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The level structure of Ca® below 6.3-MeV excitation has been studied by the Ca*(d,p)Ca® reaction.
Twenty-eight of the observed 88 transitions showed stripping angular distributions and were analyzed in
terms of the distorted-wave Born approximation to obtain I, values and spectroscopic factors. A sum-rule
analysis of the spectroscopic factors is given. A level at 1.886 MeV was excited by an /,=2 transition and is
interpreted as a 1d3,27! hole state in Ca%. This state is further discussed in terms of core excitation in Ca'’.
The observed Ca* level scheme is compared to calculated level schemes and to thelevel schemes of the Sc®

and Ti¥ isotones.

I. INTRODUCTION

HE Ca*(d,p)Ca* reaction has been investigated

at an incident deuteron energy of 7.00 MeV. The

level scheme of Ca* up to 3.4-MeV excitation has been

reported by Braams' using the same reaction; this

work was later extended by Cobb and Guthe? who

obtained angular distributions, assigned 7, values, and

extracted relative yields for these transitions. The work

in Refs. 1 and 2 was carried out on the MIT single-gap
spectrograph.?

The present measurements were made using the MIT
multiple-gap spectrograph,* which allowed the simulta-
neous measurement of the reaction protons at 23
scattering angles located every 7.5 deg from 7.5 to
172.5 deg in the laboratory system. A proton yield
several times larger than that of Ref. 2 was obtained,
thus permitting angular-distribution measurements for
the weaker transitions. Data were obtained for 88
levels below 6.3-MeV excitation. The experimental
procedures and results are discussed in Sec. II.

Stripping reactions at 7.0-MeV bombarding energy
on the other stable even isotopes of calcium, Caf0:42:46.48
have been previously reported from this laboratory®S.

* This work has been supported in part through AEC Contract
No. AT (30-1)-2098 with funds provided by the U. S. Atomic
Energy Commission.

t Now at Massachusetts Institute of Technology, Cambridge,
Massachusetts.
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These experiments and analyses were carried out in a
manner similar to those reported here. A distorted-wave
Born-approximation (DWBA) analysis is presented in
Sec. III, and a discussion of the results including a
sum-rule analysis, the effect of core excitation, and a
comparison of the observed with calculated level
schemes is given in Sec. IV. The deduced ground-state
wave functions for even-A calcium isotopes are dis-
cussed in Sec. IV E.
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F1c. 1. Angular distribution of deuterons scattered elastically
by Ca* at 7.00 MeV. The error flags indicate statistical un-
certainties. The solid curve is an optical-model fit to the data
using the deuteron parameters given in Table II.
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II. EXPERIMENTAL PROCEDURES AND RESULTS
A, Target

The target used in the present experiment was pre-
pared by vacuum evaporation of CaCOs, 98.6%, en-
riched in Ca*, onto a carbon and Formvar foil approxi-
mately 15 ug/cm? thick. The calcium target had a
thickness of 15.3 ug/cm?. The enriched material was
obtained from the Stable Isotopes Division, Oak Ridge
National Laboratory, and the isotopic abundances were
Ca*, 98.6%; Ca®, 0.08%,; and Ca®, 1.269,.

B. Elastic Scattering

Elastic scattering of deuterons from Ca* was observed
at 7.00- and 3.0-MeV bombarding energy. The 3.0-MeV
scattering was used to establish an absolute cross-

Ec.m. (degrees)

section scale, assuming Rutherford scattering. The
7.00-MeV results, together with an optical-model cal-
culated curve, are shown in Fig. 1. The error on the
absolute cross-section scale is estimated to be =20%,.
Relative errors are represented by error flags on the
data points.

C. The (d,p) Reactions

The reaction protons were recorded at 23 angles in
the MIT multiple-gap spectrograph,? in 50-u Eastman
Kodak NTA nuclear emulsions that were covered with
a layer of aluminum foil sufficiently thick to stop the
elastically scattered deuterons. Exposures of 5000 and
500 uC were taken, and the proton spectrum obtained
at 67.5 deg is shown in Fig. 2. The energy resolution
was 12keV. The proton groups corresponding to a
residual mass of 45 were identified from their kinematic
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TaBLE 1. Summary of results for the Ca*(d,p)Ca reaction for Eq="7.0 MeV.

(da/dﬂ)muxc
o Eb (mb/sr)
Level (MeV) (MeV) c.m. In QJ;+1)Sy, ¢ Jrd
0 5.193 0 1.97 3 3.36 o
1 5.017 0.176 0.04 5
2 3.760 1.433 3.36 1 0.47 23
3 3.635 1.558 0.02
4 3.609 1.584 0.015
5 3.307 1.886 0.17 2 0.15 2+
6 3.280 1.904 20.6 1 2.56 3 ()
7 3.220 1.973 0.087
8 2.042 2.251 3.32 1 0.36 L@
9 2.835 2.358 0.04
10 2.797 2.396 3.60 0 0.11 i
11 2.594 2.599 0.02
12 2.510 2.683 0.05
13 2.427 2.766 0.04
14 2.346 2.847 4.02 1 0.46 35,6)
15 2.240 2.953 0.05
16 2.220 2.973 0.37
17 2.158 3.035 0.02
18 2.042 3.151 0.02
19 1.946 3.247 1.83 1 0.12 53
20 1.915 3.278 0.02
21 1.894 3.299 0.1
22 1.871 3.322 0.25
23 1.771 3.442 6.75 1 0.79 56
24 1.730 3.463 0.018
25 1.480 3.713 0.03
26 1.440 3.753 0.040
27 1.407 3.786 1.18 1) 0.16 xS
28 1.348 3.845 2.23 1 0.26 23
29 1.200 3.993 0.40 3 0.65 &~
30 1.145 4.048 0.040
31 1.078 4.115 0.04
32 1.016 4.177 0.12
33 0.935 4.258 0.12
34 0.907 4,286 0.28
35 0.881 4.312 0.37 (1) 0.03 3,3
36 0.805 4.388 0.2
37 0.772 4.421 0.25
38 0.729 4.464 1.15 1 0.09 3,5
39 0.682 4.511 0.91 1 0.05 3,3
40 0.634 4.559 0.15
41 0.571 4.622 4.95 1 0.45 3,3~
42 0.498 4.695 0.25
43 0.443 4.750} 211
44 0.431 4.762 ’
45 0.383 4.810 1.25 1 0.11 (3,3~
46 0.356 4.837 1.42 2 0.20 s+
47 0.308 4.885 0.12
48 0.274 4919 2.88 0 0.05 3t
49 0.212 4,981 0.25
50 0.188 5.005 5.34 1 0.50 3,3~
51 0.146 5.047 2.1
52 0.114 5.079 0.02
53 0.065 5.128 0.74
54 0.029 5.164 0.13
55 —0.008 5.201 1,14
56 —-0.050 5.243 0.84 1 0.07 3,3
57 —0.092 5.285 0.20
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TABLE I (continued).

(do/dQ) max®
Q= EP (mb/sr)
Level (MeV) (MeV) c.m. In (2J71)S;, Jmd
58 —0.116 5.309 0.15
59 —0.131 5.324 0.42 2 0.07 s+
60 —0.159 5.352 1.40
61 ~0.197 5.390 0.25 @) 0.69 e
62 —0.224 5.417 0.46
63 —0.247 5.440 0.44
64 —0.286 5.479 1.49
65 —0.328 5.521 0.20
66 —0.358 5.551 0.40
67 —0.376 5.569 0.36
68 —0.405 5.598 0.70
69 —0.436 5.629 1.16
70 —0.494 5.687 0.6
71 —0.523 5.716 0.55
72 —0.549 5.742 0.3 2 0.05 s+
73 —0.571 5.764 0.35 3 0.48 5=
74 —0.599 5.792 0.07
75 —0.625 5.818 0.83 1 0.07 @3-
76 —0.653 5.846 0.20
7 —0.699 5.892 0.28 2 0.04 st
78 —0.722 5.915 0.50
79 —0.755 5.948 0.24
80 —0.774 5.967 0.30
81 —0.797 5.990 0.45 2 0.07 2+
82 —0.825 6.018 0.15
83 —0.858 6.051 0.2
84 —0.884 6.077 0.3
85 —0.913 6.106 0.50
86 —1.041 6.234 0.5
87 —1.108 6.301 0.6

a The estimated uncertainty is 10 keV for levels No. 0 through 23; 12 keV for the other levels.
b The estimated uncertainty is 4 keV for levels No. 1 and 2; 10 keV for levels No. 3; 6 keV for levels No. 4 through 23; 10 keV for the other levels.
¢ The estimated error in the absolute measured cross sections is £20%. This uncertainity is also assigned to the strengths. For the I» =0 cases, the cross

section at a laboratory angle of 7.5 deg is given.

d The preferred spin assignments are based on shell-model systematics. The I» =1 preferences based on tentative *‘dip” assignments are discussed in the
text. Levels No. 5 and 10 are assigned 1ds/2 and 2s1/2, respectively. Other l» =2 and 0 transitions are assigned as 2ds/2 and 3s1/2.

energy shift with angle. Up to an excitation energy of
6.1 MeV, 86 transitions were observed. Above level
No. 85, only two relatively strong groups were analyzed.

Table I gives the Q values and excitation energies
for the levels observed in Ca* up to an excitation
energy of 6.3 MeV. Because of uncertainties in the
calibration of the multiple-gap spectrograph, Q values
for those levels in Ca* previously reported are taken
from Refs. 1 and 2, recalculated using 5.3042 MeV for
the energy of Po?? « particles. The Q values for levels
previously unreported were determined either by inter-
polation using the known states from Ref. 1 or by
reference to known contaminant Q values. The angular
distributions are shown in Figs. 3 through 7, in com-
parison with DWBA predictions.

We have identified three levels at 1.584-, 1.886-, and
3.278-MeV excitation energy which were not seen in
the earlier (d,p) works of Refs. 1 and 2. The 1.886-MeV
level lies 18 keV below the strongest /,=1 transition,

This state has recently been observed by Ames ef al.?
from the study of y rays following the 8~ decay of K.
The decay data suggest that this level corresponds to
a §* hole state, in agreement with the present stripping
results. The analysis of this level in terms of core
excitation is given in Sec. IV D. Braams! also assigned
tentative levels at 1.036- and 1.475-MeV excitation
energy in Ca®, These levels were not observed in the
present experiment.

III. OPTICAL-MODEL AND DWBA ANALYSIS
A. Stripping Analysis

The experimental 7-MeV elastic deuteron scattering
was analyzed by using the optical-model search code
ABACUS,'® employing a least-squares criterion. The

®0. Ames, G. Garrett, and P. J. Vajk, Bull. Am. Phys. Soc.
11, 393 (1966).

19 E. H. Auerbach, Brookhaven National Laboratory Report No,
BNL 6562 (aBAcus-2), 1962 (unpublished),
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parameter search was started from the parameter sets
used for the (d,p) reactions on Ca® and Ca® at 7.00
MeV.57 The resulting best fit is shown in Fig. 1, and
the corresponding parameters are given in Table II.
The proton parameters were obtained from the work
of Perey.!

Reaction cross sections were calculated with the code
JULIE, originated by Bassel e al.? The radial integrals
were calculated in the zero-range approximation with
no lower cutoff. Figures 3 through 7 show the predicted
distributions in comparison with the experimental data.
The values of the orbital angular momentum of the
captured neutron, I,, were assigned by comparing the
predicted and observed angular-distribution shapes.

11 F, G. Perey, Phys. Rev. 131, 745 (1963).

2 R, H. Bassel, D. M. Drisko, and G. R. Satchler, Oak Ridge
National Laboratory Report No. ORNL 3240, 1963 (unpublished) ;
G. R. Satchler, Nucl. Phys. 55, 1 (1964).

1 i 1 1 !
30 60 90 120 150

L1 1}
30 60 90 120 150

The transition strengths (2J;41)S,,;, given in Table I,
were obtained by matching the experimental differential
cross sections, summed over angles, to the calculated
cross-section sums.

IV. DISCUSSION
A. Strength Function and Sum-Rule Analysis

The level structure of Ca* is presented in Fig. 8 in
the form of a strength function. The /,=3 strength is
divided between the ground-state 1f2 and two states
at 3.993 and 5.764 MeV, which are presumably 1fs..
A similar situation has been observed in Ca*, Ca*, and
Ca¥ (Refs. 5-7). The excitation energy and the non-
stripping character of the 0.176-MeV level are con-
sistent with a $~ assignment.!* The /,=1 strength is

13T, A. Belote, W. E. Dorenbusch, Ole Hansen, and J. Rapa-
port, Nucl. Phys. 73, 321 (1965).
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distributed over the region between 1.4 and 6.0 MeV
with no sharp division between 2p3s and 2py» states.
The preferred spin assignments given in Table I were
based on the presence (2py2) or absence (2ps2) of a
back-angle “dip” in the measured distribution.* How-
ever, at 7.0 MeV, the effect is weak, and the assign-

8c,m, (degrees)

ments are only tentative. The angular distribution of
the 2.251-MeV state (state No. 8) shows a dip near
100 deg which is also present in the angular distribution
of states No. 19 and 23. These are indicated by arrows
in Figs. 3 and 4. The angular distributions of states
No. 2, 6, 27, and 28 showed no such dips. No spin

TasiE II. Optical-model parameters.?

14 Wo o a 70! a Yoc
Particle (MeV) (MeV) (F) (F) (1) (F) (0}
d 114.1 12.8 1.0 0.764 1.44 0.672 1.3
) 52 10.5 1.25 0.65 1.25 0.47 1.25
n b 1.25 0.65

s The optical potential used was of the form: Vopt = — V (2 +1) "1 +4iWp(d/dx’) (€*’ +1) 1+ Ve(r,7e), With x = (¥ —#oA13) fa,x’ = (r —ro’AM8) /@’ ,¥e =70c A3
where V¢ is the Coulomb potential from a homogeneously charged sphere of radius e.
b Adjusted to give the transferred neutron a binding energy of Q(d,p) +2.23 MeV.

“ 1. L. Lee, Jr. and J. P. Schiffer, Phys. Rev. 136, B405 (1964).
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assignments have been made to the higher-lying /,=1
levels on this basis. Level No. 14 has been tentatively
assigned 2pss on the basis of its peculiar back-angle
behavior which is somewhat similar to the back-angle
behavior of the 3~ E,=0.594-MeV state in Ca®® (see
Ref. 6).

One 7,=0 and one /,=2 transition appear below
2.5 MeV, and a single /,=4 transition was observed
at 5.390 MeV. The angular distribution for the doublet

TasiLE III. Summed strengths.

(states No. 43 and 44) at 4.75 MeV can be reasonably
well fitted by a combination of /,=1 and /,=2. How-
ever, transition strengths were not extracted for this
doublet.

The summed strengths of these transitions are pre-
sented in Table III and are compared with the shell-
model predictions assuming Ca* is a closed Ca* core
with four additional 1f7/2 neutrons.!®> The low-lying
1,=0 and /,=2 transitions are assigned to 25y, and

Orbit 25172 1ds/2 1f7/2 2p3/2 2?1/2 2p 152 1ges2 st/z 35172
Expt. 0.11 0.15 3.36 3.91= 2.72b 6.63¢ 1.13 0.69 0.43 0.05
Theory 0 0 4 4 2 6 6 10 6 2

a Levels No. 2, 6, 14, 27, 28. b All other I, =1 transitions. ¢ All I, =1 transitions.

15 M. H. Macfarlane and J. B. French, Rev. Mod. Phys. 32 567 (1960).
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1ds: orbitals, respectively. The observation of 1d and
2s transitions would indicate that these shells are not
completely filled in the Ca* ground state.

The unperturbed single-particle energies E';; have
been calculated using the energy-weighted sum rule of
Yoshidaé:

B3 8% =22 E%, 5%,

where £%, jand S%, ;are the measured excitation energies
and spectroscopic factors. The results are given in
Table IV and are compared with the unperturbed
single-particle energies in Ca*, Ca*, and Ca¥ from
Refs. 5-7.

B. Comparison between Observed and Calculated
Level Structures of Ca?

Figure 9 shows the observed Ca* level scheme below
2.5-MeV excitation, in comparison with the results of
shell-model calculations of Raz and Soga,'” Engeland
and Osnes,'® and Federman and Talmi.’® These cal-
culations were carried out using effective interactions
for neutrons in the 1f75 and 2p3 orbits outside an inert
Ca? core. All three calculations reproduce the position
of the first excited §~ state and predict §~ states near
1.4 and 2.0 MeV. No level near the 3~ state at 0.7 MeV,
predicted by Raz and Soga, was observed. Engeland
and Osnes predict the lowest §— and 11/2- states at
FE,=151 and E,=1.74 MeV, respectively; two non-

16 S, Yoshida, Nucl. Phys. 38, 380 (1962).

7B. J. Raz and M. Soga, Phys. Rev. Letters 15, 924 (1965).

18T, Engeland and E. Osnes, Phys. Letters 20, 424 (1966);
E. Osnes, thesis, University of Oslo, Norway, 1966 (unpublished).

9P, Federman and I. Talmi, Phys. Letters 22, 469 (1966).
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stripping states were seen at 1.558 and 1.584 MeV that
may correspond to these states. Federman and Talmi'®
predict three $— levels at 1.41, 1.93, and 2.87 MeV.
These agree remarkably well with observed I,=1
transitions to states at 1.433, 1.904, and 2.847 MeV.

The observed 7,=1 strengths to the §~ states at
E;=1.433 and 1.904 MeV are in fair agreement with
the strengths calculated from the wave functions given
in Ref. 18. The observed strengths are 0.47 and 2.56,
and the calculated strengths are 0.43 and 3.52.

If the procedure of Bansal and French® is used, a
1d3» hole state in Ca* near 1.0-MeV excitation is
expected. The present work, together with the K*
beta-decay study,® indicates a §+ state at 1.886 MeV.
This state is further discussed in Sec. IV E.

C. The N=25 Isotones: Ca%, Sc*, and Ti¥

The low-lying, negative-parity states in Ca* are
characterized mainly by the neutron configuration
1f7/2° relative to the Ca% core. Besides Ca*®, there are
two other nuclei, Sc*® and Ti*, which can be excited by
means of (d,p) stripping reactions and which also have
five neutrons outside the V=20 core. In Sc* the five
neutrons are coupled to one proton in the 1fys shell,
and in Ti*" the five neutrons are coupled to two protons
in the 1fy shell. It is interesting to compare the ex-
perimental level schemes of these isotones.

The Ca*(d,p)Ca* ground-state transition carries the
full 1f7/» strength, whereas in the Sc*(d,p)Sc* reaction,
the 1f7s strength is distributed over eight transitions
below 1.2-MeV excitation, in agreement with the simple

2 R. K. Bansal and J. B. French, Phys. Letters 11, 145 (1964).
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TasBLE IV. Unperturbed single-particle excitation energies (MeV).

ors

Configuration 20Cagila 20Cags 3P 20Cagsth 20Cags*7e
Lfoe 0 0 0 0
2p3s2 2.07 2.194-0.09 2.16=0.25 2.1540.10
2p172 4.13 4.2340.20 3.98+0.10 4.0240.07
1fss2 5.50 >4.5 >4.7 255
2dss >6.8 >4.3 >53 >6.0
3512 >6.8 >4.3 >4.9 >6.0

2 Reference 5. b Reference 6. ° Reference 7.

shell-model prediction of eight states arising from the
coupling of a 1fy2 proton to a 1fy2 neutron. The first
excited state in Ti¥, with /,=3 and the full 1f7,
strength, probably has the same neutron configuration
as the Ca® ground state.

Below 6.0-MeV excitation energy, 16 /,=1 stripping
states were observed, both in Ca% and in Ti*’; whereas
64 such states were found in Sc*. This would indicate
that, both in Ca* and in Ti¥, the /,=1 states have the
same neutron configuration and that the two 1fy.
protons in Ti*" are coupled to J=0%. The total number
of states in this excitation range, including the non-
stripping transitions, in Ca%, Sc*, and Ti" is 82, 168,
and 107, respectively. Below 2.0-MeV excitation energy,

In=0 In=1 /=2 /n=3

—
()
®
— (@

-

10
W0l B 1 10
B -]
(2d+1)s

F1c. 8. Strength function for Ca®, An excitation-energy scale
is given on the left. The horizontal lines in the first column
represent the observed levels with level numbers given to their
right. The values of (2J;+1)S;,; from Table I are plotted on a
logarithmic scale in the last four columns. Only two proton
groups above level No. 85 were analyzed.

the number of observed excited states is 7, 28, and 7,
which would indicate that those states in Ti¥ and in
Ca%® have similar neutron configurations. In the ex-
citation region between 2.0 and 6.0 MeV, there are
approximately 259 more states in Ti# than in Ca®,
indicating that some of the Ti* levels arise from excited
proton configurations.

D. The 1.886-MeV State and the Ca?* Ground State

Level No. 5 at 1.886-MeV excitation has previously
been interpreted as a §* hole state.? The (d,p) transition
to this state has an angular distribution (see Fig. 3)
characterized by /,=2, in agreement with this assign-
ment. In accordance with the analyses of the 1dsp
hole states, previously observed®7:2! in Ca*!, Ca®, and
Ca*, we write the wave function for level No. 5 as

[Cats(5)Jr=4+; T'=5,T.=%)
= (\/6/T)V*{1ds;s™; §,— 53 {1/72%; 3,3}
— W1/ DV 1dys™; 5,53 {1725 3,2},

Ex(MeV)
7 s
[ Y -
=== s :l//zz*_ — 72
ey = il _ .
\g/pm e 32 B
—
201 - sz
[ (3’2 W2y ===y e 2"
3/2* ~
s Wz
4 = - g T
— 32 T MW e
—— 32" —
10 72
o/2"
5/27 s/ 52" [z
00— —— 2 72" e 72"
™ d.p)Ca® RAZ & ENGELAND FEDERMAN
) SOGA & OSNES & TALMI

F16. 9. Low-lying part of the Ca® level scheme. The observed
levels in Ca% below 2.5-MeV excitation are shown, together with
shell-model calculations.

2T, W, Conlon, B. F. Bayman, and E. Kashy, Phys. Rev. 144,
941 (1966).
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and the ground state of Ca* as

[Ca*(0)0F; 2,2)=a{1fxs*; 2,2}
+o[{1dss72; T=1}{1fys%; T=3} Jr=s.

The strength of the transition to level No. 5, given in
Table II, yields
5*=0.08£0.02.

The strength of the ground-state transition from
Table IT yields
a?=0.844-0.21,

where we have neglected admixtures of other wave-
function components into the 1f;2* Ca* ground state.

E. Ground-State Wave Functions for
Even Calcium Isotopes

Figure 10 presents the results of the analyses of
(d,p) transitions, carried out as indicated in Sec. IV D,
from even calcium isotopes leading to 4+ states in the
final nucleus. In the calculations, it is assumed that
the ground-state wave function of the even calcium
target is mainly of the form

Catottn= | fy )b | (1dasH 1f ™))

It is observed that the amounts of 1dss~% core ex-
citation decrease as the 1f7/2 shell is filled ; the percent-
ages of 1dss~% admixture were found to be 60, 30, 8,
and 4 in going from Ca® to Ca®. No evidence for
1ds/5~2 core excitation in Ca*® was observed in the (d,p)
experiment,® although Erskine ef al.?? report an /,=2
transition in the Ca*(He3,d)Sc* reaction which they
interpret as arising from 1ds;s proton core excitation.
Recently, Rost?¥:2¢ has done coupled-channel calcula-
tions using a deformed-well radial wave function for

2 J, R. Erskine, A. Marinov, and J. R. Schiffer, Phys. Rev.
142, 633 (1966).

2 E, Rost, Phys. Letters 21, 87 (1966).

% E. Rost, Phys. Rev. 154, 994 (1967).
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Fic. 10. Wave-function components for even-4 calcium iso-
topes. The values of b are extracted as in Sec. IV D. The values of
a given here are determined from a2+b2=1.

stripping and pickup reactions. He finds a value of
S=0.25 for the transition to the 2.017-MeV level in
Ca*', This is in good agreement with the value® S=0.2
extracted using spherical-well radial wave functions.
Therefore, it is expected that the spectroscopic factors
for hole-state transitions in the other calcium isotopes
are not in large error.
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