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In this paper we consider the problem of atomic collisions with negative ions and give special attention to
the rearrangement process of associative electron detachment. After the various possible processes, the
interaction potentials, and the related problems of potential curves are described physically, a theoretical
formulation of the problem is presented, ranging from general formalism to explicit formulas for the re-
action cross section and the rate coeAicient. In the general formalism, transition matrices are derived for
direct and resonance reactions as well as for potential and resonance scatterings. The process of associative
detachment is then treated explicitly, using these derived expressions. It is shown that because of the con-
Qguration interaction of the electronic motion with continua, the nuclear motion is taking place in a complex
potential. The propagation of a nuclear state in such a complex potential is treated in some detail. Various
implications of the derived theoretical results are discussed in connection with experimental observations.

I. I5'TRODUCTION

'HE problem of atomic collisions with negative ions
is of interest both from the standpoint of basic

theory and from the standpoint of practical application.
Since in general negative ions' have at the most a few
bound states, and since the corresponding electron
affinities are usually small, one therefore expects that
electrons may easily be detached from the ions upon
collisions with other atoms or molecules at energies
greater than the electron amenities. ' ' The measured rate
coeKcients indicate recently that, at energies lower than
the corresponding electron amenities, the detachment
rates are also large and for some cases they may even
be larger than those measured at higher energies. 4 It
is therefore interesting to investigate the detailed de-

tachment mechanism at such low energies. From the
energy considerations, it is obvious that electron de-

tachment at such low energies may take place by the
formation of stable neutral molecules; this is known as
associative detachment. If the rate coeS.cients for such
processes are indeed very large, the possibility that free

oxygen atoms in the ionosphere may release electrons
which are bound to negative ions would become signifi-

cant. This then makes the associative-detachment
process a]so of great practical interest.

* Work supported in part by the Advanced Research Projects
Agency (Project DEFENDER) and was monitored by the U. S.
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sponsored by the Defense Atomic Support Agency, Boulder,
Colorado, June, 1966.
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Although negative ions in general do not have many
bound states, they usually have a great number of
auto-ionization states with a variety of widths. ' Such
auto-ionization states play an essential role in yielding
the large detachment rate at low energies, since when
atom A and ion 8 slowly come close to each other,
their electronic states may gradually merge into auto-
ionization states of the ion AI3 . These auto-ionization
states may then decay into some states of AB lying
below via auto-ionization, thus stabilizing the process
of associative detachment. Clearly, this process depends
strongly on the magnitude of the auto-ionization
width.

Experimental studies of associative detachment' usu-
ally involve the measurement of rate coeKcients which,
though of great importance to the kinetics of the prob-
lem, yields little information concerning the detailed
mechanism of the process. Detailed cross-section mea-
surements for the reverse process, dissociative attach-
ment, have been carried out for a number of gases. ~'
Relevant information can then be deduced from these
measurements with the help of the available theories for
dissociative attachment. '~" There exist, however, un-
certainties concerning the statistical factors in the in-
formation deduced. It is therefore desirable to study the
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problem directly. The present paper presents such a
theoretical investigation of the problem.

The plan of the paper is as follows. In Sec. II, a
general discussion of various physical aspects of atomic
collisions with negative ions is given. Attention is
drawn to some ambiguities in interpreting potential
curves for auto-ionization states of the negative mo-
lecular ions. An alternative model which removes these
ambiguities is proposed for the process of dissociative
attachment of electrons by hydrogen molecules near the
threshold. In Sec. III, a general theoretical treatment
of the problem of atomic collision with negative ions is
presented. In this treatment, we have utilized projection-
operator techniques. (The appropriate projection opera-
tors are derived in Sec. V.) Transition matrices are
derived for multichannel direct and resonance reactions,
as well as for potential and resonance scatterings. The
processes of associative detachment and electron trans-
fer are then treated explicitly in Sec. IV as both direct
and resonance reactions. Various implications of the
derived theoretical results are discussed in connection
with experimental observations. Finally in Sec. V, the
explicit projection operators are constructed for the
system of interest.

II. GENERAL DISCUSSION

Let us consider a system in which an atom A slowly
approaches a negative ion 8 in their ground states.
Their averaged trajectory is dictated by an interaction
potential lying asymptotically below the corresponding
asymptotic potential of AB (see Fig. 1). As they ap-
proach each other, their electronic states gradually
merge into that of the negative molecular ion AB .
The strong local electric field created along the inter-
nuclear axis will then remove the degeneracy and cause
the interaction potential to split according to the net
resultant momentum along the internuclear axis. Several
typical situations may arise. dependeing on the initial
angular momenta and the spin symmetries of A and
8,"and on the electron amenity of the molecule AB.

When the molecule AB has an electron amenity in its
ground state [Fig. 1(a)], there will always be a possi-
bility that the system will merge into the ground
electronic state of AB and that the nuclei will then
oscillate in the 6eld provided by this state. Unless the
system AB is stabilized by a third body (or by radia-
tion), it will dissociate adiabatically so that the atom
A and ion 8 will move apart in the time-reversed sense.
Associative detachment,

A+B -+AB+e,

may occur in this case only when the colliding energy
coincides with a nuclear-energy state of AB so that a
transition may take place without a large alternation

& E. P. Wigner and E. Witmer, Z. Physik 51, 859 {1928).
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of the positions and momenta of the nuclei. A radiation-
less transition from the continuum nuclear state of
AB to the bound nuclear state of AB may then cause
the ejection of the outer electron. This, however, is not
a very probable mechanism.

Now if the electronic states of colliding system (A,B-)
merge into some excited states of AB [Fig. 1(a)] or if
the molecule AI3 does not have an electron amenity in
the ground state [Fig. 1(b)], the situation becomes
more complicated. The interaction potential of A and
8 must in this case intersect with the potential curve
of AB at some distance of approach say R„ there are
usually several such intersection distances arising from
the splitting of the interaction potential. Clearly, after
A and 8 approach each other more closely than R„
auto-ionization may occur, since the system lies above
the ground state of AB and is involved therefore in
configuration interaction with the continuum" AB+e.
This then gives rise to a complex potential for the inter-
action of A and 8 at distances smaller than R.. The
real parts of the interaction potential are shown in
Fig. 1 by the dashed curves. The imaginary parts of the
interaction potential which account for the emission
and absorption interactions come from the nonstation-
ary nature of the electronic motion. These imaginary
potentials are quantitatively the half-widths of the
electronic states of AB and give the probability of
auto-ionization. Thus, as soon as the colliding system
is closer than R., the process of associative detachment
may occur due to the imaginary parts of the potential
which allow the system to eject the electron and
hence to decay back into a lower molecular state of
A J3.

In general the situation is however not so clear cut,
since there are a number of reaction paths available to

14 U. Pano, Phys. Rev. 124, 1866 (1961); Nuovo Cimento 12,
156 (1935);0. K. Rice, J. Chem. Phys. 1, 375 (1933).
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FIG. 1. Illustration of the potential curve for molecule AB with
a continuum electron and of the interaction potential between
atom A and negative ion B . The dashed curves represent the
real parts of the interaction potential.
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the reaction system, namely

A+8 +A—+8
—+A +8,
~ AB+e,

(2.2)

(2.3)

(2.4)

(2.5)

0,=(2n-/no) (ne'/lJ, )", (2 7)

where vo is the re1ative velocity and p, is the reduced
mass of the colliding system A and 8 . Crudely, we

may picture the cross section 0. for associative detach-
ment is given by the cross section 0., for orbiting colli-

sions multiplied by the probability p that the system
auto-ionizes, i.e.,

o'=0'cp ~ (2.8)

Obviously this model is not realistic, especially at higher
energies. As well, this model neglects the effects of the
short-range repulsive potential. Nevertheless it is of

"E. %'. McDaniel, Collision Phenomenain Ionized Gases (John
Wiley R Sons, Inc. , New York, 1964).

Each reaction path, when energetically becomes ac-
cessible, may be represented by a set of open channels.
IIence, the set of channels corresponding to Eqs. (2.2)
and (2.3) lead, respectively, to the scattering and the
electron-transfer processes. The only set of channels
which leads to the process of associative detachment
is the set corresponding to Eq. (2.4). Equation (2.5)
refers to other processes such as collisional ionization
and detachment which are of importance at higher
energies. Also possible are processes such as associative
ionization and detachment when the ionization poten-
tial of A is smaller than the electron amenity of B.Thus
to be rigorous we must treat all these competitive
processes when they become energetically allowed so
that the coupling effects may be properly accounted for.
The relative importance of the coupling of other proc-
esses to associative detachment varies considerably. For
instance, the coupling effects due to the electron-transfer
channels may become very important in the case of
A=8, but, on the other hand, may be neglected for
cases in which the differences in electron afBnities be-
tween A and 8 are large and the potential curves are
far apart.

Since, in the colliding system, A and 8 approach
each other slowly (at room temperature the relative
velocity r, is approximately equal to 10' cm/sec), the
leading interaction is then the inverse-fourth-power
polarization potential

U(E)= ne'/2R', — (2.6)

where n is the electric polarizability of A. It is well

known that such a polarization potential is capable of
giving an orbiting collision in which A and 8 orbit
about each other. "Classically, the cross section for such

collisions is given by

interest to estimate roughly the magnitude of the re-
action cross section for associative detachment by using
this model.

If we take the electric polarizability n and the re-
duced mass to be of the order of 10uo' and 10 proton
masses, respectively, we obtain for 0, at thermal
velocity a value which is of the order of 10 "cm' from
Eq. (2.7). Hence, the cross section for associative de-
tachment can be easily as large as the Bohr orbit mao'

if we assume that the probability for auto-ionization of
AB before it dissociates is of the order of 10 ', a
moderate estimation. It need hardly be stressed that
little significance should be attached to these numbers,
since they are given here merely to demonstrate that
in certain, but by no means exceptiona], cases, the cross
section for associative detachment can be large. A
quantum-mechanical formulation of the problem is
given in the next section.

Before going into the discussion of shape and crossing
effects of potential curves to the reaction system, we
emphasize that what we mean by potential curves is
merely the internuclear separation dependence of the
electronic energy of the Born-Oppenheimer electronic
states. " This should not be confused with the inter-
action potential of the reaction system, since the former
is defined only for given stationary electronic states.
However, if splitting of the interaction potential due to
the local electric 6eld along the internuclear axis is
sufFiciently large and if we assume that the reactions
are localized, in regions of internuclear separation of the
molecular dimension, we may approximate the inter-
action potential by an appropriate potential curve
which lies within the energy region of our consideration.
(This is related to the adiabatic case.) If there are more
than one such potential curves lying close to each other
within the energy of our consideration, the interaction
potential should then be approximated by an appro-
priate combination of all these potential curves. (This
is related to the nonadiabatic case. ) Strictly speaking,
the Born-Oppenheimer electronic states of AB are not
stationary in most cases, since they may auto-ionize.
Thus only in the quasistationary sense is it meaningful
to speak of potential curves for such auto-ionization
states.

Returning now to the interaction potential, we ex-
amine first the effect of the shape of potential curves
for states of AB on the profile of the cross section for
associative detachment. Two typical cases may arise
depending on whether the real parts of the complex
potential of AB lying within the binding region of AB
are repulsive or attractive (see Fig. 2). For the qualita-
tive discussions here, we neglect the effect of imaginary
parts of the potential and assume that the process is
adiabatic. In the repulsive case the picture is very clear
[Fig. 2(a)g, since the usual nuclear overlap integral
arising from the Franck-Condon principle can be ap-

"M.Born and J.R. OppenheiIrIer, Ann. Physik S4, 457 (f927).
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FIG. 2. Dependence of the transi-
tion probability profile on the relations
between the shape of interaction po-
tentials according to the Franck-
Condon principle.
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proximated by the reflection method. '~ This implies
that the cross section would exhibit a peak with a
width equivalent to the Franck-Condon width. In the
attractive case the situation is different, since the lower
portion (in the energy sense) of the reflected probability
is absorbed by the quasistationary bound states of AB
/Fig. 2(b)j. This will then result in a sharp rise of the
cross section at low energies, indicating that at zero
energy the cross section for associative detachment
may become infinite as predicted by the classical model
LEq. (2.8)j. Theoretical studies concerning the be-
havior of the cross section at zero energy are desirable.

We now examine in some detail the crossing of poten-
tial curves between states of AB and AB+e. It is well
known that two states with nearly the same energy in a
certain approximate representation may become inter-
acting with one another when the neglected small per-
turbation is explicitly considered in a higher approxima-
tion. This interaction will cause hybridization between
the two states, and as a result the higher state will be
displaced upwards and the lower state downwards (i.e.,
repelling each other) in the energy scale. The same
phenomenon occurs for two potential curves, since they
are actually stationary electronic states at various inter-
nuclear distances. Hence, two potential curves which at
some nuclear distance have nearly the same energy in a
certain approximation may in a higher approximation
repel each other because of the additional perturbation
considered in the higher approximation. This would be
particularly so if the nuclei could be clamped at rest
at the relevant internuclear distances.

However, in an actual case, the nuclei are moving
relative to each other, so that the effect due to the

"K.U. london, Phys. Rev. 32, 858 (1928); J. G. Winans and
E. C. G. Stueckelberg, Proc. Natl. Acad. Sci. U. S. 14, 867 (1928).

additional perturbation may be weakened. Clearly, if
the nuclei approach each other very rapidly in one of
the states, they would not have sufficient time at the
relevant internuclear distance to experience additional
perturbation and to interact with the other state. The
two potential curves then will not repel each other, and
a diabatic transition may occur since in this case the
potential curves effectively cross. Only when the nuclei
approach each other very slowly does the internuclear
distance change infinitesimally. Here the two potential
curves may repel each other, and an adiabatic transi-
tion may take place. The latter case is known as the
von Neumann and signer noncrossing rules" for elec-
tronic states of the same species.

It should be emphasized that, although the concept
of potential curves is extremely useful (particularly in
the case of diatomic molecules), potential curves are
nevertheless theoretical intermediates which are mean-
ingful only when the nuclei motion can be considered as
taking place in the average field produced by the
electrons at various internuclear distances. For the
present case this then depends critically on the auto-
ionization width of the compound state AB, since
here the electronic state is only quasistationary (it is
really a wave pocket). Now if the width l' is sufficiently
wide so that a changeover from AB to the state
AB+e will take place within a time r=h/l' which is
shorter than the time for a vibration of the nuclei, it is
then hardly justifiable to consider the vibrational mo-
tion of the nuclei as taking place in the averaged fieM.
produced by the electrons in the AB state at various
internuclear distances. In such a case the usefulness of
the concept of potential curve for AB state is dubious.

(1929).
"J. von Neurnann and E. P. Wiooner, Z. Physik 30 467O
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ation model for dis-
sociative attachment
in electron scattering
by hydrogen mole-
cules involving the
lowest 'Z + state of
H2 .
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This does not imply that one cannot define an inter-
action potential depending only on the nuclear co-
ordinates but rather that the potential so defined would
not reproduce the actual nuclear motion satisfactorily.

The above remarks are relevant to the lowest 'Z +
resonant state of H2 which has a calculated width of
about 4.5 eV with a minimum energy of about 1.75 eV
lying above the ground 'Z,+ state of H2."These results
seem to suggest that the concept of potential curve for
the lowest 'Z„+ state is not very useful except at large
internuclear distances where the system becomes more
stable against auto-ionization. It might even be argued,
assuming the calculated magnitude of width is correct, '0

that since the 'Z + state of H2 has a width of 4.5 eV
and will decay in less than 10 " sec, the changeover
from the 'Z + state to the Hs('Z, +)+e state becomes so
rapid that the constituent nuclei will hardly even move.
Hence, the averaged field in which the nuclear motion
actually takes place is more realistically represented by
the potential curve generated by the Hs('Z, +)+e state
rather than that generated by the 2Z„+ state of H2 .

The formation and decay of the 'Z„+ H2 state merely
act as a distortion so that nuclear transitions may be
induced in the averaged Geld of Hs('Z, +)+e state.
Dissociative attachment may then occur, in the presence
of a visiting electron, by nuclear excitation to states
which lie near and above the threshold" of about 3.73
eV and accompanied by predissociation" of these states
due to their interaction with the continuum nuclear
state of H+H (see I'ig. 3). Since the cross section for
vibrational excitation and dissociative attachment has

» J. N. Sardsley, A. Herzenberg, and F. Mandl, Abstract of the
Fourth International Conference on the Physics of Electronic and
Atomic Collisions, Quebec, 1965 (Science Bookcrafters, Hastings-
on-Hudson, ¹wYork, 1965), p. 359; J. ¹ Sardsley, thesis,
University of Manchester, 1965 (unpublished).

'0 The experimentally deduced width (Ref. 8) is also of the same
order i)1.5 eV). It should be noted that the equation used in
determining the width is valid, however, only when the width is
much smaller than the relative kinetic energy of the atom and ion
t see Eqs. (4.25) and (4.28)j.For the system in question, neither
the width is small nor is the relative velocity between H and H
large."It is the energy diGerence between the dissociative energy of
H& (4.48 eV) and the electron afEnity of H (0.75 eV).

~ G. Hertzberg, Spectru of Diatomic M'olecules (D.Van Nostrand
Company, Inc. , Princeton, New Jersey, 1950), Chap. VIL

been measured to be, respectively, ' " of the order of
10 'r and 10 "cm' at the relevant energy region (around
4 ev), we may deduce that the probability of predisso-
ciation is of the order of 10 ' to 10 ', allowing a factor of
10 to 100 for the decrease in magnitude of the vibra-
tional excitation cross section for the excitation to higher
vibrational states (s)9) which are capable of predisso-
ciation. For D2 the nuclear states lying near the thresh-
old are of much higher vibrational quantum number
(e)13) than those of Hs, and subsequently, the vibra-
tional excitation cross section can be easily further
reduced by a factor of 10 or more going from H& to D&.
This then constitutes a possible explanation for the
observed abnormal isotope eBects' in comparison with
dissociative attachment at other energy regions. This
model also predicts a large temperature dependence for
the onset of the cross section, since the probability for
vibrational excitation depends strongly on the initial
distribution of the H2 nuclear states. This temperature
dependence can be examined experimentally.

We conclude the physical description of the collisiona1
processes in this section by commenting on the inter-
action of potential curves between different states of
the compound ion AB . Such interactions are of im-
portance in studying the problem of electron transfer
and have been discussed in some detail by Lichten'4
in connection with resonant" electron-transfer prob-
lems. The essentially new features encountered in the
present problem are the phenomenon of damping" due
to electron emission and the phenomenon of overlapping
interactions. The latter phenomenon may arise when-
ever the real parts of the potential curves come closer
than their corresponding widths (which are twice the
imaginary parts of the complex potential), since then
the AB states become overlapping resonant states and
are strongly coupled. This point will be further dis-
cussed in Sec. IV.3.

IIL THEORY FOR MULTICHANNEL COLLISION

We adopt here the treatment for multichannel re-
arrangement collision recently formulated by Chen'~

using projection operators suggested by Feshbach. "We
assume that the collision system (A,B ) has only three
sets of open channels, namely the set of scattering chan-

"G. J. Schulz, Phys. Rev. 135, A988 (1964).
'4 %V. Lichten, Phys. Rev. 131, 229 (1963); 139, A27 (1965);

I'. P. Ziemha and A. Russek, ibid. 115, 922 (1959);R. P. Marchi
and F. T. Smith, ibid. D9, A1025 (1965)."It should be noted that by resonance here (and only here) we
specifically refer to the cases in which the initial (before electron
transfer) and the final (after electron transfer) states are de-
generate. This should not be confused with resonances in scattering
and reaction theory in which intermediate compound states are
formed.

2' Damping may also occur because of the mixing in additional
states, so that interference between degenerate states is destroyed,
and because of the lack of exact degeneracy between initial and
anal states."J.C. Y. Chen, Phys. Rev. 152, 1454 (1966).

~8 H. Feshbach, Ann. Phys. (N. Y.) 5, 357 (1958); 19, 287
(1962); L, Fonda and R. G. Newton, ibid. 10, 490 (1960).
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nels, and two sets of rearrangement channels for
associative detachment and electron transfer respec-
tively. These are quite realistic situations for cases in
which A and 8 represent atoms and atomic ions, since
collisional detachment and ionization which are of im-
portance only at high energies can be considered as
special cases belonging to the above three sets of
channels. " For molecular cases, transmutations and
fragmentations of the molecules or of the molecular ions
may take place. In principle, we should then include,
according to their relative importance, the correspond-
ing sets of channels in our consideration.

Let pi, ps, and ps denote projectors which project,
respectively, onto the scattering, associative-detach-
ment, and electron-transfer sets of open channels and
which satisfy the idempotent and the orthogonal
relation

p,p, , =p;S;,, , q, j'=1, 2, 3 (3.1)

where 8;,' is the delta function. Then it is obvious that
P; is capable of projecting out the jth set of open
channels from the total reaction wave function T.
Asymptotically, we thus have

rewriting the asymptotic expression for piT and PsT in
terms of the symmetrical and antisymmetrical combina-
tions of the f 's and g&"'s.

The projection operators P and Q which project onto
the open and the closed channels of the Hilbert space,
respectively, can now be constructed in terms of the
projectors

P=Z p~
j=l

Q=1 P=—1—Q p;. (3.5)

The projectors are not necessarily Hermitian, but their
sum must be Hermitian so that the I' is a projection
operator. The non-Hermitian character of the pro-
jectors comes from the fact that there is mixing of
amplitudes among different sets of channels. The pro-
jectors become Hermitian at large channel coordinates
(i.e., at q, —+ ~ ), since asymptotically the flux at various
channels is well de6ned. The explicit expressions for
the projectors are derived in Sec. V. Note however that
our discussion in this section involves only the existence
of the projectors.

When the projection operators P and Q are utilized,
the Schrodinger equation

N'

plT ~ Q p ia) (r )&v, &b) (rb ) e&kl'Rlfbl {H—E}T=O (3.6)
q1—yoo ) 1

~&u, qi

+jb(kt,yt), X= (m,m'), (3.2)

may be rewritten as'8

(X—E)PT= 0
with

(3.7)

M g~~l pq2

p,T ~ P e„(r',R)X„„(R)g„"'(ki,gs)

X=P H+HQ QH P.
E-QHe

(3.8)

p= (rb, n),

N g'blCIy q3

psT ~ Z4 "(r.)4 &" (rb)g. "'(&t,k)

(3.3)

If I' does not include all the open channels, E in Kq.
(3.8) should be replaced by E+iri with ti+-+ 0. It has
been shown by Feshbach" that resonances come from
the bound-state solution of the Q-projected Hamil-
tonian QHQ:

(QHQ-~-'}e~. =0, (3.9)
v= (m', m), (3.4)

where the q s are the channel coordinates, (y &'i, q &"}
are, respectively, the wave functions of A and 8 with
r,' and r&' denoting collectively the coordinates of the
atomic electrons, (%„,X„„}are, respectively, the elec-
tronic and nuclear wave functions of the molecule AB
with R denoting the nuclear coordinate and r' denoting
collectively the coordinates of the molecular electrons,
and finally (P„& ',P &b&} are, respectively, the wave
functions of A and 8 with r, and ry denoting col-
lectively the coordinates of the atomic electrons. The
functions fb, g„&", and g, &si are, respectively, the transi-
tion amplitudes for scattering, associative-detachment,
and electron-transfer processes. For the case A =8, the
interference due to the corresponding asymptotic de-
generate states can be appropriately accounted for'0 by

~ Namely scattering excitation and electron transfer into con-
tinuum states and decaying of AB into repulsive and predis-
sociative states of AB."H. S. W. Massey and R. A. Smith, Proc. Roy. Soc. (London)

where h ' is a quasistationary approximation of the
resonance energy.

For the sake of clarity, we consider the case of an
isolated resonance. Utilizing Eqs. (3.9), (3.1), and (3.5),
we may rewrite the effective Schrodinger equation
LEq. (3.7)j as

3

(E &;"'}P~T=P~H—Q@'-~-+ 2 ~; "'P~'T, (3 1o)
j'y j

where
(3.11)

3-';., "'=P;~p; -P;Helc-)

X(E 8') '(C ieHp;. , (3.12—)
3 3

~.=Z ~-;=K,(~-l&QHP I P T) (3 13)
~-~E—b '

A142, 142 (1933);N. F. Mott and H. S. W. Massey, The Theory
of Atomic Collisions (Clarendon Press, Oxford, 1965), 3rd ed. ,
Chap. XIX.
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Equation (3.10) may be solved formally" for P,Y:

P Y=P i&i+&"r&i

components of the reaction wave function P,Y in the
jth set of channels. The various contributions to the
transition matrix V'j for the scattering and rearrange-
ment collisions can now be obtained from the asymptotic

(3.14) behavior of P,Y.

with
a =8 X "&—+zi&Pj

1 3

PA =P '"&~v+ 2—&,'"&P~'4

(3.15)

(3.16)

g.(p&gi, +p (d&+g".(r&,

&~'"= 2 (Piv' &

I ~we; "&
I P~'4&,

(3.19)

(3.20)

3 1
P =P+2 &, P', — (3.17)

where P,U'+& is the appropriate solution of

( jv g(& 0&}p.U(+& —0 (3.18)

and P; defined by Eq. (3.17) is an operator series.
Note that the formal solution given by Eq. (3.14) is

decoupled with respect to the direct and resonance

where V» is the potential scattering amplitude arising
from Eq. (3.25), where K;&~& is the direct scattering or
rearrangement amplitude arising from channel coupling
and where finally 1,("~ is the resonance transition ampli-
tude arising from compound-state formation.

Substitution of P,Y from Eq. (3.14) back into the
definition of A given by Eq. (3.13) yields the expression
for determining the resonance structure function. Ke
then have

3 3 3 1
~-= (C. le&P IP "')+2 2(+-IQIIP; ~.,„, IP,'~& E-~-'-z(C. IQ~P,—P~elc-&, (3.22)

where the matrix elements in the denominator of Eq. (3.22) give rise to a complex shift in the quasistationary
resonance energy 8 '. We will return to these equations in the next section and discuss in more detail that how,
in the framework of the Born-Oppenheimer separation approximation, the resonance structure function may
be defined for a fixed nuclear configuration. Substitution of A. into Eq. (3.21) yields for the resonance transition
matrix

&P" &IPPQIC'-&&4'-IQIIP IP " ') ' &P" & l~,'"&(I/~')P IIQIC'-&&c-Ie&P IP ~'+'&

E—h +iiI' j'Hj E 8+ 'iI'—-
with

' (P" &IP BQIC'-&&4'-Ie&P; (I/~, )x., „IP»'+&&
+ . (3.23)

E h.+-,'iT'. —

3 1
h +-', iT' =—h '+Q&c, IQHP, P,HQIc &,

— (3.24)

&i p 'k.
I v;I'zn;,

4X2) kl;
(3.25)

where pj is the reduced mass in the jth set of channels
and dQj is the solid angle of the exit Aux in the jth set
of channels. Since the transition matrix satisfies the
reciprocity relation, for specific sets of initial and final
states (denoted by i and f, respectively), we have the

where we have used Eqs. (3.16) and (3.17) to carry out
the expansion. Similar expansion for direct transition
matrix V "& can be obtained from Eq. (3.20) using
Eq. (3.16).

The cross section for the scattering or reaction is
given in terms of the transition matrix

well-known relation of detailed balancing"

k;fio; (i & f)=k;,io, i '. &(f & i), —(3.26)—

where the superscript (—1) denotes the corresponding
reverse process. However, there may exist degeneracies
in both initial and final states; the detailed-balancing
relation must be accordingly modified. If we assert that
all states of the same energy are occupied with equal
probability in equilibrium, we then have"

gjf~jy &j=gji~ji OjT. 2 .— . .S . .2 .(—1) (3.27)

O'See, for example, A. Messiah, Quunfgm M'echcnics (North-
Holland Publishing Company, Amsterdam, 1962), Chap. XIX."E. Fermi, nuclear I'hysics, edited by J. Orear, A, H. Rosen-
feld and R. A. Schluter (University of Chicago Press, Chicago,
Illinois, 1950), Chap. VIII.
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for the cross sections which are averaged over all the
initial degenerated states and summed over all the final
degenerated states. The g s in Eq. (3.27) are the state
degeneracy factors. This then enables us to obtain the
cross section from its reverse which could be of great
usefulness for associative detachment since detailed
cross-section measurement for this process is not avail-
able except for its reverse process namely dissociative
attachment.

Now most available experimental information con-
cerning associative detachment is in the form of rate
coefFicient, it is instructive to examine the relations
between cross section and rate coefficient. For a theo-
retical prediction of the rate coefficient, a knowledge of
the probability of atoms and ions in their various initial
states is necessary in addition to a knowledge of the
cross section. If the experimental setup is such that the
population of the various initial states for the reactants
is in thermal equilibrium, then the rate coeS.cient can
be easily formulated in terms of the appropriately
thermal-averaged" cross section 0;.

where Z~~ ' is the partition function, E is the rotational
quantum number, the e~'s are the rotational energies,
the e„„'s are the vibronic energies, and finally g,

' is the
spin degeneracy of the molecule AB. Recently, a strik-
ing temperature dependence has been observed. in con-
nection with the onset of dissociative-attachment cross
section. '4 It is of interest to investigate this temperature
dependence of the cross section onset by using Eq.
(3.32).

IV. APPLICATION TO REARRANGEMENT
COLLISIONS

1. Direct Associative Detachment

The process of associative detachment may proceed
directly as given by Eq. (3.20) without the formation
of intermediate compound states. To consider such a
case, let us assume for the moment that the set of
electron-transfer channels (j=3) is closed (see Fig. 2),
we then have from Eqs. (3.20) and (3.16)

&2'")=(p»' ) I&&...")
I pit), (41)

a;= (ZgZg-) ' Q' g;;(L,L')o;
L,rm, L',m~

Xexp{—
I

e r, &~)+e r,'~)]/LtT), (3.28)

with
pg)p= p2u&+)+ (1/ag)&„,„,&')p,)p, (4.2)

p24 = (1/o~)&...,")pit, (4.3)

g„(L,L') =g,g, (2L+1)(2L'+1), (3.29)

where e„L,&'~ and e ~ &" are, respectively, the energies
for states of 2 and 8; J. and L' are, respectively, the
total angular momenta of A and B; E and T are,
respectively, the Soltzmann constant and temperature
of the system; Z& and Z&- are, respectively, the parti-
tion functions" for 2 and 8; g,g, is the product of
spin degeneracies of A and 8, and finally the prime
on the summation sign indicates a sum over all the
allowed final states. The rate coefFicient ~; is then
given by"

) 3/2

9mKTI
e ~x o;(Lv)vqdvq, (3.30)

where v~ is the relative velocity of the reactants A
and 8

The rate coefficient for the reverse process f|:;& '& can
be written down in a similar manner from the cross sec-
tion obtained from Eq. (3.27) by using, of course, a
different thermal averaging. In the case of dissociative
attachment (i.e., the reverse process of associative de-
tachment, j=2), the thermal-averaged cross section
takes the expression

&2(
—t) Z —) Q g (+)0 (—1)g—[ v+ Nllrvrvv& v(3 31)

n, e,N

with

g,r =2 (21V+1)g,', (3.32)

"See, for example, L.Landau and E.Lifschitz, Statistical Physics
(Addison-Wesley Publishing Company, Reading, Massachusetts,
1958},Chap. XIX.

where the numbering for subscript j is clear from Eqs.
(3.2) to (3.4). Eliminating P2)P we obtain from Eqs.
(4.2) and (4.3) the I ippmann-Schwinger equation for

p,)p=)pp(r, R)=t) (R), (4.6)

Q))(r, R)IP~Ift)(r, R)),=1 for all R, (4.7)

where r denotes collectively all the electron coordinates,
R is the coordinate of the nuclei and the integral indi-
cated by the brackets with subscript r in Eq. (4.7) is
over all the electronic coordinates. Substitution of Eq.
(4.6) into Eq. (4.5) yields

{SC +V, (R)+~,(R)——;ir,(R))=-,(R) =a=-, (R), (4.g)

34 W. L. Fite, R. T. Brachman, and U. R. Hendezson, Abstract
of the Fourth International Conference on the Physics of Electronic
and Atomic Collisions, Quebec, 1965 (Science Bookcrafters,
Hastings-on-Hudson, New York, 1965},p. 100; R. F. Stebbings,
M. A. Fineman, J. W. McGowan, B. A. Turner, and F. A. Wolf,
Electronic and Ionic Reactions in Atmospheric Gases, De-
fense Atomic Support Agency Report DASA —GA—6699, 1965
(unpublished).

p~&= p»")+(1/&~)~n "")(1/o2)Xn.n,
")pic, (44)

which may be rewritten in the Schrodinger form

{X„,&')+X„,„,n) (1/a2)X„„,&') —E)p)))t =0. (4.5)

With P&)P determined from Eq. (4.5), the transition
matrix for direct associative detachment can then be
obtained from Eq. (4.1).

It is however instructive to examine Eq. (4.5) in the
framework of the Born-Oppenheimer separation ap-
proximation. ' We write for p)f,



20 JOSEPH C. Y. CHEN

with

Vp(R) = (6 I
Xm&'& —RnPr I A)—(I/2& )

XQ p I (~a'P&A)), (4 9)

hp(R) =Re@pl X„,„,&'&(I/a, ) X.,„,&'& lit ), (4.10)
where

X sin(kpR sJ—rr+bpq), (4.15)

Clearly Eq. (4.14) implies that

cps(R)=nz~&P&+6m~''P& ~ &p
'

P (R)=—2 ImgplX„, „,"'(I/&r )X,„,"'lfp), (4.11) Spy b——pg&r&+impy&'& (4.16)

where p, is the reduced mass of the nuclei and ER is the
relative nuc]ear kinetic-energy operator. Equation (4.8)
describes the nuclear motion when the electronic mo-
tions of the two sets of channels (i.e., the scattering and
associative-detachment sets of channels) are strongly
coupled. Because of this coupling, the constituent nuclei
experience a complex potential. We emphasize that this
is a one-step transition ' as shown in Fig. 2 and should
not be confused with resonance reaction in which inter-
mediate compound states are formed. (The latter case
will be treated in subsection IV.2.)

Now utilizing the completeness properties of the
spherical harmonics, we may always expand p(R) as

1
=p(R) = 2 (r&~sr'p'+if—'zsr"'(R)) YJ&&r(R). (4.12)

J,M g

Equation (4.8) may be rewritten as a pair of coupled
equations

J(J+1)
+2p[E Vp(R) Dp(R) j—r&~»r&p—&(R)

2 2

=&rI'p(R)fJsr&P&(R), (4.13a)

O' J(J+1)
+21 &R Vp(R)-Sp(R) -j f ~~«&(R)

dZ E.2

&ri'p (R)r&z»r &»—(R), (4.13b)

where we have assumed that the complex potential is a
function of radial coordinate E. only. For continuum
solutions of Eq. (4.8) we impose the boundary condi-
tions that the solutions vanish at R=O and have the
asymptotic forms

r&gsr&P (R) —+ kp ' coshiipJ"

Xsin(kpR —rs Jrr+l&pin&), (4.14a)

is a complex phase shift.
Note that though the rotational motion of the nuclei

in a diatomic molecule behaves essentially like a simple
rotator, the spherical harmonics do not, however, al-
ways provide a realistic representation of the rotational
states. In an actual molecule there are a number of
electrons revolving about the two nuclei, and in many
cases this may yield a nonzero net resultant electronic
angular momentum along the internuclear axis (de-
noted by A). The net angular momentum then causes
the nuclei to deviate from the simple rotator behavior so
that the rotational quantum number I. is no longer a
good quantum number. In addition, this electron orbital
motion provides a net current around the axis and gen-
erates a magnetic 6eld parallel to the axis. This magnetic
field will then be coupled with electron spins. For mole-
cules of light atoms, the electron spins may combine first
to form a total spin angular momentum S which is virtu-
ally unaffected by the internuclear electric 6eld. If we
neglect the multiplet splitting due to the coupling of
the spin angular momentum with the magnetic field
of the current (resulting from electron orbital motion
along the internuclear axis) and regard 8 as a good
quantum number, the rotational motion of the nuclei
may be more realistically represented by a symmetric-
toI& rotator. " Exl&ansions of p(R) should then be
carried out in terms of the orthonormal set of sym-
metric-top wave function. " In a more rigorous treat-
ment, the effect of nuclear spin should also be considered.

In accordance with the assumption made in Eq.
(4.13) that V(R) and I'(R) are spherically symmetric,
we may utilize the axial symmetry about kp and write"

4x
=-p(R)= —p s'e"p c„(R)Y,~,(R)Y,~,*(n;).

J,MJ
(4.17)

This then permits us to write for the cross section for
direct associative detachment as

1 g&&r&p& (R) —+ kp
—' s&nh&&pg&'&

Xcos(kpR —sr Jx.+fipz"&). (4.14b)
p2p, y kgb

I 2 i&e'rp~r, lsdns
4x' k1,

(4.18)

."For the corresponding reverse process —dissociative attach-
ment —the same observation applies, since the process proceeds by
direct capturing of the projectile electron into a repulsive state
of the target molecule. It is a one-step transition. Note that the
6nal repulsive state is in the open-channel space. The fact that
the Gnal state may auto-ionize merely means that back couplings
with the set of scattering channel are of importance. This implies
that one need not evoke the resonance theory for treating direct
dissociative attachment of the Franck-Condon type /see Ref.
10$. Only in the fixed nuclear configuration approximation, one
may treat the auto-ionization state as an intermediate resonance
state. (See Sec. III of Ref. 10a.)

with

rz=4rrp (Psui &IXr.»&'& IR '&pz(R)Yz3rz(R)ttp(r, R))

X YJ»r~*(0,) (4.19)

"F.Reiche and H. Rademacher, Z. Physik 39, 444 (1926);
41, 453 (1927); 8,. de L. Kronig and I. I. Rabi, Phys. Rev. 29,
262 (1927); D. M. Dennison, ibid. 28, 318 (1926)."See for example, T.-Y. Wu and T. Ohmura, Qeantgm Theory
of Scattering (Prentice-Hall, Inc. , Englewood Clips, New Jersey,
1962), p. 6.



ATOMIC COLLISIONS WITH NEGATIVE IOUS

P2Pl kg/
-s&"&=-p-esp'i'& — lr~lsdns.

4g' kl;
(4.20)

%hcI'c lt ls understood that thc cxplcsslon fol thc closs
section is averaged over the initial degenerate states.
Fol' R glvcn J& thc CI'oss scctlon becomes A+8

+Bee

6
g
g

A+8

~~IAB)

We observe that the cross section is directly propor-
tional to a energy-dependent exponential factor.

This factor was erst discussed by Holstein'8 in in-
tclplctlng thc pI'occss of dlssoclRtlvc RttRchmcnt Rnd
was later derived independently by Bardsley et al."'9
The physical signi6cance of this factor can be made
apparent by examining the phase shift as a function of
R Now if we treat the radial nuclear motion semiclassi-
cally, we have l-see Eqs. (4.13) to (4.16)j

Ppg(R)=Kp(R) 'I'exp +s Kp(R')dR'

Ep(R)=(2@i-E—U(R)+-,'sTp(R)])'", (4.21)

U(R)=~ (R)+' (R)+J(J+1)(2„R')

A+8

A+8

A+8

%'c obtRln

bpg&"=(J+ ', ) ', m kR-e -D—p&+&(R—e)

+I™[pv(R') k)dR', (4—.25)

INTERNUCLEAR SEPARATION

FIG. 4. EXRIPICS Of 1ntel'Q1edlate COQ1POUDd SfcLfCS Of fIM le-
action system (A,B ). The compound state may decay either by
Mlto-lonlza, tlon info A'J3+8 ol by pledlssoclatlon into 2 +8 ox'

A++ .

Consideration of the requirement that fpz(R) ~anishes
at E.=o leads to"

jpz(R)=Ep(R) "'sin ,'mDpi+&(R-e). — %1th

1 nF(R')dR'
5»&'&=-Dp&-&(R,)+hm-"-"2 e(R')

+iDp& &(Re)+ Ep(R')dR', (4.22)

d Up 1 dI'p
Dpt+&(R, )= —,'VZ&r(R, )'~s

dE. 2 dE

n(R)=((2&»L' —~p(R) —Ap(R) j
—L(J+s)l(~R)7}'", (4.2&)

where s(R) is the relative velocity of the nuclei at
separation R. Since dR/n(R) is the time taken by the
nuclei to separate by a distance dE, the exponential
factor therefore takes the expression

dUp' 1(dI'p'
+-I (423)

4&dR „' '
ex@I:—25p~"&j=e~ —2Dp' &(Rs)

where J(J+1) in Ep(R) is replaced. by (J+-,')', the
Dpt+&(R, ) arises from the imaginary part of the poten-
tial at J,o, and Ro is the turning point of the nuclei in
the complex potential.

The complex phase shift can no% be obtained from
the asymptotic behavior of Eq. (4.22) ~

bpg (J+-', )-',~—kRs ———Dp&+&(Rs)+sDp' &(Re)

+l™ LEp(R) —kjdR, (4.24)

where k=(2pE)t's. U we expand Ep(R), assuming that
Fp(R) is small, ""and retain only the 6rst two terms;

3' T. Holstein, Phys. Rev. 84, 1073 (j.951).
"See also, Yu. N. Demkov, Phys. Letters 15, 235 (1965).
4s R. E. Langer, Phys. Rev. 51, 669 (1937).

—lim FLt(R')]dk(R') (4.28)
t(BO)

%hlch ls )ust thc pI'obRblllty of survival of thc ion Rs
the nuclei move apart. It has been referred to by
Bardsley et al. as survival probability. Wc note that
the J dependence of the survival probability is of im-
portance in connection with selection rules. This
will be discussed in some detail in a subsequent
communication. "

2. Resonance Associative Detachment

Associative detachment may take place indirectly in
which intermediate compound states are formed as
discussed in Sec. III. For simplicity we will consider

41,J. C. V. Chen and J. L. Peacher (to be published).
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the case of isolated resonance. A typical situation of
this kind is illustrated in Fig. 4. If the collision system
(A,B ) approach each other with an energy just below
thc cxcltatlon energy fol cxcltlng 2 up to A. ) thc
colliding partners may merge into a quasistationary
bound state of (AB )".Since this state crosses (or lies
very close to) the repulsive state of AB and is imbedded
in the continuum AB+e (Fig. 4), it may predissociate
or autoionize. The competitive prcdissociation process
wiH then interfere with the process of auto-ionization
which stabilizes the process of associative detachment.
One would therefore expect that this interference will
give rise to structures in the cross section for associative
detachment. In addition, if the width of the compound,
state (AB )e is narrow in comparison with its vibra-
tional spacings, one would also expect the vibrational
structure to appear in the cross section. "Recently such
structure has been observed" for the hydrogen system
in the energy range between 8 to 12 cV in the reverse
process of associative detachment —dissociative attach-
ment. This seems to be consistent with the vibrational
resonance seen by Kuyatt eI a/. 44 in. the (Hs, e) scattering
system at the same energy region.

Thc tI'ansltlon matrix fol I'csonMlcc assoclatlvc de-
tachment is given. by Eq. (3.21) in which the resonance-
structure function A is given by Eq. (3.13). For
reasonable long-lived compound states so that the Born-
Oppenheimer separation approximation" is valid, wc
may write for the compound state QC,

QC.= s.(r,R)X.(R), (4.29}

(q (r,R)lel q, (r, R)&,=1, for all 2, (4.30)

where p is the quasistationary representation of the
electronic wave function of the compound state. Utiliz-
ing Eq. (3.9) with the help of Eqs. (4.29) and (4.30),
Eq. (3.13) may be rewritten in the operator form

~-(R)=Z &s. IQIIP;IP''P&. (431)
~=1 Z ER V.(R)—'—

V-(R)=&i-Ie&el~-& —(I/2i)(v-I(~R'Qs-), (432)

where B,=H—Eg is the electronic Hamiltonian of thc
system.

Substitution of AT from Eq. (3.14) back into the
expression. for A (R) given by Eq. (4.31) yields the
equation for determining the resonance structure func-
tion for a 6xed nuclei con6guration

3

&—itR —V-(R) —&&~-IQ».—P Ife I ~-& +-(~)

=r.(R), (4.33)

~ See, for example, J. C. Y. Chen, Phys. Rev. 146, 6t (1966).
43 Y. Sharp (private communication}.
~ C. K. KUyatt, J. A. Simpson, and S.R. Mielczarek, J. Chem,

Phys. 44, 43'/, 440 (1966).

where the inhomogeneous source function is

~-(R) = (v - I Q»1 I P»"'&.
3 3

+z z&..le»,—~„„.&oil p;~& (434)
i=J- i'&j

Now if we substitute P; as given by Eq. (3.17) into Eq.
(4.34), we obtain

(a—Ita —V.(R)—a.'(R)—m. (R)P-', iT'.'(R) }X.(R)
=x.(R) (4.35)

with

a.'{R)—-', ir„'(R)=P{z. (R)—-',ir.,-'(E)}

3

=r.&.-le» —p&el~-& (436)

3 3

~-(R)=~ E&.-le»,—~,.; O'Joel..&, (4.»)
j=l j'Aj

where 2 {R) is the energy shift from the quasista-
tionary approximation arising from the coupling of p
with the jth set of open channels, where I'„'(R) is the
decaying width of the compound state p into the jth
set of open channe]s and where 6nal]y'VP is the complex
energy shift arising from multiple back and forth
couplings between channels. The complex energy shift
is usually very small.

Equation (4.35) describes the nuclear motion when
the electronic states of A and 8 merge into that of
the compound system. Because of the quasistationary
nature of the electronic state, the constituent nuclei
experience a complex potential. An approximate equa-
tion similar to Eq. (4.35) has been derived" for dis-
sociative attachment using Kapur-Peierls formalism.
HeIe the equation is derived without evoking the con-

cept of channel radius, the decoupling of the electronic
angular states or the explicit expression for the
pro]cctors.

Solving Eq. (4.35) for A (R), we have

X.(R)= [1/b. {R)]s.(R),

b {R)=E,—ER—U (R),

U (R) = f V.(R)+6 '(R)+Re[W. (E}]}

(43g)

{4.39)

—-', i(I' '(E)—2 Im[Vv" (E)g}. (4.40)

Sllbstltlltloll of A. (R) lllto Eq. (3.21) yields the ex-

pansion similar to Eq. (3.23)

&'"'=(&P n' 'IP &el&-&.

&&[I.(R)3-'&..Ie» IP" &,).+, (4.41)

where the intcgrals indicated by the outer most brackets
are over the nuclear coordinates R as indicated by the
subscript R. Within the energy region of resonance, the
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transition matrix may be approximate by its first
(leading) term. In this approximation the coupling
sects due to other sets of channels do not appear
[except in a very trivial way they appear in the pro-
pagator b (R) '].

It is worthwhile to mention that the resonance-
transition matrices for associative detachment or dis-
sociative attachment, for the scattering of electrons by
molecules or of atoms by ions, and for electron transfer
in atom-ion collisions are identical in functional form.
Independent of the initial or final scattering or reaction
state, for each isolated resonance there exists a unique
complex propagator for the nuclear states which does
not depend on individual channels but on all the open
channels as a whole. The collective dependence of the
propagator on all channels comes from the total width
I' '(R), the total energy shift 6 '(R), and the over all
complex shift II' (R) since they are the sum of partial
contributions from each set of channels [see Eqs.
(4.36) and (4.37)].

For overlapping resonances, Eq. (4.35) becomes a
set of coupled equations, and the propagator for the
nuclear states becomes much more complicated. The
number of coupled equations is equal to the number of
overlapping resonances n p. Hence

ao

[E Kg V(R) ]()—.~-
a'=1

3 1—E(((-IQ&p,—P&QI(-) ~"(R)=~.(R), (4.42)

3. Electron Transfer

Finally, in this subsection we consider the electron-
transfer rearrangement collision. For the case of electron
transfer involving negative ions, the coupling with
associative-detachment set of channels is of importance,
since the coupling would cause electron emission and
would therefore result in a damping in the electron-
transfer probability as mentioned in Sec. II. This effect
does not, however, appear in electron transfer involving
positive ions, except for special cases. We demonstrate

4' I'. Mandl, Proc. Phys. Soc. (London) 87, 871 (1966).

0,'= 1) 2) ' ' '
) 0!p.

From examination of Eq. (4.42), it is apparent that the
coupling potentials among different resonant states are
complex. We mentioned in Sec. II that overlapping
interaction may occur whenever the real parts of the
potential curves [i.e., the real parts of the potential in
Eq. (4.42)] for states of AB come closer than their
corresponding widths [i.e., twice the imaginary parts
of the potential in Eq. (4.42)]. Recently, the problem
of interaction of potential curves for states of AB was
studied4' in the framework of Kapur-Peierls resonance
theory. In this study, the overlapping interactions were,
however, not considered.

Fxo. 5. Active-
electron representa-
tion of the coordi-
nates for the reaction
system (A,B ).

a

here that such damping due to electron emission may be
expressed in terms of complex potentials for the nuclear
motion.

From Eq. (3.20) we have for direct electron transfer
the transition matrix

g (~) = (p „(—)
l
~ o)

l p )p)

+(p " ) l~...,")
I p &), (4 4»

where the second term which is small in comparison
with the first term accounts for the contribution to the
electron transfer coming from the recapture of the elec-
tron. The corresponding reaction wave functions are
given by Eq. (3.16).

p)&= p»+ (1/&~)(&nin2"'p24+&nina"'p3&)

p24 = (1/o2)(~n n
")pnt+&. n.")p3A

p4 = (I/~3) (~. ~
")put+&. ,""'p~f) .

(4 44)

On eliminating P2)P, we obtain a pair of coupled equa-
tions for P))P and PyP, which may be written in the
Schrodinger form

(&—~u, ")—~.,n, ")(I/&~)~" n,
"))p~4

=(~n n, "'+&n,u.."'(1/o2)&n, n, "')p~4 (445b)

This provides an exact description of direct electron
transfer between atoms and negative ions. The essen-
tially new feature of these pair of coupled equations
from those for electron transfer involving positive ions4'
is in the presence of complex potentials. It becomes
more apparent if one carries out the Born-Oppenheimer
separation approximation for P))P and P~)P similar to
that carried out in Eqs. (4.6) to (4.11).

Electron-transfer process may, of course, also take
place involving compound states as intermediates. The
analysis is essentially the same as that given in IV.2

and will not be repeated here.

V. CONSTRUCTION OF THE PROJECTION
OPERATOR

The asymptotic expressions for the projected wave
functions p)T, puT, and p&T are given by Eqs. (3.2) to

"D. R. Bates and R. McCarroll, Advan. Phys. (Phil. Mag.
Suppl. ) 14, 521 (1965); J. C. V. Chen, Brookhaven National
Laboratory Report, SNL 9148, 1965 (unpublished).
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PIT=
I ((

I')FI'(R)+2
I ~.)F1(R), (5.5)

P,Y= Z I k.}G.("(R), (5 6)

(3.4) where the channel coordinates that were used in
these equations are illustrated in Fig. 5. For simplicity
only the active electron (i.e., the outer electron to be
detached or transferred) and the two heavy nuclei a
and b are explicitly shown in the 6gure; the remaining
electrons are omitted. Making use of the geometric
relations (Fig. 5)

yi ——R—pbr, b, pb m——,/(Mb+m, ), (5.1)

p, =R+p.r... p.=m,/(M. +m,), (5.2)

and the fact that the (I's and the &P's are bounded in
r„and x',~ respectively, we obtain for y~ and p3 in
Eqs. (3.2) and (3.4) the asymptotic expression41

pl ——
I pl I

~ F'- pbA—r,b+0(R '), -(5.3)

ps ——lysi~ E+p,R r„+0(R-'). (5.4)

Substltutlon of Eqs. (5.1), (5.3), Rnd (5.4) bRck Into
Eqs. (3.2) and (3.4) reveals the definitions for the pro-
jectors Pi and Ps

(H,—L~',) 4 „„(r,R) =0,
gsk1y, g2

+u(r, R) -+ e„(r',R) g„('&(R, ki js)
$2~00

g2

p= (~,u)

(5.13)

(5.14)

PD'=P 4„(r,R)&c„(R), (5.15)

where the &(„„(R)'sare, of course, bounded. in R. Sub-
stitution of the asymptotic expression for 4„ into the
expression for PIT yields the desired asymptotic expres-
sion [Eq. (3.3)j for ps~~. This can be easily seen
from Eq. (3.14).

Mathematically, the de6nition for the projectors
glvcil by Eels. (5.5), (5.6), Rlld (5.15) Rlc cqlllvRlcll't to
require the projectors to satisfy the following equations:

where r= (r', qs) and P, is the total electronic Hamil-
tonian of the reaction system (A,B ). The scattering
state 4'„which may be normalized in a box can be
determined by constructing a projection operator which
projects onto the molecular state %„(r',R) of AB.
molecule. ' " This then permits us to define the pro-
jector fol' RssoclRtlvc-cle'tRchlllcllt Ps

F ~(R) ~ eiki R

Fk(R) u fk(kt R)(e'"» /E)

G, (s&(R) —+ gp('&(kl R)(e("" /E) 1

(5.7)

(5.g)

(5.9)

&P.I1—Pi—Ps—P I»=o,
&+.I1-P -P —P I»=o,
&0 I1—Pi—Ps—PslY)=o.

(5.16b)

(5.16c)

(5.16d)

(".I1-P -P.-P IY)=0, (5 16 )

where
I
pi'),

I pk), and l(P„) are the recoil states

I
SI')=(f(~ I( &(r ')~I("(rb')e '"'" '") (5.10)

I (pk)
—g(~ (&& {r ')~, (b&(rb~)e (ubRb» robj-

X= (m,m'), (5.11)

I ~t.)= &8- ( &(r.)~t-("(rb)e'" "'"'-),
v = (m', m) . (5.12)

It can be seen by substituting Eqs. (5.7) to (5.9) back
into Eqs. (5.5) and (5.6) that Eqs. (5.5) and (5.6)
asymptotically gives the desired. expression for the
scattering and electron-transfer channels as required by
Eqs. (3.2) and (3.4).

For associative-detachment channels, we may solve
for each given nuclear configuration X„„(R),a Born-
Oppenheimer electronic scattering state 4'„„(r,R) such

Equations (5.16) may be rewritten as a set of coupled
equations for the functions F~', Fq, X„, and 6„.Since we
have constrained both the scattering and electron-
transfer channel coordinates to be R by introducing
the recoil states [Eqs. (5.10) to (5.12)] and since we
have utilized the Born-Oppenheimer electronic scatter-
ing states for the associative detachment, the set of
coupled equations can easily be solved for F»', F~, X„,
and G„ in terms of inner products involving Y. Substitu-
tion of the solutions so obtained back into Eqs. (5.5),
{5.6), and (5.15) yields immediately the desired pro-
jectors. Such an algebraic manipulation can in general
be carried out in terms of matrix notations. For the
sake of clarity we consider here a simple case in which

only the lowest channels in each set of channels are open,
When the definitions for the projectors given by Eqs.

(5.5), (5.6), and (5.15) are utilized, Eqs. (5.6) may be
rewritten for the case E=E'=M =1 as follows:

Fi'(R)+o&sFI(R)+ars(R)XI(R)+aI4(R)GI('&(R) = U'(R),
(IrseF I'(R)+FI(R)+(I»(R)XI(R)+(Is4(R)GI('& (R)= U(R), (5.17)

(Iis"(R)F,'(R)+asse(R)FI(R)+xi(R)+(144(R)GI('&(R) = V(R),
(II4e (R)FI'(R)+ (194*(R)FI(R)+(144*(R)XI(R)+GI(b& (R)= W(R),

'7 J. C. jt'. . Chen and M. H. Mittleman, Ann. Phys. (N. Y.) 37, 264 (1966).
'8%e take occasion to note that in the treatment of Ref. 10a the scattering amplitude is obtained by averaging the 6zed-

nuclear scattering amplitude )Eq. (2.8) of Ref. 10ag over the nuclear state x obtained from the coupled equation )Eq. (S.il)
of Ref. 10ag in solving for the dissociative-attachment amplitude.
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(5.19)

a»=&a"i'I 6&, a»(R) =&Pi'I+~&, a»(R) =(P~'I A) (5.18)

~ (R)=&" I+), (R)=&" I&» (R)=&+ If),
U'(R)=&4~'I&& U(R)=&~~i&& V(R)=&+~I&) W(R)=&@I&)

where the integrals indicated by the brackets in Kqs. (5.18) and (5.19) are over coordinates that are common on
both sides in the brackets.

Solving Eqs. (5.7) we obtain

Fg'(R) =y (R){bgU'(R)+cy2U(R)+c» V(R)+cy4W(R) },
Fg(R) =y(R) {c2gU'(R)+bsU(R)+csgV(R)+c24W(R)},

x,(R)=y(R) {c3gU'(R)+c»U(R)+b3V(R)+cg4W(R)},
Gqa&(R) =y(R){c4qU'(R)+c4sU(R)+c4sV(R)+b4W(R)},

(5.20)

v(R)={1—la~4(R)I'}{c»(R)c2~(R)—b~(R)bm(R)} ', (5.21)

b'(R) =
I a ~ I'+ I a»l'+

I a~ I'—».La ~a~i«7 —1, 5.22)

c;;(R)=a;;(1—
I ~a~I')+ a~( ~a~ ~;aa~;)—+ao(a~~a~; a~;)—; i, j, k, 1=1, 2, 3 or 4 but ig jgkgl, (5 23)

where the overlap integrals, i.e., a~3(R), aq4(R), a23(R), a24(R), and a~4(R) of Eq. (5.18), approach to zero ex-
ponentially as their argument 8 become large. It can be easily shown by substituting the asymptotic expression
for I' into U', U, V, and W'

I see Eq. (5 19)7 that X&(R) is bounded and that F&', F&, and G&&'' satisfy the asymptotic
expressions given by Kqs. (5.7), (5.8), and (5.9), respectively.

Substitution of F&' and F& back into Kq. (5.5), G&"& back into Eq. (5.15) and G&&'& back into Eq. (5.6) yields,
respectively, the projector for the scattering channels

p&='Y{ I Pi'&bi&a"~'I+
I Pi&bm&AI+ I &P~'&c»&P~+ I &iq&cn(P~'I+ I P,'&c»&e, l+ I s,)c»&e, l

+ I A'&ci«A I+ I P~)c~4&A I }, (5 24)
the projector for the associative-detachment channels

p2=v{ I+~&»&+~I+ I+Dc»&A I+ I+~&c»&@~I+I+~&c3«AI }
and the projector for the electron-transfer channels

P3=v{ I 4~&b«A I+ I A&«~&A I+ I A&«s&AI+ I A&«3&+~I }.

(5.25)

(5.26)

It is straigh. tforward to shower that the projectors given by the above equations are idempotent and mutually
orthogonal, p;p; =p,b;;, as required by Eq. (3.1). The projectors are asymptotically Hermitian, p;(R —+~)
=P, t (R—& ~ ), since

P~ ~ — {I v i'&&v ~'I+
I v i&&v il —

I ~i'&a»&~il —
I ~i&a»*&~'il },z~m 1 la Im

p.„ I+»&+I, ~, IS&&el.

The appropriate projection operator E for the open channels is then obtained by sum over the projectors.

3

P=Q p =P' (5.28)

By inspection of Eqs. (5.24) to (5.26), it is apparent that P is Herrnitian even though the projectors are Hermitian
only asymptotically. This then completes the demonstration of the construction of the projection operator.

ACKNOWLEDGMENTS

Part of this work was carried out during the author's sojourn at the Joint Institute for Laboratory Astrophysics,
Boulder, Colorado as a Visiting Fellow (1965—1966). The author is grateful to Lewis Branscomb and Keith
Brueckner for their encouragement and to J.William McGowan and Thomas F.O' Malley for helpful conversations.


