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Shell-Model Calculations with Separable Potentials
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Shell-model calculations are performed on O' Ca ' Zr", Po", and F' using separable potential forms.
In most cases, the potentials have been htted to low- and intermediate-energy two-body data. The over-all
agreement is quite good, and the calculations are considerably simpler than similar ones using hard-core po-
tentials. Replacing the potential matrix by an approximate reaction matrix offers no general improvement
and produces results which are comparatively insensitive to the potential parameters.

I. INTRODUCTION

EI.OCITV —DEPENDENT potentials have been

~

~

~ ~

studied by several authors, primarily in search of
an interaction which can replace the hard core, and ease
computations. Whether such a potential can actually
simulate a hard core still seems to be in question, ' but
its ability to reproduce scattering data is good. Formal
relations between hard cores and velocity-dependent
potentials have been examined by Belp and Baker. '
They indicate that the form of an equivalent velocity-
dependent potential is more complex than those em-

ployed to date.
Although a nonlocal interaction may appear un-

realistic in certain aspects, there is no a priori reason
why the two-body interaction should be restricted to
local forms involving a central core. Folk and Bonnem4
have investigated the ground-state properties of the
three- and four-nucleon system using several potentials,
and have concluded that the hard core can indeed be
replaced by a velocity-dependent potential.

Short of finding a direct relation between a hard core
and a nonlocal interaction, one must proceed by analyz-
ing experimental data using a nonlocal form, and deter-
mine if such an analysis can at least give as good a fit
as the local form.

The separable potential is a limiting case of a velocity-
dependent interaction. Such a form reduces computa-
tion considerably and has been found capable of re-
producing the low-energy data quite well for bound
and continuum spectra. ' ' It is advantageous in that
the Schrodinger equation is exactly soluble. Some of its
more general properties have also been investigated
recently "

' M. Razavy, Nucl. Phys. 50, 465 (1964};R. M. May, ibid. 62,
177 (1965);B.H. J.McKellar and R. M. May, ibid. 65, 289 (1965).' J. S. Bell, in Proceedings of the Rutherford Jgbilee International
Conferertce, 3Iarscttester, 1961, edited by j'. B. Birds (Heywood
and Company, Ltd. , London, 1961), p. 373.

~ G. A. Baker, Phys. Rev. 128, 1485 (1962).
4 R. Folk and E. Bonnem, Nucl. Phys. 63, 513 (1965).' Y. Vamaguchi, Phys. Rev. 95, 1628 (1954)

&
95, 1635 (1954).

'A. N. Mitra and V. L. Narasimham, Nucl. Phys. 14, 407
(1959), hereafter referred to as MN.' A. ¹ Mitra and J. H. Naqvi, Nucl. Phys. 25, 307 (1961).' V. L. Narasimham, S. K. Shah, and S. P. Pandya, Nucl. Phys.
33, 529 (1962); S. K. Shah and S.P. Pandya, i'. 38, 420 (1962).' V. L. Narasimham, Nucl. Phys. 35, 95 (1962); V. L.
Narasimham and S. K. Shah, ibid. 69, 204 (1965)."J.H. Naqvi, Nucl. Phys. 36, 578 (1962).

» W. H. Nichols, Am. J. Phys. 33, 474 (1965); G. C. Ghirardi
and A. Rimini, J. Math. Phys. 5, 722 (1964}.
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This study is concerned with a shell-model analysis of
elements having two nucleons outside a closed shell,
using a separable nonlocal interaction. The analysis is
based on the assumption that the residual interaction
can be derived from the free nucleon-nucleon potential
as determined by the scattering data and low-energy
properties. As a preliminary study of the potential form,
calculations are carried out using the free interaction
directly, and also using an approximate reaction matrix
in which the Pauli principle has been ignored.

Recently, " a more general separable potential'3 has
been appjied to a shell-model analysis of a few nuclei.
The free potential was taken as the residual interaction,
producing results in poor agreement with experiment.
The potential forms employed here offer considerable
improvement.

Calculations based. on the Hamada-Johnstone poten-
tiaP' have recently been performed on 0"and F"using
the reaction matrix and including some core excitation.
The resulting spectra were in good agreement with

experiment, emphasizing that the residual interaction
can indeed be obtained from the free interaction.

The results obtained here are very encouraging.
Energy-level agreement for the T= 1 cases is good with
the exception of Ca4'. They are in accord with similar
calculations using realistic hard-core interactions. Good
agreement is also obtained with the T=O potential in
the case of P . Only in a few cases does introduction of
the approximate reaction matrix improve agreement.

In Sec. 2, the various forms of the potential examined
are discussed. Section 3 outlines brieQy the method of
performing the shell-model calculations, and Sec. 4
introduces and discusses the form of the reaction matrix.
The results of the calculations are presented and dis-
cussed in Sec. 5.

2. THE SEPARABLE POTENTIAL

The separable form of the nonlocal potential has
received considerable attention in recent years. The
6rst calculations performed using such a potential were
those of Yamaguchi. ' He employed the form

~ C. %.Lee and E. Baranger, Nucl. Phys. 79, 835 (1966).
» F. Tabakin, Ann. Phys. (¹j|.) 10, 51 (1964).
~4 T. T. S. Kuo and G. E. Brown, Nucl. Phys. 85, 40 (1966).
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to study the bound-state properties of the deuteron and
low-energy neutron-proton scattering. With the func-
tional form

g(p) =C(p)+g i/'2'(p)S(P), (2)

where S(p) is the tensor operator and C(p) and T(p) are
functions of p= lpl (Appendix A), parameters were
found which gave good agreement with the deuteron
properties, and with the low-energy triplet eigen-5
scattering data.

Potential forms similar to (1) have been applied to
other spin-isospin states. If g(p) depends only on

p=
l pl, then (1) acts only in the S state. For angular

momentum I, a potential of the form

(ply lp')= —2 I'-'(~„~.)
X I'i" (0. A. )g(p)g(p') (3)

may be assumed. V& causes scattering only for the tth
partial wave, i.e., the potential is completely "separa-
ble."Thus a general potential can be formed by carrying
out a summation over possible I values:

(p I
I'I p') =&(—~~/~) (2l+I)&/(p) ~/(p')F/(p'p') (4)

A very general form similar to this, but which uses a,

combination of two product terms,

—g~(p)g~(p')+hi(p)&t(p'),

for each / value, has been studied by Tabakin. "Thirty-
seven parameters were employed for l =0, 1, 2 to fit the
high-energy scattering data and to achieve saturation
in nuclear matter.

A list of the different potential forms studied here,
with a brief description of the experimental results used
to obtain parameter values, is given in Appendix A. It
should be noted here that all forms have been adjusted
to 6t low- and intermediate-energy two-body data with

the exception of the singlet potentials due to Naqvi, 5

which have been fitted to high-energy (30—300 MeV)
phase-shift data. For example, the triplet-even potential
used. here, which has explicit tensor and spin-orbit
terms, does not reproduce the high-energy eigen-phase

shifts. However, it gives good agreement with the low-

energy properties, and calculations presently being
carried out show that its behavior in nuclear matter is

very similar to Tabakin's triplet-even form.
The triplet-odd potential of Mitra and Naqvi' is

limited to a spin-orbit term. Calculations are also

performed using Tabakin's form. Also given in Appendix
A are the forms of the associated reaction matrices,
which will be discussed in Sec. 4.

3. SHELL-MODEL CALCULATION

The energy levels of certa. in nuclei having two
nucleons outside a closed shell have been calculated.
"J. H. Naqvi, Nucl. Phys. 58, 289 (1964).

Here a is the oscillator parameter

a= (m(u)
—"'

(note that Iz = 1 throughout) . iFi (a; l/; x) is the
Kummer confluent hypergeometric function, and (/z)

=a(/i+1) (/z+zz —1). The quantum numbers «are
those employed by Talmi, with e=o as the lowest
state. The following expressions are particularly useful:

iFi(0; m; /z'p') = 1,
iFi(—1;m; a'p') = 1—u'p'/m,

,F,(—2; m; /z'p') = 1 2a"p—'/m+. a4p4/m (m+1) .

The matrix elements are calculated in j-j coupling

by the usual transformation from the 1.5-coupling
results. Following Moshinsky, " the transformation

r=2 /z(ri —rz), R=2 '/ (ri+rz),
li=- 2 '"(fir —liz), ~= 2 '"(1ii+Pz)

(10)

to relative and center-of-mass (r.c.m. ) coordinates,
which leaves the Hamiltonian and wave functions
invariant, has been used.

I.S-coupling wave functions are readily built up from
the single-particle wave functions in the usual manner:

l
zzzla, zzzlz; &/z)

(llmll2m 2 l
li/z)IInzly (pl) iinzLz (p2)

Pl ]27( 2

X I'/, ,(Pi) I"i, , (Pz), (11)
l
zz&4, zzzlz, JM)

= P (&mismsl J3E)l zzili, zzzlz; X/z)xs s.
m, ),mg

The Moshinsky brackets then give the wave function in

r.c.m. coordinates:

l
zzll1)zz2l2)~) Q (zzil1)zzzlz)& l «,&I,X) l «,A I,X) . (12)

nlXL

6 l. Talrni, Helv. Phys. Acta. 25, 185 (1952)."3.H. J. McKellar (unpublished); see also Phys. Rev, 134,
81190 (1964)."M. Moshinsky, Nucl. Phys. 13, 104 (1959);T. A. Brody and
M. Moshinsky, Tables of Transformation Brackets {Monogra6as
del Institutio de I'isica, Mexico, 1960}.

These calculations were performed in the shell model
with configuration mixing, using harmonic-oscillator
basis functions.

The necessary Inatrix elements are determined in the
momentum representation. The harmonic-oscillator
wave functions can be obtained by a Fourier transform
of the general expression of Talmi. " The result is
given by'~

x- -(p,eA) = 11- (p) I' -(~A),
where

II„)(p)=A./p'e i"z" iFi(—I; l+-,'; /z'p'),

—
2 (l+ 3) —i/2

—/z3/2( ) n ( zs) l

zz!1' (l+-', )
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For the antisyDUnetrized wave function, the transfor-
mation coefFicient can be determined by

(el,XL,X I erlr, n24, &)

= —', (1—(—)r+s+') V2&nl, SI.,X I eglg, e2l2, X),
+lt1++2~2

= 2 (1—( ) r+s+i)&d)Ã1 ~y
I
~,l,~~,l,~X) ~

erlr ——n 2l2. (13)

As an example, consider a central potential of the
folm

(pl i'I p') = —~a(p')g(p)~i(P P'),

In performing the actual calculations, it is necessary
to know the value of the nuclear size parameter a for
the various nuclei. Goldhammer" gives a value of
a=1.7]. F for 0', deduced from electron scattering.
This value has been used for the A = 18 basis functions.

Moszkowski" has given a relation for estimating u,
namely,

~=4~~-»3 MeV,

with a= (nnv) "'. This has been used to determine a
values for larger A. For 0", this estimate gives a lower
result than that of Goldhammer, and it might be
expected to underestimate u for larger A values as well.

Matrix elements of similar potentials have been evalu-
a,ted elsewhere. The IS-coupling result can be written

&nglg&n2l2, JM
I
l

I
nr'lg')e2'l, '; j3E&

Here,

(»lie(p&a(P'&ll~'l'&

OQ

Ii.~*(p)f",(P)P'dP ii" ~ (p')c(p') p"dp' (&6).

(p) p(2n+2) (P2+p2) le kampmdp— —

I' (p)= p""+"(P'+p') " '""'dP (&"l)

z2„(p) = p(2n+I) (p2+P2)-le —~~amp~dp

The erst two of these integrals can be expressed
analytically in terms of the complementary error func-
tion, the third in terms of the exponential integral.

Evaluating matrix elements for the tensor and spin-
orbit forces is more involved, and the results are
summarized in Appendix B.

Since the transformation of Moshinsky has been
employed in carrying out the calculations, one cannot
carry over the potential forms and parameters directly
as given in Appendix A. Rather, one must make the
transformation p -+ p/K2, and replace the coefficient 'A

by ~/2K.

These integrals can be expressed in terms of the follow-

ing three forms:

4. THE REACTION MATRIX

The many-body reaction matrix theory of Brueckner21
and Bethe" was developed to study potentials with
hard cores in nuclear matter. Replacing the potential
matrix t/" by its associated reaction matrix for the
potential forms considered here presents little difFiculty
if an approximate form is used. Calculations" of the
doublet splitting in 0" and Ca", using Yamaguchi's
potential and replacing the nuclear mass M by an
effective mass M*, demonstrated that neglect of the
Pauli principle produced results only slightly different
from those obtained with it taken into account. On this
basis, assuming that neglect of the Pauli principle does
not alter the reaction matrix drastically, "the following
form was employed:

(p I
l'I &) (& I

G
I
p')

+2'* d'k. (19)
P~2 P2

With a separable potential, this form is exactly soluble.
The resulting expressions for the various potentials are
supplied in Appendix A.

Current work in progress shows that saturation can
best be achieved using the even-/ potential forms given
in Appendix A, combined with the odd-l potentials of
Tabakin. " This occurs for a self-consistent effective-
mass value of approximately 0.6M. A11 calculations
have been done using this value.

In most cases, the nuclear energy levels have also
been determined by using the approximate reaction
matrix in place of the potential matrix. This enables one
to study the degree of improvement, if any, overed by
such a replacement. If there were little change, one

» P. Goldhammer, Rev. Mod. Phys. 35, 40 (1963).
S. A. Moszkowski, in Encyclopedha, of Physics, edited by

S. FIQgge (Springer-Verlag, Berlin, 1957},Vol. 39.
» K. A. Brueckner and V/. %ada, Phys. Rev. 103, 1008 (1956);

K. A. Brueckner and J.L. Gammel, ibid. 109, 1023 (1958); K. A.
Brueckner, A. M. Lockett, and M. Rotenberg, ibid. 121,- 255
(1961).

@H. A. Bethe, Phys. Rev. 103, 1353 (1956).
23B. P. ¹igam and M. K. Sundersan, Can. J. Phys. 36, 571

(1958}.
'4 E. L. Lomon and M. McMillan, Ann. Phys. (N. Y.) 23, 439

(1963).
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FIG. 1. Energy levels of 0'
determined using the potential

2 matrix. For comparison are
the results of (a) Kngeland and
Kallio (Ref. 26) and (b) Mc-

— 4 Kellar (Ref. 17). (c) Yama-
guchi's' singlet potential only.
(d} SE and TO: Mitra-Naqvi;
(e) SE: Mitra-Naqvi, TO:
Tabakin; (f) SE: Naqvi, TO:

- 2 Mitra-Naqvi; (g) SE: Naqvi,
TO: Tabakin. (Here SE=sin-
glet-even, TO = triplet-odd. )
Experimental levels are from
J. L. eliza, R. Middleton, and
P. V. Hewka, Phys. Rev. 141,
975 (1966).
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FIG 2 Energy levels of 0" deter-
mined using the approximate reaction
matrix. The reaction matrix results of
Kuo and Brown (Ref. 14) using the
Hamada-Johnstone potential are in-
cluded. (a) SE and TO: Mitra-Naqvi;
(b) SE: Naqvi, TO: Mitra-Naqvi;
(c) SE: Mitra-Naqvi, TO: Tabakin;
(d) SE: Naqvi, TO: Tabakin.
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could conclude that the potential form used is a good,
approximation to the reaction matrix.

The actual mechanics of this work proceed along the
same lines as outlined above for the potential matrix.
However, as well as encountering the integrals X2„, V2„,
and Z2„, one also encounters the following:

TAsl.z I.Matrix elements for 0'8. The erst line corresponds to
the potential matrix of Mitra and Naqvi. The second line was
calculated using the approximate reaction matrix with Naqvi's
singlet and Tabakin's triplet potentials. Kuo and Brown's reaction
matrix values are in the third line.

g (p)p(2++2) (82+p2)
—le—)anyndp

g (p)p {2++4)(p2+.p2)-2&—,'any2dp (2O)

g (p)p(2n+n (p2+, p2) le )e-&n~d-p

Here A (p) is used to refer to the function encountered
in defining the appropriate reaction matrix. The
integrals were evaluated numerically.

5. CALCULATIONS AND RESULTS

The energy levels of 6ve nuclei having two nucleons
outside a closed shell have been calculated using the
potentials described in Appendix A. For the isospin
triplet (T=1) case, the levels of 0", Ca4', Zr", and
Po" are examined. Only F' is considered for T=O.

This case involves only the singlet-even and triplet-
odd potentials.

d5/2~8/2

Sl/2~3/2

—0,55—1.00—0.89

—3.38—1.53—1.47

—0.61—0.85—0.52

—0.88—1.32—0.76
—2.51—3.17—2.28

—1.03—0.56—0.52
—0.65—0.22—0.17
—0.10—0.35—0.21

—0.48—0.70—0.51
—1.02—1.92—1.38
—0.08—0.96—0.59
—0.93—0.72—0.45

—1.48—4.37—3.18
—0.72—1.08—0.62
—2.78
+0.25—0.17

d'3/22

—0.74—0.93—0.63
—0.23—1.01—0.69
—0.27—0.90—0.74
—0.66—0.08—0.03
—0.62—0.05—0.23

This nucleus consists of two neutrons outside the
closed-shell (0") core. These are considered to occupy
the Od5/2, isa/2, and Oda/2 levels, and their interaction
with the core is taken empirically from the level
positions of 0". The 0" ground state is placed at
B.E.(0")—B.E,(0")—2/B.E.(0'~) —B.E.(0")$ where
B.E. means binding energy.

In an atteInpt to study the eBect of improving the
potential, various approximations were employed. The
simplest case was the singlet potential of Vamaguchi.
Here,

(pl l'I p') = —(~./~)g(p)g(p'),

g(p) =2/(p'+p'),
P,=1.254v2&(10" cm ', P '/(7r'A )=8 536

d5/2

~5/2~1/2

—0.35—0.51—0.33

0,19
0.20—0.16

—1.00—1.48—0.97

0.58—0.70—0.03
—0.05

0.22—0.32

These parameters were taken from Pu6."The energy
levels obtained are displayed in Fig. I.

Following this, various combinations of potentials
were employed. The singlet potential of Naqvi" and
the triplet potential of Tabakin" were combined with
the forms of Mitra and Naqvi. ~ These results are also
shown in Fig. 1, and the matrix elements for Mitra and
Naqvi's potentials are presented in the 6rst row of
Table I.

25 R. D. Pu8, Ann. Phys. (N. Y.) 13, 317 (1961).

Figure 2 shows the levels of Q' calculated using the
reaction matrix. For comparison, the levels obtained by
Kuo and Brown' using the reaction matrix without
core excitation terms for the Hamada-Johnstone poten-
tial are also given. These matrix elements are also
compared with the ones obtained in Table I.

In Fig. 1 comparison is made with the results of
Engeland and Kallio, "and of McKellar. "The former

"T.Engeland and A. Kallio, Nucl. Phys. 59, 211 (1964).
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Replacing the potential matrix with the reaction
matrix decreases the level agreement in the cases where
Mitra and Naqvi s triplet form is used, but improves it
for Tabakin's. In fact, the results found using Tabakin's
triplet and Mitra and Naqvi's singlet potentials are
quite good except for the 4+ level, which is low. This
behavior is a function of the off-diagonal properties of
the potential.

The appearance of a negative-parity state (1 ) sug-
gests that near these energies core excitations begin to
play a role. Recently, very good level agreement has
been obtained for 0"by including that state formed by
raising two protons from the pi/& orbital into the d5/2 ol
s&f2 orbitals. ' Such analyses have correctly obtained
three 0+ and three 2+ states below 6-MeV excitation.

N
Op

I

100 200
Energy - MeV

300 Cg42

I IG. 3. The singlet-5 phase shifts from Refs, 7 and 15. The
points are from the VLAM 6t; G. Breit et al., Phys. Rev. 128,
826 (1962).

employed a hard-core potential with short-range attrac-
tion acting only in 5 states, whereas the latter used a
nonseparable form of velocity-dependent potential, both
fitted to low-energy two-body data.

The over-all agreement is good. The best results are
found using the potential matrix and those potentials
which give good agreement with the low-energy two-
body data, i.e., the singlet-even and triplet-odd poten-
tials of Mitra and Naqvi. Replacing the singlet poten-
tial by that of Naqvi decreases agreement slightly. This
should be expected since Naqvi's form was not adjusted
to data below about 30 MeV. The two 'So phase shifts
are compared in Fig. 3.

One means of comparing the energy levels obtained
with the experimental ones is to calculate the total
square deviation 0. This has been done for 0", con-
sidering only the lowest five energy levels (0+, 2+, and
4+), which the simple shell model may be expected. to
fit. Values for a. are given in Figs. 1 and 2. Results ob-
tained using the Brueckner-Gammel-Thaler potentiaP'
give a value of approximately 1.8 (MeV)' for o., while
the results of I ee and. Baranger using Tabakin's poten-
tial and configuration mixing give o~2.3 (MeV)' for
the lowest three levels only.

The results obtained using the potential matrix and
Tabakin's triplet-odd potential are in relatively poor
agreement. This potential form was designed to re-
produce the high-energy phase-shift data, but also con-
tributes to the required P-wave repulsion in nuclear
matter. Preliminary results with the potential of Mitra
and Naqvi indicate that it may not be as suitable in this
last respect. Furthermore, it is only capable of re-
producing the low-energy 'I'0 eigen-phase shift.

'7 J. F. Dawson, I. Talmi, and. J. D. WValecka, Ann, Phys.
(N. Y.) 18, 339 (1962).

Expt. Mitler

pe

3,5

2+

0+
3+
5+

4e

2+

3,5'
4+

+3 p+
5+

4+

4J
X

I

C

llJ

6+

4+

-2'

6+ ee
4+

— 2'

6+
4+
2+

+
4+ 6+

4+

2'

2'
0+

0+

--0 p+

I'IG. 4. Energy levels of Ca4'. Mitler's results taken from Ref. 31.
(a) Yamaguchis singlet potential only; (b) SE: Mitra-Naqvi,
potential matrix; (c) SE:Naqvi, potential matrix; (d) SE:Mitra-
Naqvi, reaction matrix. The last three use the triplet form of
Mitra-Naqvi. Experimental results are from P. C. Rogers and
G. E. Gordon, Phys. Rev. 129, 2653 (1963).

"T.Engeland, Nucl. Phys. 72, 68 (1965};P. I'ederman and
I. Talmi, Phys. Letters 19, 490 (1965).

~9 R. Bock, H. H. Duhm, and R. Stock, Phys. Letters 18, 6i
(1965)."L. L. Lee et al. , Phys. Rev. Letters 10, 496 (1963).

The ground state of Ca" is a ~ level corresponding
to the f7/~ orbital. The first few excited states are found"
to be ~3 (1.95), —,'+(2.02), —,

' (2.47), and 2+(2.68). These
are quite closely spaced. Note that there are two —,

'
levels separated by only 0.52 MeV. This splitting of the
p»& orbital has not been successfully explained to date."

Hence our shell-model assumption that one can con-
sider only the fv/g and p»& orbitals outside the closed
shell is probably faulty, and one should take core excita-
tion into account. With our assumption of no core
excitation, calculations for Ca4' are analogous to those
for 0".The ground state was taken at —3.112 MeV,
and 1.87 F was used as the value of the oscillator
parameter.
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4l
E
I

C

4P
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0-

Exp&.
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4

5"
2+

p't

e+
6+

4 8+—f6'

2
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5o+
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2
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p+

p+
4"

4+
6 p+
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5

p+
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FIG. 5. Energy levels of Zr9'. T: results from Ref. 36; (a) and
(c) SE and TO: Mitra-Naqvi; (b) and (d) SE:Mitra-Naqvi, TO:
Tabakin. The reaction matrix was used in (c) and (d). Experi-
mental values are from D. L. Hendrie and G. %. Farwell, Phys.
Letters 9, 321 (1964).

The results, using a few potential combinations, are
presented in Fig. 4. For comparison, the results of
Mitler" are also shown. Table II gives the matrix
elements together with the effective interaction values
of Engeland and Osnes. "

The levels obtained are in very poor agreement with
experiment. This is a general feature of shell-model
calculations with this nucleus. The low-lying 0+(1.84
MeV) and 2+(2.42 MeV) levels cannot be reproduced
with any realistic potential. The levels obtained by
Mitler were found by adjusting the potential parameters
to reproduce the levels for several Ca isotopes. Good
agreement could not be obtained. The inadequacy of
the potential calculation is also rejected in the large
discrepancy of the matrix elements with those of
Engeland and Osnes.

The anomalies of Ca" strongly indicate that core
excitation will play a large role in the Ca4' spectrum.
Indeed, recent investigations by Federman" have shown
that the inclusion of collective core effects gives excellent
results even with a Gaussian potential and Rosenfeld
mixture. This is in line with experimental work. '4 which
indicates that the second 0+ state is due to core excita-
tion, and that there is considerable interaction between
the two 2+ states. Because of these results, it was not
thought worthwhile pursuing a simple shell-model cal-
culation with this nucleus.

This nucleus has two protons outside a closed shell
(Sr").Only those configurations formed from the 2pij2
and kg~/2 orbitals are considered, with mixing. Single-
particle levels are found from Y", with 6(g9~~—pi(p)
=0.908 MeV,"and a was taken as 2.13 F. The matrix
elements of the Coulomb force were calculated in a

"H. E. Mitler, Nucl. Phys, 23, 200 (1961)."T. Engeland and E. Osnes, Phys. Letters 20, 424 (1966)."P.Federman, Phys. Letters 20, 174 (1966).
'4 J.H. Bjerregaard, H. R. Blieden, O. Hansen, G. Sidenius, and

G. R. Satchler, Phys. Rev. 136, 31348 (1964)."D. M. Van Patter and S. M. Shafroth, Nucl. Phys. 50, 113
(1964).

TABLE II. Matrix elements for Ca".'

~0

E4
+6
g I

E2'
Pp
P2
G2
G4
G2'
g II

II

Engeland and
0snesb

—3.115
—0.887—0.170
+0.166

~ ~ ~

—0.939—0.560
~ ~ ~

—2.037—0.501

Potential
matrixc

—2.50—0.42—0.26—0.18—1.76—0.26
—0.76—0.12
—0.43—0.15—0.14—1.02—0.37

Reaction
matrix'

—2.79—0.69—0.43—0.40—2.26—0.56—0.96—0.21—0.52—0.26—0.31—1.36—0.60

Bg = ((P3/2)2J l Vl (p3/2)2J), J=0, 2
@&=((fz/2)2J l vl (fz/2)'J), J=0, 2 ~ 4f 6
Fz =((fz/2)2Jl vl (p3/2)2J) J=0 2
Gz=((fz/2) Jl vl (fz/2p3/2) J), J =2, 4
G2' = ((P3/2) 22

l V l (fz/2P3/2) 2),
&~ = &(fz/2p3/2) J l Vl (fz/2P3/2) J&. J —2. 3.4. 5

b See Ref. 32.
e The singlet and triplet potentials are those of Mitra and Naqvi.

straightforward manner following the procedure of
Moshinsky. "The results are presented in Fig. 5 and
Table III.

The first obvious feature is the poor level agreement
obtained using Tabakin s triplet-odd potential. The
second is the inability of Mitra and Naqvi's potential
form to reproduce the level separation for the higher-
energy levels and the correct positioning of the odd-
parity levels. Only the correct ordering of the even-
parity states is achieved. There was little difference
between the results shown and those found using
Naqvi's singlet potential. Furthermore, varying u pro-
duced no improvement.

The good results obtained by Thankappan et al.36 are
misleading, as the parameters of the local Gaussian
potential used were adjusted to obtain the best separa-
tion for the 2+, 4+, and 8+ levels.

TABLE III. Matrix elements for Zr".

E~p
I

E2'
g4

~8
Pp

II

p5

Auerbach and
Talmi"

—0.557—1.77—0.57
0.22
0.55
0.79—0.863

Potential
matrix'

—0.49—1.37
0.02
0.11
0.16
0.20
0.37
1.13—0.20

Reaction
matrix'

—0,75—1.59
—0.16

0.01
0.07
0.08
0.41
0.94—0.32

"V. K. Thankappan, Y. R. Waghmare, and S. P. Pandya,
Progr. Theoret. Phys. (Kyoto) 26, 22 (1961).

&o =((pt/2)20l vl (P1/2)20)
&J'=((a9/2)'J I vl (s9/2)'J&, J=0, 2, 4, 6, g
Fo = &(P t/2)'0 l v l (c9/2) 20)

= ((pt/229/2) J l Vl (pl/2g9/2) J)f J 4) S.
b See Ref 37
e The singlet and triplet potentials are those of Mitra and Naqvi. The

Coulomb elements are included.
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Ex pt. K.+ R.

Q
. +

4 2
+ . 4+6

Q+

8+

TABLE V. Matrix elements for F 8 (T=0).'

Results for Naqvi's triplet potential
Central- Spin-

Central tensor Tensor orbit Total

8+6+
4+

2+ 2
a+&+
44

-2
7( 1
I"3
E2'
E3'

—1.856—1..195—2.740—2.775—0.816—1.152—0.888—2.219

0.530
0.259
0
0

0.206—0.044
0.084—0.060

—0.051—0.022
0—0.103—0.024

0.015—0.050—0.010

0.017
—0.043—0.027

0
0—0.023

0.022—0.110

—1360—1.000—2.768—2.878—0.635—1.204
—0.832—2.399

0+

--0 0+

FIG. 6. Energy levels of Po'". K.+R.: results from Ref. 38. The
levels are determined using Mitra and Naqvi s potentials, with
the reaction matrix used in (b). Experimental values are from F.
Schima et al. , Phys. Rev. I32, 2650 (1963).

On comparing the matrix elements vrith those of
Auerbach and Talmi, '7 who performed an eBective-
interaction calculation in the Zr region, one sees that,
with the exception of the sign of Fo, the general behavior
is reproduced, but the potential elements are smaller in
magnitude. The reaction matrix has the eGeet of in-
creasing the magnitude of the negative elements in the
right direction, but has the opposite effect on the posi-
tive elements.

+0210

In this case the two external protons can occupy the
kg/2 and f7/2 orbitals. Bi"' gives 6(f7/2 Ilg/g)=0. 91
MeV, and a=2.45 F was used. The required. matrix
elements are listed in Table IV.

Once again, Tabakin's triplet potential produced very
poor results, and only Mitra and Naqvi's levels are
presented in Fig. 6. The level ordering of the first fevr

levels is correct, but the separation is too small. They
are compared. vrith the results of Kim and Rasmussen, '8

vrho used. a potential without a hard. core, vrhich vras

deduced. from the free two-nucleon potentials of
Blatt and Jackson, and Brueckner, Gammel, and Thaler.

BJ' = ((d~f2)'~ l v l (ds»)'&)
Py' =((s~f2)21 l Vl (s~»)21},
Ii x = ((d5f2)21l Vl (s&f2)21),
&2 = ((ds»)23 l V l (dsf2s~f2)3),

B~' = ((d&f&l.&2)~l Vl (ds»$1/2) J), J=2, 3.

outside the O" core, the ground-state energy was
taken as

B.K.(F")—B.K.(0")—$B.E.(P7) —B.E.(Ois)j
—LB.E.(0'7) —B E (079)]=—5.023 MeV,

and the single-particle separation A(si/g —ds/2) is 0.50
MeV.

Figure 7 shows the results obtained using the triplet-
even potential of Naqvi, '0 and the singlet-odd potential
of Tabakin. These were calculated. using the same con-
figurations as for 0'8. The correct ordering is obtained
and the separation of the lowest three levels is in good
agreement. These results are compared with the reaction
matrix values of Kuo and Brown. Calculations per-
formed using the approximate reaction matrix for the
potentials used here gave very poor results, increasing
the level separation considerably.

Table V lists the triplet-even matrix elements only for
those configurations formed. from the d5~g and st~
orbitals. Configurations vrith d3f~ were included in cal-
culating the energy levels.

The only nucleus to which the singlet isospin potential
was applied. was P'. With a neutron and a proton

TABLE IV. Matrix elements for Po'".

~ Al
v '

X

CS9
L.
v c9

9

LU

122

E,=((&~„,)~J V (e,f,)&J),
EJ'=&(1'7P)'J V (1'F2)'J»
~a= ((/29/2)'~ I ~ I (f7/2)'~&,

GJ=((/29/2) Jl & (//9/gf7/2)~),
G~'= ((f7/2)'~ I ~ (/29/2 f2/2) ~&

@J = ((/99/gf7/2)& I &
I (/99/2f7/2) J)p

J=0, 2, 4, 6, 8

J=0, 2, 4, 6
J=2, 4, 6, 8
J=2, 4, 6
J=1,2, ~ ~ ~ 8

9

5+
Q,),2

» N. Auerbach and I. Talmi, Nucl. Phys. 64, 458 (1965); see
also J. Vervier, i'd. 75, 17 (1966).

'9 Y. E. Kim snd J. O. Rssmussen2 Nucl. Phys. 47, 184 (t963).

Fxo. 7. Energy levels of F'8. K.+B.: reaction matrix values
from Ref. 14. The levels are calculated using Naqvi's triplet-even
and Tabakin's singlet-odd potentials, with the potential matrix.
Experimental levels are taken from A. R. Polletti and E. K.
%'arburton, Phys. Rev. 137, 8595 (1965).
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Fro. 8. The singlet-P phase shift, in
radians, for various potentials. Curve b is
due to the parameters of potential 5 in
Table VI, and curve c is due to potential 4.
The points refer to the YLAM experi-
mental fit; G. Breit et al. , Phys. Rev. 128,
830 (1962}.
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The singlet-odd potential form of Naqvi'5 produces
excessively large matrix elements. This difFiculty was
also noted by Mitra and Pandya" with their form. One
would expect from scattering data and the deuteron,
for example, that the singlet-odd contribution would be
small compared with the triplet-even. The potential
itself seems to be poorly defjLned by the two-nucleon
data, as has been found in the case of the hard-core
potential. "

Table VI, part (a) illustrates the wide variation ob-
tained for two matrix elements using Naqvi's form. The

TABLE VI. Singlet-odd matrix elements.

parameters all give quite reasonable 'P1 phase shifts.
Some of these are presented in Fig. 8.

Introduction of the reaction matrix leads to a con-
siderable reduction of Naqvi's singlet matrix elements,
as seen in Table VI, part (b). They are of the same order
of magnitude as the triplet-even ones. Note the small
deviation of these results with differing parameters,
compared w'ith the results using the potential matrix.

Thus, potentials which give consistently good results
for the phase shift produce similar results for the reac-
tion matrix, but wildly varying results for the potential
matrix. Some of the reasons for this can be seen from the
functions involved. Consider, for example,

1.
2.
3.

5.

(a) Potential
—2.66n 5.8n—9.0n 5.85n—0.3n 4.6n—0.07n 4.2n—5.5n 5.8n

Tabakin's potential'

matrix
0.7
0.7
40
5.0
0.7

14.22
46.91
14.65
6.24

29.40
2.05

3.21
10.55
2.84
1.24
6.63
0.35

1.
2.
3.
4
5.

(b) Reaction
—2.66n 5.8n—9.0n 5.85n—0.3n 4.6n—0.07n 4.2n—5.5n . 5.8n

Tabakin's potential'

matrix
0.7
0.7
4.0
5.0
0.7

1.75
1.88
1.72
1.68
1.87
2.23

0.40
0.43
0.34
0.33
0.42
0.40

See Ref. 13.

39 A. N. Mitra and S. P. Pandya, Nucl. Phys. 20, 455 (1960};
29, 352(K} (1962).' N. Azziz and P. Signell, Nucl, Phys. 59, 444 (1964}.

(Pl ~II")=g(P)g(P'),

for which the reaction matrix is given by

(I'I Gl I")=A (P')g(P)g(P')

A(p')= I+
g'(p")

dapll
p"—p"'

Note that A (p) is a functional of g(p), and as such tends
to have a compensating effect on the variations of g(p).
For example, for fairly large values of p, multiplication
of g(p) by A(p) decreases the value of the function. -For
small p, it has the opposite effect. A (p) remains of the
order of unity for the potential forms used, being
slightly greater than 1 for small momenta, and less
for large momenta.
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It is thus seen that if g(p) decreases slowly with
increasing p, the potential elements can be quite large
and sensitive to its behavior. However, the reaction
matrix, and the phase shifts given by its diagonal
elements, will necessarily be smaller and have much
smaller variations.

This is borne out by the calculations performed using
the 'P» potential of Tabakin. His functions fall oR more
rapidly with increasing momentum than those of Naqvi.
As a result, his potential matrix elements are smaller
than Naqvi's [see Table VI, part (a)j, and his reaction
matrix elements are of the same order.

It would naturally be expected that the level agree-
ment for F" could be improved by using more satis-
factory potential forms; however, the results obtained
with the inclusion of collective states for 0" and Ca"
suggest that a similar treatment be attempted on F".

6. CONCLUSION

The level calculations carried out using a separable
potential and the two-body potential matrix as the
residual interaction give quite reasonable results con-

sidering the limitations of the simple shell model

employed. In those cases (0",F") where comparison
has been made with results obtained using realistic
hard-core potentials, favorable agreement is found for
the low-lying levels. The discrepancy with experimental
results found in each case is due to lack of consideration
of collective states, insufhcient consideration of con-

figuration mixing, imprecise potential forms, or some
combination of these effects. It would also be advanta-

geous if one had more direct means of testing the off-

diagonal behavior of the potential, in order, for example,
that the ambiguities in the singlet-odd and triplet-odd

states could be resolved.
The inQuence which the approximate reaction matrix

had on the energy levels was dependent on the potential
form used. When applied to the smooth odd-state
potentials of Tabakin, the change in the matrix elements

was small. On the other hand, considerable di6erences

were found for Naqvi's 'P» form.
It would appear quite reasonable to expect that

calculations using a modified separable form, similar

to the form employed here, and including collective

motion from core excitation, could give excellent results

for energy-level calculations. The calculations involved

oRer an extreme saving of computation over similar

work using hard cores.
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Triplet-Even

(&I I'"'
I
p') = —~"'/mfa(p)a(V') (A1)

Yamaguchi' introduced two forms. The simplest used
g(p)=(p'+P') ' with /=6. 255n, X"'=33.37n', and
n'/M= 2.225 MeV. The other form included the tensor
force:

g(u) =~(p)+8 '"7'(p)~(p),
5'(p)=3(~i. P)(~2 p) —(~i «),

C(p) = (p'+~')-', 7'(p) = tp'/(~'+-p')',
(A2)

with /=5. 759n, y=6 771n, t.=1.784, and X' '=20 04n'.
In the erst case, the parameters were determined by the
experimental scattering length and effective range.
Values of the deuteron D-state probability and quad-
rupole moment were included in the parameter evalu-
ation in the second case.

(2) To the Yamaguchi tensor form (A2), Mitra and
Narasimham' added a spin-orbit term

—5~~"'/~~2"'(p)»"'(p') (I S)~2(p P'),
(A3)

~ "'(p) =p'/(t"+ p')'

By assuming that the tensor and spin-orbit forces
have the same "range" (i.e., y = 5), exact expressions for
the scattering length, effective range, deuteron binding
energy, quadrupole and magnetic moments, and the
D-state probability are employed to determine useful

parameter values. They give

g(0& =24.1n3, t3=5.8n, t=0.75,

~,«) = —20.1~3, ~=~=6.O~.

By dropping the assumption that y=5, Naqvi" has
taken y=5.8n and 5=12n, and assumed that P=y.
These values, together with X"'=22.9n' and X2("
= —119.15o.', give a good account of the low-energy
scattering parameters, deuteron binding energy, quad-

APPENDlX A

Listed below are the potential forms employed by
various authors, along with the parameter values deter-
mined by experimental data. Included in most cases
are the corresponding reaction matrices. Note that these
are given for the common representation where the
rela, tive momentum is given by p= 2 (pq

—p2).
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rupole moment, and magnetic moment with relativistic with
e8ect included. The spin-orbit force is of short range.

(3) The reaction matrix for the last form is given

by MN.

Singlet-Even

(1) Mitra and Naqvi" employ the form

(p I
l "'

I
p') = 2 (2t+ 1)(—l(("'/M)

t(o(p') = ){0")

tio)(p') =) 0")

t(oo(p') = )(0")

vo())'(p)
do

/2 2

v(&)'(p)
d'p

P~2 p2

voo) (p) v(&) (p)
d p.

p'2 P2

(A9)

using

l=0, 2
(3) Alternatively, Puff'"' gives parameters for Yama-

){0(' ——18.6 ', po
——5.8n vo('& (p) = (p'+po')-'

&(,(') = 10 5n' p, = 5 8n v, (') (p) =p'(p'+po )-'.

P, = 5.42n, ),= 15.12n'.

Triplet-Odd

Mitra and Naqvi' propose the form
These were determined by examining the low-energy
scattering parameters and the p-p cross sections, polari-
zations, and phase shifts at various energies. (Pl l ~'

I

P') =
Corresponding to this,

4~&,(' )

»"' (p)vi"' (p')
Ã

(pl Gi"'
I
p') =~i"'(pl ~")

I p'),

A (('& (p') = L1—(M*/M)l(((" J((p')] '

X p P,.'(p)(L S)l (p'), (A10)

i '"(P)=P(P'+P ')

~&(p') =
())2(pl/)

doplI
1/2 12

), i(i) =0.288n, pi ——6n, determined together with
the parameters for the singlet-even form above.

(2) Naqvi" fits the singlet phase-shift data, using
for l=0:

(P I
l 0")

I
P') = (—) 0")/M) Lvo'" (p)»"' (p')

—t""' (p) v"' (p')],
v (i)(p) (po+p 0)—)

v(1) (p) P2(P2+p 2)—2

~' =4.986,

Po=Po= gn,
and for l= 2,

(A6)

(P I
~o")

I
P') = —5 ()(0")/M)

Xvo '(p)»(' (p')2'0(p P'),
(i)(p) pp (I) ~(p2+p (1)o)—I (A7)

p0") ——8n, )(0")——12.48n'.

),0(~)

D '(L1—(M*/M)t'pol]vo (p)vo (p )3f

—t'L1+ (M*/M)t(o]v (p). (p')+ (M"/M)t't(00

X (v('& (p).o(') (p')+.o('& (p).('& (p') )), (A8)

For l = 2, the reaction matrix takes the same form as
in 1, whereas for l =0,

(p I
Go"'

I
p')

Singlet-Odd

3hz(0)

(Pl V. '" I
P') = — vl") (p)»(" (p')~i(P p') (A11)

3f

With this form, Mitra and Pandya' employ

with
~ ('& (p) =p(p'+p ')-',

X)(0)= 1 7n, —pi.=5n;

whereas Naqvi" fits the 'Pi phase shift using vi"'(p)
=P (vP+Po) —'+ti'P'(P'+ v)0)

—', ){i(0)= —2.66n, ti' ——0.7,
and vg

——vg ——5.8n.
The reaction matrix takes the same form as for Mitra

and Naqvi's singlet-even form.

APPENDIX 8
Here are summarized the matrix elements for the

tensor and spin-orbit potentials. The potential form
(A1) is expanded as

g(P)g(P') =C(p)C(p')+8-'"I C(p)T(p')S(P')
+T(p)S(p)C(p')]+8 'T(p)S(p)T(p')S(p'). (B1)

The evaluation of the central-tensor terms is carried
out in the usual manner, making use of

8—"'S(P)x,= (4or)'" Q Fo"(p)x„, „

X (2vi&vi, —v
I
1m, ) . (B2)
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This leads to the result, in LS coupling,

(nylon, n2l2, X; S;JMl— LC(p»(p')S(p')+T(p)S(p)C(p')5l n 'l ',n, 'l, ',~' S JM)
8

J 1
= —4vS&- L(—)"'+ +'(D'+1)'" Q (n01A, X

l nqlq, n2l2, X)(n'2, ÃX,X'l nz'lz', n, 'l, ',g')
N1 2 nn'N

X (n0llC(p) T(p') lln'2)+ (—)"+~+' (2X+1)'" p (n2, $X',X
l
nql qnql2X)(n'0ÃX', X'

l n, 'l, ',n, 'l, ',g')
nn'N

The same procedure for the tensor matrix element results in

X

(nylon, n2lg, );S; JMl —— T(p)S(-p)T(p')S(p') in/'ly', n2'12', X', S; JM)
835

1 J L 1 J L

X(n2ll T(p)c(p') lln'o)5 (&3)

= —12m (X/M) (2K+1)'"(2X'+1)"'(—)"'+ (n2,EL,X
l
n l,n l,X)

X (n'2, rVL X'
l
n&'lq', n~'l~', X')(n2ll T(p) T(p') lln'2) . (84)

For the spin-orbit term, use of the identity

g Xs„s*FI,"*(p)(L S)FI,"(p')Xs„,——p( )~s'—"&fL(L+1)S(S+1)5' (Sms1ms' msl—Sms')

X(L, v jms ms,—1, ms ms lLv)FI, " (P)Ps."+~ (P) (85)
gives, for the LS matrix element of (A3),

y2(o)
24 (/5)7$ (2/+ 1)~&2 (2y'+ 1)'~2 p (—)~+I+'

M nn'NL

X'

(n2,XL,X l

nial

g,n24, X)
2 L 2 1. J 1

X(n'2 iVLP 'ln, 'l, ',n, 'l, 'P ')(n2ll. ,&' (P).,&'~(P') lln'2). (86)


