to determine the size of the other variables. This
is seen in Table II, where we show several sets of initia)

4 P. Fong, Phys. Rev. 102, 434 (1956).
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TaBLE II. Six sets of starting conditions for Eqe=0.2—35.0
MeV. The values of the other initial parameters are R=14,
Yo=0, 6,=90°. All sets satisfy the conditions Er~166.8 MeV
and E,~15.9 MeV at 6,~~85°.

Eqo D Vu EFo Eq O EF
(MeV) (1022 cm) (cm/nsec) (MeV) Xo (MeV) (deg) (MeV)
0.2 20.7 0 0 L 19.5 85 166.7
M 15.2 85 167.3
H 24.7 82 166.0
0.5 21.0 0.10 1.8 L 19.7 96 166.2
M 15.9 85 166.2
H 25.7 69 164.8
1.0 21.7 0.20 7.3 L 20.0 102 166.4
M 16.1 85 166.1
H 26.1 62 165.1
2.0 23.5 0.33 19.8 L 20.3 108 167.2
M 16.0 85 166.5
H 26.3 57 166.3
3.0 26.0 0.44 34.4 L 20.3 110 168.5
M 15.5 86 167.1
H 26.5 56 167.6
5.0 30.0 0.54 52.3 L 21.7 112 169.0
M 16.2 87 168.9
H 28.0 57 168.5

values which satisfy the above conditions at /=,
namely £,=15.9 MeV and Er=166.8 MeV. It is seen
that the “standard values” of Table I do roughly
correspond to the row of E,o=3 MeV.

We shall try to establish the size of the three kine-
matical variables Eqo, Vg, and D at the moment of
scission from three independent arguments. One argu-
ment was first stated by Halpern,®% and we shall discuss
it here only briefly: If we assume the « particle to exist
as a physical entity in the neck of the fissioning nucleus
before scission occurs, it must have a minimum kinetic
energy due to the uncertainty principle. If one further
assumes the neck to consist of approximately 20
nucleons, one arrives at a value of approximately 4
MeV for the minimum kinetic energy. Finally, if we
assume that scission process is so fast that the removal
of the nuclear potential does not change the momentum
of the a particle (the sudden approximation), we arrive
at 4 MeV as the initial kinetic energy of the « particle
at the moment of scission. Of the above assumptions
the sudden approximation is probably the one which is
most open to doubt.

The other two arguments regarding the initial a-
particle energy are not based on any assumptions about
the dynamics of the LRA-fission process, but try to
determine E,o from the analysis of the experimental
results. We show in Table IT the final a-particle angle
0, as a function of the initial a-particle energy E,o for
positions L, M, and H. We see that for values of E,,<1
MeV the spread in angle between positions L and H
is 40° or less, whereas the experimentally observed
angular distribution extends from less than 60° to
approximately 110° (see Fig. 2 of the preceding paper).
The points L and H, whose distance to the center of
the near fragment is only 6X10™ cm, may well be
considered extremal points with respect to the emission
of a particles, since the “neck” of the scissioning nucleus

5 I. Halpern, in Symposium on Physics and Chemistry of Fission
§161;ternational Atomic Energy Agency, Vienna, 1965), Vol. II, p.
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can hardly extend nearer to the fragments. It follows
that in order to obtain the experimental angular dis-
tribution, the initial energy E,o of the o particles must
be larger than 1 MeV. Since 6, does not change rapidly
above E,=1 MeV, we are unable to give an upper
limit for E.o from these considerations. The validity
of this argument is rather strongly dependent on the
extent to which our three-point-charge model can
explain the experimentally observed angular and energy
distributions.

Our third argument is based on the correlation
between E, and Ep. This subject is discussed in the
previous paper and we shall only summarize it briefly:
If the initial energies of the three fragments are very
small at the moment of scission, the final energies £
and E, must be highly (negatively) correlated. The
larger the initial energies, the smaller the amount of
correlation between E, and Ep. We define Ep as the
average kinetic energy of the fragments for a given
value of E,. In Fig. 11 we show two calculated corre-
lation curves between E, and Ep. Curve A was calcu-
lated assuming D=21X10"% cm, Ero=1.9 MeV. Curve
B shows this correlation for the initial conditions

=26X10"8 cm, Erp=35.0 MeV. The curves were
obtained by keeping all initial variables except FEao
fixed and varying E,o between 0.1 and 0.8 MeV for
curve A and between 1.0 and 5.0 MeV for curve B. All
initial variables except Eqo, Do, and Vg were those of
Table I. For curve A, the value of E,g correspondinfr
to the average experlmental value of B,=15 MeV is
E.0=0.3 MeV, whereas this value is Hq=3.0 MeV
for curve B. We also show in Fig. 11 the experimentally
measured correlation (see Fig. 15 of the preceding
paper). It is seen that curve A has the wrong slope,
whereas the agreement between curve B and the
experimental curve is very good. It may thus be con-
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F16. 11. The calculated correlation between the final a-particle
energy , and the final fragment energy Er. Curve A corresponds
to D>21X10"% cm, Epg=1.9 MeV. Curve B corresponds to
D~26><10—13 cm, Epg=35 MeV. Curve A is obtained by varying

,,o between 0.1 and 0.8 MeV. Curve B is obtained by varying

L4 between 1.0 and 5.0 MeV. All other initial variables are those
of Table I.
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cluded, on the basis of Fig. 11, that the average initial
energies of the « particle and fission fragments at the
moment of scission are approximately 3 and 40 MeV,
respectively. It should, however, be remembered that
we assumed fixed values for all initial variables except
Ego. Actually, all the initial variables have a finite
distribution, and if these initial distributions cause an
appreciable correlation between £, and Ep, our con-
clusions would be affected. In particular, a strong
positive correlation between E, and Er could result
in the experimental curve, even if £, is of the order of
0.1 MeV rather than 1 MeV. Such a positive correlation
could be caused by the distributions of the parameters
Xo and D (see Figs. 3 and 9, respectively). However,
since the experimental curve was measured at a fixed
angle (6,=90°), the distribution of X, associated with
it is presumably very narrow. The positive correlation
between E, and Ep due to the initial distribution in D
will be at least partially compensated by the negative
correlation due to the initial distribution in V.

In summary, we may say that by three independent
methods, we arrive at the conclusion that when scission
occurs, the two fragments are already in motion and
already have approximately one-half their final velocity
(3 of their final kinetic energy), and the nucleus is
highly elongated (D=~26X107% ¢m). The initial values
of Table I are based on this conclusion. Yet the validity
of each of the three arguments is open to some doubt.

V. COMPARISON WITH EXPERIMENTAL
DISTRIBUTIONS

In this section we shall try to obtain the distributions
of the initial parameters (e.g., N (Eao)] which result
in final parameter distributions [e.g., N (£4)] in good
agreement with the experimental results shown in the
preceding paper.! However, with a three-point-charge
model, we cannot hope to reproduce those variations
in the final parameters which are the result of changes
in the deformation of the fragments. Experimental
evidence for such changes in the deformation as a
function of the excitation energy E* is seen in Figs.
12-14 of the preceding paper. Hence we shall not try
to reproduce these results. We shall be mainly interested
in reproducing the variation of the average a-particle
energy with angle &, (6.), the energy spectrum of the
a-particles N (E,), and the dependence of the angular
distribution on the a-particle energy N (6a,E.).

We have seen in Fig. 5 that the calculated value of
E, is a much steeper function of the angle §, than the
experimental average energy is. In order to obtain
agreement between the experimental and calculated
curves, we assume that the initial kinetic energy Eao is
a function of the initial distance X,. We assume the
initial kinetic-energy distribution at a given point X
and a given mass ratio R to be Maxwellian:

N(EaU)Xo.Rz (COHSt)an CXP['—"an/T(XQ)] , (10)
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with

Uo(M) P
rog=ran[ ], 1)
Uo(Xo)
where T(M)=1E,,(M)=1.5 MeV.

Uo(X,) is the potential energy of the a particle at
the position Xy (¥Vo=0), and E.o(M) and Uy(M) are
the initial kinetic and potential energies of the a particle
at position M. No great significance should be attached
to the particular X, dependence of Eq. (11), and any
similar function may give equally good or better agree-
ment with the experimental results. Moreover, even
if a unique X, dependence could be found for our model,
its interpretation in terms of the true dependence of
the initial kinetic energy of the o particle on its point
of emission in the scissioning nucleus is not obvious.
Yet we may conclude from our results that the average
initial kinetic energy of the a particle decreases with the
increasing initial potential energy, but that the decrease
in E,o does not fully compensate the increase in U, as
the emission point gets closer to one of the fragments.
[Because of the steepness of the function Uy(X,), the
assumption

Eyoy= Uo(Xo, Yo)‘l-Eag(Xo, Yo) =const

would correspond to a very narrow distribution N (X,)
which cannot reproduce the experimental angular
distribution N (6,).]

To a first approximation, the final angle 6, is only
dependent on the initial distance X and the mass ratio
R. We can therefore obtain the initial two-dimensional
distribution N (X,,R) from the experimentally observed,
angular distribution N(8,,R) as given by Fig. 10 of the
preceding paper.!

90,
N(Xo,R)=N (Ba,R)g—(R) ) (12)
0

where (86./9Xo) (R) is obtained from Fig. 4. Since
the effect of the variation of Epp and D on the final
distributions is similar (see Fig. 9), we arbitrarily
assume D to be fixed (D=26X10" cm) and Eg, to
have a finite initial distribution in the form of Eq. (9).
In that equation o is assumed to be 12.0 MeV, whereas
Ero is chosen to be a linear function of R.

Ero(R)=28.0+8.0R MeV. (13)
This function yields good agreement between the cal-
culated and experimental values of Er(R), the average
final kinetic energy of the fission fragments (see Fig.
7 of the preceding paper). The initial parameters ¥,
and 6, were assumed to be fixed (¥o=0 and 6y=90°)
since their variation has little effect on the final dis-
tribution. Combining Egs. (9), (10), (12), and (13),
we thus obtain a four-dimensional initial distribution
N(Xo,R,Ea0,Ero). From this distribution we obtain
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the final (“experimental”) distribution N (8,,E.,R),

a(Xo,EF[))
N(oa:Ea;R)= N(XO;R;E:(O,EFO) P) dEaO- (14)
ayloa
The Jacobian may be approximated by
0(Xo,Ere) 9Xo0Ero
o (15)

0(00,E) 90, O,

since 6, is essentially independent of Er. For a fixed
mass ratio R, the initial distribution is the product of
two independent parts

N(Xo,Ea0,Ero)r=N (Xo,Ee0)eN (Ero)r, (16)
where the two distributions on the right side of Eq.
(16) are given by Egs. (9), (10), (12), and (13). The
final distribution N (04,E.)r is given by
N(ea,Ea)R=/N(XO,EaO)RN(EFO)R
(aXo aEF()

a8, OE,

) B (17)

In Figs. 12-14, we show this function for the values
R=1.0, R=14, and R=1.6. In each figure the calcu-
lated angular distribution N(6,) is plotted for three
intervals of the kinetic energy F,. The qualitative
agreement with the experimental curves (Fig. 11 of
the preceding paper) is very good.® The a-particle
energy spectrum at a given angle (and given R) is also

T T T T T i 1 i

R=lO
161 AllSEq<ISMeV
BISSEG<IOMeV |
14y CI9MeVSEq
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(-]
T

1 t J L L 1
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6a

1 1
100° 110° 120°

F16. 12. The calculated angular distribution of the o particle
for three intervals of the a-particle kinetic energy. R=1.0.

8 The renewed rise of curve C in Fig. 14 near ,=60° is believed
to be the result of an overestimate of the a-particle recoil effect
in Fig. 10 of the preceding paper. See also Appendix II of that
paper. The same explanation also holds for the bumps in curve B
of Fig. 14 near 60° and in Fig. 12 near 120°.
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I'16. 13. The calculated angular distribution of the « particles
for three intervals of the a-particle kinetic energy. R=1.4.

expressed by Eq. (17), and the uncorrelated (“iso-
tropic”’) spectrum is obtained by integrating over
cosf,:
+1

N(8a,Eo) rd(cosy) .

-1

J\’(Ea)ze=1 (18)
2

Figure 15 shows this spectrum for R=1.4 together
with the experimental curve for all R (see also Fig. 3

T T T T T T T T
R=16
A Il SEg<15MeV
16 A B I5¢Eg<OMeV |
C I9MeV<Eq
14t 1
212t -
c
p=l
gno- -
s
<
~ 8F E
<
Z
6 N
4t i
2t 4
1 1 1 1 1

L L 1
50° 60° 70° 80° 90° 100° llIO° 120°

ba

Fic. 14. The calculated angular distribution of the & particles
for three intervals of the a-particle kinetic energy. R=1.6.
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F16. 15. The uncorrelated a-particle energy spectrum for R=1.4.
Also shown is the experimental result (see Fig. 3 of Ref. 1). The
curves are normalized to the same area.

of the preceding paper). The calculated curve has been
normalized to the same area as that of the experimental
curve. The agreement is again quite good, although the
calculated curve seems to be somewhat narrower and
shifted by approximately 1 MeV towards lower energies.
(The a-particle energy spectrum is not very R-depen-
dent and similar agreement would have been obtained
for the calculated curve integrated over all R). The
average a-particle energy as a function of 6, is given by

E.(0)r= / EoN (00,E) rdE.,. (19)

This function is shown in Fig. 16 for R=1.0, R=14,

Ea MeV
N
o
T
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14 .
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6q

F16. 16. The calculated average « -particle energy as a function
of the a-particle angle for R=1.0, R=1.4, and R=2.0. Also shown
is the experimental curve which is integrated over all values of R
(see Fig. 4 of Ref. 1).
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and R=2.0 together with the experimental curve for all
R. It is seen that although the agreement with the
experimental curve is improved as compared to Fig. 5,
the calculated curves are still a steeper function of the
angle f, than the experimental curve. A stronger X,
dependence of E, than that given by Eq. (11) would
further improve the agreement.

If we wish to integrate over all R, we must use the
four-dimensional distribution N (Xo,R,E40,Fr0). This
was done in order to obtain the a-particle angular
distribution as a function of f,:

90X 0L po
N(8a,Eo) = / ‘\’(XO,R,E‘,O,EFO)E— al‘»d[:‘aodR. (20)

The angular distribution integrated over all R is shown
in Fig. 17 for four intervals of the kinetic energy F.
The calculated curves reproduce the main feature of
the experimental results (Fig. 9 of the preceding paper),
namely, the flattening of the angular distribution as £,
increases until the curve changes from convex to
concave at £,>23 MeV.

The distribution N(X,) may be obtained by inte-
grating Eq. (12) over all values of R. The result is
shown in Fig. 18. The distribution is roughly sym-
metrical with respect to the center of the scission axis
(Xo=13X10"8 cm) and falls off to zero close to
points H and L (Xo=6X10"" cm and 20X107% cm,
respectively).

With the aid of Eq. (12) and the experimental dis-
tribution N (04,R) (Fig. 10 of the preceding paper), we
can also obtain the most probable initial distance X,
of the o particle (or, equivalently, the scission point)
from the heavy fragment as a function of R, assuming
the “standard” initial values (Table I) for D, Vy, Y,
Eqo, and 6o. The loci of the most probable values of X
as a function of R are shown in Fig. 4. It is seen that the

most  probable initial distance moves from
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F16. 17. The calculated angular distribution of the a particles
for four intervals of the a-particle kinetic energy.
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F16. 18. The calculated distribution N (X,) based on the
experimental results of Ref. 1.

Xoe~10X10"¥ cm for R=1 to X ~15X108 cm
for R=2.

We conclude that using the above assumptions
[Egs. (9)-(13)], with regard to the initial distribution
N(Xo,R,Ea0,Ere), our model reproduces the main
features of those experimental distributions which are
not the results of changes in the deformation of the
fragments. However, this should not be taken as proof
that our initial distribution is indeed an accurate
description of the true initial distribution. In particular,
the distribution N(X,) was obtained from the experi-
mental distributions N (f4,R) by a simple transforma-
tion which is only correct for our three-charge-point
model. The true distribution N(X,) quite probably
differs substantially from the one shown here.

VI. CONCLUSIONS

We have shown that with the initial distribution
N(Xo,R,Ea0,Ero) of Sec. V, the three-point-charge
model can reproduce reasonably well the experimental
angular and energy distributions of the « particles in
LRA fission. We are unable to reproduce the experi-
mental variation of the a-particle distribution as a
function of the kinetic energy of the fission fragments
(or, equivalently, their excitation energy). As discussed
in the preceding paper, the latter variations are
probably due to the change in the fragment distortion
as a function of their excitation energy, and hence
cannot be expected to be reproduced by a three-point-
charge model. A more sophisticated model for the
fissioning nucleus may not only be able to reproduce
these variations, but presumably also improve the
agreement between those calculated and experimental
results which are not related to changes in the excitation
energy.

It was shown that for the three-point-charge model,
the final angle 6, of the « particle depends, to a first
approximation, only on its point of emission, and hence
by a simple transformation of variables, one obtains
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the initial position (i.e., scission point) distribution
from the experimental angular distribution. This fact
was used in the determination of the initial distribution
in Sec. V. In the same fashion, we obtained the average
emission point X, as a function of R from the experi-
mental angular distributions for various values of R
which were shown in Fig. 10 of the preceding paper.
For the three-point-charge model X, varies from
10X107™ cm from the center of the heavy fragment
(for R=1) to 11X10~ cm from the center of the light
fragment (for R=2). While these values of X, may be
substantially different for the physical scissioning
nucleus, our calculation nevertheless supports the view
expressed in the above-mentioned paper that the
scission point moves closer fo the light fragment as R
increases, and that the variation in X, as a function
of R amounts to a substantial part of the distance
between the centers of the fragment at the moment of
scission.

We have presented additional support for the argu-
ment first given by Halpern®® that, at the moment of
scission, the fragments have already acquired a sub-
stantial part of their kinetic energy. Our calculation
shows that good agreement with the experimental
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results is obtained if we assume that the average energy
of the a particle at the moment of scission is F,¢>3
MeV, the average total kinetic energy of the two frag-
ments is Epe>~40 MeV, and the average distance
between the centers of the two fragments is D~26
X107 cm. These conclusions contradict the assump-
tion of the statistical theory of fission* that at the mo-
ment of scission the kinetic energy of the two fragments
is negligible (less than 1.0 MeV). It may of course be
argued that our conclusions pertain only to LRA fission
and that in binary fission the scission moment occurs
much earlier, when the kinetic energy of the fission
fragments is indeed still negligible. Such a situation is
unlikely in view of the great similarity of the two
processes, as seen in the preceding paper. It would
leave unexplained the fact that LRA fission is also
asymmetric.
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Energy levels up to ~4-MeV excitation energy are studied using the (d,p) and (d,f) reactions. Spectro-
scopic factors for most of the levels are obtained with the aid of distorted-wave Born-approximation
(DWBA) calculations. The £+ state is not identified in Sn'? and Sn1%, Several new /=2 states are identified
as well as several /=1 and /=3 states belonging to the 82-126-neutron shell. A renormalization of the
DWBA absolute cross sections is performed to eliminate systematic inconsistencies in the sum of U4V 2
The factors of renormalization are found to be within the well-known uncertainties of the DWBA calcula-
tions. The values of relative single-particle energies (¢j—es/2) are calculated both from the occupation
numbers (U;2 or V,2) and from the single-quasiparticle energies (£;) using pairing theory. The results are
in disagreement by as much as 1 MeV or more. From the reactions on the odd isotopes, spin and parity
information is obtained for many states in Sn!4, Sn!16, Sn!!8 and Sn1?.

I. INTRODUCTION

HE (d,p) and (d,t) “stripping” reactions have

been found to be very useful for shell-model
studies of nuclear structure. The excitation energies and
transition strengths of the nuclear levels excited in
these reactions yield direct information about the ex-
citation energies and the occupation numbers of the
single-particle shell-model states.
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The tin isotopes are particularly well suited to provide
information about the 50-82-neutron shell. In tin, the
protons form a closed shell (Z=>50), making the neutron
spectrum relatively simple. The large number of stable
isotopes also provide many targets, so trends can be
observed as the neutron shell is filling.

In a previous work,' the nuclear structure of the tin
isotopes was investigated. The work reported here
represents an improvement over that study in that: (1)
thinner targets have been obtained® which allows a

1 B. L. Cohen and R. E. Price, Phys. Rev. 121, 1441 (1961).

2 The tin isotopes as self-supporting foils were obtained from

the stable Isotopes Division, Oak Ridge National Laboratory, Oak
Ridge, Tennessee.



