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The pairing-Hamiltonian eigenstates are used to test linearization procedures for the equations of motion
of pair-creation operators. It is found that standard linearization techniques are inadequate and additional
terms are suggested by a detailed examination of pairing wave functions. The new linearization procedure
is applied with considerable success to the pairing vibration problem. Possible extension of the results to more

general two-body interactions is discussed.

I. INTRODUCTION

INEARIZATION of the equations of motion is a
popular approach to the problem of determining
eigenvalues of a Hamiltonian containing residual two-
body interactions. The pairing Hamiltonian contains a
comparatively simple residual two-body interaction;
yet, a linearization of the equations of motion some-
times leads® to rather poor results. Although there are
very accurate techniques** for determining eigenvalues
of the pairing Hamiltonian, we feel that a detailed study
of the linearization technique is of considerable interest
for this case. Hopefully, any improvements which we
find in the pairing linearization procedure will be
applicable to more general nuclear two-body inter-
actions because pairing forces are such an important
part of nuclear forces. In this study, we employ good
fixed-particle® pairing wave functions, so corrections to
be made arise from the linearization procedure.

II. ANALYSIS
We consider the Hamiltonian

H= Z € (ak*ak+a_k*a_k)—G Z akTa_de_zdz,
>0 k,1>0

@

where the symbols have their usual® meaning. The
operators a;t (ax) obey the fermion anticommutation
rules

alartaat=06; alettatat=aataa=0. (2)

We set
©)

and evaluate the commutator with the Hamiltonian of
Eq. (1) to obtain the result!

[H,AkT]=2€kAk -G Z AlT(l"Nr‘N-k), (4)
[

Apt=ata_t s

* Research sponsored by the U. S. Atomic Energy Commission
and the Swedish Atomic Research Council.
Ill‘T Present address: Argonne National Laboratory, Argonne,

inois.

1 J. Hogaasen-Feldman, Nucl. Phys. 28, 258 (1961).

2 R. W. Richardson, Phys. Letters 2, 82 (1963).

3R. R. Chasman, Phys. Rev. 134, B279 (1964).

4R. R. Chasman, Phys. Rev. 138, B326 (1965).

156

where

©)

and, in the case of the pairing Hamiltonian, we note
that
(6)

Equation (4) is to be evaluated between a system
containing N—2 particles and a system containing NV
particles; we specialize here to the ground state of the
(N —2)-particle system which we denote by |[0’). We
obtain the result

(zek—x)<a1Ak’r|0'>=Gz:,<a|AJ(1—2Nk)|0’>, )

Nk= dkT(lk y

([ Ni]0)= (0'[ N_[0).

where we have made the substitution

A=FE,—E/. 8)

Equation (7) is exact and leads directly to a set of
eigenvalues in the N-particle system; the only difficulty
is the evaluation of the quantity >_; {a|4:tN:|0"). We
note that when the (IV—2)-particle system is com-
pletely empty or full, there are no problems in the
evaluation of Y_; (a|A4;IN|0’). Similarly, Eq. (7) is
simply solved when all single-particle energies . are
degenerate. In this case, we can sum over % to obtain the
result

(26—>\)Zk (alAk*|0’>=G(L—2P)§ (al4707) (9

or more simply,
(2e—\)=G[L—2P], 9
where we have set
L= Z 1 )
7

(10)

and
PEkZ» (0| N&|0")y=(N—2)/2.

When the single-particle energies are not degenerate,
we have

¥ 2a—N) @l 44| 0)=GL-2P)T @l 4/0), (D)
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Fic. 1. Ratio of 3; {a|4;fN1]|0’) to various approximations.
The dashed curve gives the ratio with respect to the right-hand
side of Eq. (12). The solid curve gives the ratio with respect to
Eq. (15) of the text.

which suggests the obvious approximation

2 (el 4N [0)=(Ni) 2 (] 4/]07),  (12)
1 P
where we have adopted the notation
(O"[ Nk [07)=(N). (13)

By combining Eq. (12) with Eq. (7), we obtain the
elegant relation

1—=2(N
mgx 20 (1)

k Zek—>\

Unfortunately, Eq. (14) is not adequate! for computing
eigenvalues in many cases. The question which we have
studied is: What can be used in place of Eq. (12)? The
restriction which we place on possible replacements for
Eq. (12) is that the replacement must reduce to Eq.
(12) when we consider an empty, a full, or a degenerate
system. We impose the additional limitation that all
terms must be linear in the matrix elements {a|A4,1|0").
We have constructed approximate, fixed-particle-
number, pairing wave functions using previously
described® methods. We have determined the ground-

(Vi)
<o|Aka|o'>=<Nk><o[Aﬁ|0’>+Z:~i<0|Ak*lO’>
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state wave function for systems of seven and eight pairs
of particles in sixteen equally spaced levels and chosen
G/Ae=%. With these wave functions, we have computed
the quantities (0]|4;1N:|0’), (0]|4.t|0"), and (N). In
Fig. 1, we have plotted the ratio

2 (o AN 07)
(Vi) 21 {a|441]0")

as a function of k. These points are connected by the
dashed line. Figure 1 indicates that there is considerable
room for improvement on the approximation of Eq.
(12).

Using trial and error methods, we hit upon the
approximation

2 O[AIN[0")= (Ne) 22 (0] 4:1]07)

+B<Nk>(1—<Nk>){[Zl: (N)2(1=(N2)) 0] 4,07
- <N/c>[ZZ (V) (1= (N0){0[ 4,107y, (15)
where the coefficient B is given by the relation

P (42 (Vo) (1= (V)]

B=— .
2 [Z0 (V) (1= (V) I m (N (1= ()]
(16)

The value of B was fixed by examining several other
pairing systems. In Fig. 1, we have also plotted the
ratio of the left to right side of Eq. (15). These points
are connected by the uninterrupted line. It is clear that
Eq. (15) is an extremely good approximation. We note
that Eq. (15) obeys the sum rule

12;, (a}Al“N;cIO')=kZ (Nk)El: (al 471107, (17)

However, it is not at all clear that it obeys the sum rule

Zk (afAz*Nk|0'>=(§ (Vi) (el 471]07). (18)

We note that the relation

+BN) A= (Vi) Vo) (1= (N[N0 AT [07)— (Vi) (0] 44[07)] - (19)

appears to be quite good, so our approximation does not violate the sum rule of Eq. (18) very seriously.
When the state {a| is the first excited seniority-zero state we find that Eq. (15) is considerably better than Eq.

(12) as an approximation, but even Eq. (15) is unsatisfactory. Besides keeping any more terms which we may add
to Eq. (15) linear in the matrix elements {a|4:1|0"), we must be careful not to ruin the approximation of Eq. (15)
for the matrix elements (0| 4,1V |0’). This consideration leaves very few choices of additional terms. We find that

a term of the form
2 (ND(l-—(NO)(aIAﬂO')jl

_ wl A0 — o
DL ()] (el 410)— 0140100 2 0
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leads to a fairly good approximation for the first excited state (1| when this term (20) is added to Eq. (15). The

coefficient D is given by the relation

D=L+34P,

(1)

but we emphasize that the approximation for the excited state is considerably worse than that for the ground state.
Substitution of our approximation into Eq. (6) leads to the working equations

(Zek—k)@tlAk*10'>=G(1—2(Nk>)21 (@l4r]0%)

—ZGB<Nk>(1—<N/c>)[Zl (Nz)2(1—(Nz>)<alAk*!0’>—(Nk>lZ (VY= (V1)) (el 41707)]

—2GD{N)(1— (Nk))[(aIAkT |0)—

First, we must determine the wave function |0’) and
with it evaluate the quantities (V). When we are
dealing with pairing forces, we can determine |0’) with
the methods of Ref. 3. With a wave function of this
type, it is straightforward to evaluate (Ni). The next
step is to solve the L linear equations obtained from
Eq. (22) for the lowest eigenvalue Ao, setting D=0.
After obtaining A, it is straightforward to evaluate the

quantities
(0] 4,0")

T (N (1= (N1){0] 40"y

We then solve the complete set of L equations given by
Eq. (22) for the first two eigenvalues.

As a test of our procedure, we have calculated eigen-
values of the Hogaasen-Feldman' problem. This
problem was the original reason for our study of
linearization approximations. In the particular case
which we consider, there are two groups of 10 doubly
degenerate levels separated by a single-particle spacing
of 3 in some arbitrary units. Each level can be occupied
by a pair of particles, and there are 10 pairs of particles.
We are interested in the energy spacing between the
ground state and the first excited O* state, as a function
of G, the pairing interaction strength. An exact diagon-
alization has been done! for this system and this result
is displayed by the solid curve in Fig. 2. All approxi-
mation techniques discussed in Ref. 1 fail badly, for
some interval of G values. We note also that Eq. (14)
completely fails to reproduce the exact curve. We have
used Eq. (22) to compute this energy spacing, and the
results of this calculation are indicated by the circles in
Fig. 2. These results are extremely good and indicate
that our approach has some merit. We note, also, that
in spite of the formidable form of Eq. (22), the system of
equations is quite easy to solve for the Hogaasen-
Feldman problem. Once we have the occupation proba-
bilities (Vx), Eq. (22) can be solved readily by hand.

Aside from furnishing a severe test of linearization
techniques, the Hogaasen-Feldman problem displays
an interesting phenomenon. For small values of G, the
first excited Ot state is closer to the ground state in

Ol4:10) T [(Nz>(1—<Nz>><alAz*10’>]} (22)
3 LAV (1= (N2){0] A 0')] '

energy than it would be in the absence of pairing forces.
This effect can be understood by examination of a much
simpler system. We consider a system having one pair
of particles. The single-particle levels of the system are
one level at energy zero and N levels at single-particle
energy 3. For this system, we have the well-known
exact eigenvalue equation

1 N
1= —+—|.
=N 1=

(23)

The energy spacing between the two eigenstates, A\, is
given by the equation

M=[1-26(N—1)+GEN+1) T2 (24)

From Eq. (24), we can see that this system shows the
same phenomenon as the Hogaasen-Feldman system.

We note, also, that the spacing AX is minimized by
choosing the value

G=(N-=1)/(N+1)? (25)

and N
AAmipn=—, (26)

N+1

ie, A\min—0 as N— . The causes of the dip
phenomenon are extremely transparent in this system.
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Fi16. 2. Energy separation of 0F states in the Hogaasen-Feldman
model. The curve shows the exact value of the splitting. The
circles are points calculated with the use of Eq. (22). The unit of
energy is arbitrary.
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We have one configuration at E=0 and many at E=1.
As G— 0, the ground-state wave function approaches
Aot|0’) because the energy lowering to be obtained
from the pairing interaction is more than offset by the
single-particle energies of the other configurations. For
the excited state, however, the situation is entirely
different. There are N configurations at the single-
particle energy E=1, and the wave function for the
first excited state can fully exploit the energy lowering
from pairing interactions among these configurations
at no cost in increased single-particle energy. As G
becomes larger than (V—1)/(N+1)?, the ground-state
wave function can exploit the configurations at E=1 to
a large enough extent to make the spacing A\ start to
increase. At the minimum, it is interesting to note that
the ground-state wave function (in the limit N — «)
is of the form

\If—i[A HO—L3 4 *IO’>]] @
RY VN =1 - ’

i.e., there is already a 509, mixture of excited-state
configurations in the ground-state wave function.

It is also interesting to note that this dip phenomenon
will not be restricted to seniority-zero excited states.
Under similar circumstances, one may find that a
seniority-two (one broken pair) state is closer in energy
to the ground state when the pairing constant is nonzero
than the same state would be in the absence of pairing
forces. In the Hogaasen-Feldman system which we have
studied, this effect would occur when one pair is broken
and both of the blocked levels are in either the upper or
lower ten levels of the system.

III. CONCLUSIONS

From the results of this study, it is clear how to use
linearization techniques to obtain some eigenvalues of
the pairing Hamiltonian. It is also clear that a straight-
forward linearization of the type of Eq. (12) is not
adequate. Another note of caution should be raised
concerning linearization methods. Although we might
be able to determine eigenvalues quite accurately by
solving the linear equations given by Eq. (22), we have
no guarantee that the state |a) is well represented by

the relation
la) o 3 Crd,i|0") (28)
&

in general.
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We do, however, have some evidence that Eq. (28)
is a fairly good approximation when |a) is either the
ground state or first excited seniority-zero state of the
pairing Hamiltonian. In Ref. 4, the pairing Hamiltonian
was diagonalized, using essentially the set of basis
states suggested by Eq. (28). This procedure gave
fairly good eigenvalues for the two lowest states. The
energies of some of the higher states, however, were
lowered considerably by the addition of other con-
figurations to the set of basis states.

The general problem which remains to be examined
concerns the Hamiltonian

H=Y eaatar—Y Vinadatara:.
3 il

(29)

For this case, the analog of Eq. (7) is of the form
(emt+ex—N) {a| an'ant|0')
=2 Tijmnla|aila; (1—Nu—N,)|0")

i

+2 Timie] aifanN;|0')+ 2 Tijim(e| afa."N:|0")
[7) %3

+3 Tyinlalaifan'N;|0' )42 Tijnilal afan'N:|0"),
7 o

(30)
where
(31)

and we have not included in Eq. (30) the terms in which
the fermion destruction operator differs from all of the
creation operators. The problems which face us are: (1)
What is the proper way to generalize Eqs. (15) and
(20), and (2) how do we determine the eigenfunction
|0")? Since pairing forces are a large part of residual
nuclear forces, we have some reason to believe that
these problems will be solved and we are investigating
them at present.
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