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A study is carried out of one of several possible mechanisms contributing to the quadrupole moment of
the first excited (2+) state of spherical nuclei. The possibility of a deformed solution is investigated for a set of
Hartree-Bogoliubov equations describing the 2 state in an angular-momentum-conserving approximation.
In the pairing —plus —quadrupole-quadrupole model, a sharp transition from spherical to deformed density
distribution is shown I;o occur just beyond the value of the quadrupole coupling strength necessary to yield
the 2+ excitation energy.

I. INTRODUCTION
' 'N this paper we continue our exploration of mecha-
- - nisms not contained in current microscopic theories
of spherical nuclei, which may help explain the fact
that the so-called one-phonon state exhibits an appreci-
able quadrupole moment. ' One such mechanism has
been suggested by Tamura and Udagawa, ' namely the
mixing of one- and two- phonon states. A more detailed
discussion of the consequences of previous theories can
be found in the same reference. In the preceding paper, '
a second mechanism, referred to as the self-consistent
blocking effect, which contributes to the enhancement
of the quadrupole moment, is discussed in detail.

Here we shall discuss a third mechanism, which can
be characterized as a Hartree-Bogoliubov calculation
for the excited state. Again we find a self-consistent
deviation from a spherical density distribution for this
state, which indicates the relevance of this mechanism.
But again the calculation is too severely restricted in
scope to stand on its own feet and to be compared
seriously with experiment. It seems clear that a complete
and adequate theory will require an appropriate simul-
taneous consideration of all three mechanisms, but we
feel that a separate discussion will give us some insight
into the more general problem.

Our approach follows the methods developed in pre-

vious papers' on the generalized Hartree-Fock approxi-
mation. The observables of an even A-nucleon system
corresponding to one-body operators can be expressed
(in second quantization) in terms of amplitudes

+,„„(n,I3ES)= (Jp (2—1) l
u.

l IMS(A)), (1.1)

which connect the states of the A-nucleon system with
those of the neighboring (A —1)-nucleon. system. They
thus correspond to parentage coeQicients. In Sec. II
we shall set up coupled equations of motion for the
amplitudes (1.1) and additionally the amplitudes

pgp, *(n)IMS) =(Jpv(A —1) la tlIMS(A —2)), (1.2)

which also enter in a natural way using the pairing-plus-
quadrupole force model. ' Section III gives a discussion
of the approximations necessary to obtain the Hartree-
Bogoliubov equations for the erst excited state of
"vibrational nuclei" and their relation to previous
microscopic theories. In Sec. IV, the solution of these
equations is discussed in detail. Results for the nuclei
Ni" and Cd"' are presented in Sec. V.

II. EQUATIONS OF MOTION

We consider as before a Hamiltonian' representing
shell-model particles interacting via pairing and quadru-
pole forces,

wherei and j are indicesfor the species ofnucleon, proton, and neutron, n= (n„t„j„m,),andn= —n= (n„t„j„—m ).
G and & are the pairing and quadrupole force constants. With this Hamiltonian, the Heisenberg equations of motion
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are' [a= (n.,l„j,)]
[a;,II]=(Ir;+2F„;)a; G—s—a, (g spap;a p;) —X,p F,(a b)sp(j jsnr mpI2q)ap It, ',

P Pq

[a ai—qII]= (b—ai Gi)a—ai sGisaaai(g spapi a—pi )+Xi Q Fi(ag)sa(gagtmtamp I 2q)a —pi its
P Pq

(2.2)

(2.3)

where all quantities are defined in I (2.3)—(2.7). The coupling constants X,; and X,, are connected by the equation

Xg= (5/4s) [E~+s'][X;+s](AjMois)'X;, —= (5j4s)v;v, Xg. (2.4)

The operators in Eqs. (2.2) and (2.3) are arranged in a specific order to facilitate the spectral decomposition into
the amplitudes discussed in the Introduction.

If we take the matrix elements of (2.2) between states
I IMS(A) & of an even nucleus with A particles and states

I Jpv(A —1)) of an odd nucleus with (A —1) particles and the matrix element of (2.3) between states
I
IMS(A —2))

of a neighboring even nucleus and
I Jpv(A —1)), we obtain, respectively, r

[W»(A) —W,„(A—1)—b~;—2F.;]&Ipv(A —1)
I
a.;I IMS(A))

= ——,'G;s. 2 &Jrv(A —1) I a--'In(A —2)&(n(A —2)
I 2 spa p'ap—'IIMS(A)) X'—2 F'(a b)sp(j j sm pl q)

XP &Jpv(A —1) Iap;In(A))(n(A) IA, 'IIMS(A)), (2.5)

[Wrs(A —2)—Ws„(A —1)+b;—G;]&Jpv(A —1) I
a .it I IMS(A))

= —sG's~ p &Ipv(A —1) I a-*In(A))&n(A) I p spap"a p" IIM-S(A 2)&+X—' 2 F'(a b)(j.jam-mpl2q)

XP &Jpv(A —1) Ia p;tIn(A —2))&n(A —2) IIi IIsMS(A 2)), (2.6—)

where WN(B) = &E(B) I
Irr

I E(8)&. The sum over n should be extended over all contributing intermediate states.
However, the number of such states is limited by the fact that the operator h, =P s a „a;carries zero angular
momentum and the other operator Aq' carries angular momentum 2. In terms of the amplitudes de6ned by
Eqs. (1.1) and (1.2), the equations of motion (2.5) and (2.6) can be written in the form

[Wrp(A) Ws. (A —1) b' —2Fui]@span'(i—r, IMS—)
= ——,'G,s, Q [ Q spPr. „„'(P,IMS') 4r.„„'(P,IMS)]pr p„'*(cr IMS') Q[Q X—;, Q F,(c,d)ss

gr J'l~/1ilP I'M'S'qP j yb

X (j .j pm~ms
I 2q) p 4s „,''*(b,I'M'S')0'r „(&,IMS)]F,(a,b)sp(j,j snr mp I 2q)%r„,'(p, I'M'S')', (2.7)

[Wrs(A 2) Wrv(A 1)—+ha—i G;]$r—p„"(rr IM—S)

= —sG,s„g [ P sp%j v „"(P,IMS')Pr „„'"(P,IMS)]%'r„-„'(rr,IMS')'Q[ Q X;;P—F;(c,d)ss
S' J'p'v'P l'M' s' qp j by

X(j.jpm, ms12q) P Pr „- „'(y IMS)rbr. p.„. (b I'M'S')]F';(a, b)sp(j,j sm mpl 2q)&r "(»I'M'S'). (2 8)

In addition to the equations of motion (2.7) and (2.8), we have the following sum rules for the amplitudes 4 and p:
&I'M'S'I &a~it, ap;} I

IMS&=Q [Nr„,"(a,I'M'S')err„. '(p, IMS)+rtpr„, '(p, I'M'S')pr„, "(n,IMS)]

=b,pbrr bsrsi ass, (2 9)

&IMS(A) I P a.,ta., IIMS(A)&=P Ie»„'(BRIMS)
I

=A;. (2.10)

7 Note that we are using two odd systems. If the even system is speci6ed by the total number of particles A, the neutron
number )tr, and the proton number Z, the two systems are L(A —1),X,(Z—1)j, p(A —1),(1'—1),Z). The (A —2) system has N, (Z—2)
or (N —2), Z.
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Furthermore, we have self-consistency conditions for
the energies

W»(A) = (IMS(A)
~
II

t IMS(A)),
Wr s(A —2) = (IMS(A 2)

~
H—

~
IMS(A —2)), (2.11)

III. APPROXIMATION SCHEMES

This experimental guidance is supplied, e.g., by a con-
sideration of the quadrupole operator Q2~. Its matrix
elements between the states

~
IMS(A) ) can be expressed

as

&IMS(A) ~Q„]IM S (A)&

= Z(uiJ Q„'/Pi&Z&IMS(A) f s.,t f
Jp. (A —1))

X(Jpv(A —1) i as;i I'M'S'(A)&. (3.1)

Here (ni~Q~~'tP, & is a shell-model matrix element of
either the E2 transition operator or the static quad-
rupole moment operator.

Having speci6ed a set of single-particle states j„
j~, j„~,the question to be considered is which states
of the (A —1)-nucleon systems contribute to the inter-
mediate sum. For the sake of simplicity we restrict
ourselves to the ground state and the first excited 2+
state of the A-nucleon system. Several situations now
obtain.

If each of the amplitudes in Eq. (3.1) is appreciable
only for one choice of j, we are in the weak-coupling
limit. The states of the (A —1)-nucleon systems can be
classi6ed by the "parent" state of the A-nucleon core
and the hole coupled to it.

I Jpv&= I Jp(j,IS)&.

The dominant amplitudes are then

(Jpv I s. l IMS)=-&Jp(ja, ) I s. l IMS&.

(3.2)

(3.3)

which can be expanded in the same manner as the
equations of motion.

Equations (2.7) and (2.8) here constitute a set of
coupled nonlinear equations for the amplitudes 4 and P*
and the energies WJ„(A —1). The conditions (2.9) and
(2.10) serve as normalization conditions and consistency
checks for the amplitudes.

The only approximation made so far is

(Jpv(A+1)ia tiIMS(A))
=(Jp.(A —1)

~
o.'~ IMS(A —2)),

which is used to obtain (2.9). An exact treatment of
number conservation should, however, be aspired to in
a more complete theory.

Even so, an exact solution of the equations of motion
is a rather formidable task and we have to resort to a
series of further approximations using available experi-
mental information as a guide.

In this limit one finds for the density in Eq. (3.1)

&IMS
~
s.ta, t I'M'S')

Q(IMS~ a»t~ Jp(j,IS)
li~—~l

X&Jp(j.,IS) ~s ~IMS&& s&rr &ss fiMM' (3~4)

It is borne out by our subsequent calculation that the
densities of the ground state and the lrst excited state
are approximately equal in this limit,

(2M ] a»ta» ) 2M) &0—0] a»ta» ] 00), (3 3)

besides the diagonal ones (zero order)

(Jp(j vrs) I o-1IMS) (3.6b)

The notation for the states of the odd system indicates
that one effectively has a weak mixing of the states
found in the previous limit with respect to the core
parentage. The subscript stresses the main core parent.
This limit allows for an E2 transition (of first order) and
as noted in the previous paper, a correction to the
quadrupole moment of the 2+ state of second order. It
can be characterized as phonon mixing in the weak-
coupling limit.

A third possibility arises when there is mixing such
that each of the states

~
Jpv) can be reached easily by

coupling digerevit holes to the same core state. The
dominant amplitudes are now of the form

&Jpv I a-I IMS&=&Jpv(s IS) I a-I—IMS) (3 7)

where the notation of the odd states indicates that there
is mixing with respect to the multiple hole parentage.
This situation can be obtained in both the intermediate-
and strong-coupling limits and can be described as
particle mixing. In this case the angular momentum
coupling of one hole to the core is closely related to that
of the other holes present, and we can thus expect a
coherence effect leading to a permanent quadrupole
deformation.

In the remainder of this article we will investigate the
consequences of the assumption that amplitudes of the
type (3.7) are the only dominant ones. The solution of
the equations of motion then decomposes into separate
problems for each core state. This is clearly not a good
approximation to the physical situation, as the value of

which is the assumption of the BCS theory. Referring
to Eqs. (3.1), (3.4), and (3.5), we see that this theory
does not allow for either a quadrupole moment of the 2+
state or an E2 transition from the 2+ to the ground state.

If one goes on to the random phase approximation
(RPA) one mixes in the (presumably 6rst-order) off-

diagonal amplitudes

(Jp(j vi's') la-lIMS&, (I'S'gI S) (3 6a)
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the E2 transition rate for the 2+ to ground-state transi- forms
tion requires

{2+M
I a.'as I

00)={2+2
I a.'as I

2+2). (3 8) [ ZJ—„; P.—;+aro(A) je,{Jv,a) = «,,e,(Jv,a)

This condition cannot be satisfied with the amplitudes
(3.7) alone. In fact

(2+iv
I a.&a,

I
oo)—=o

in this approximation.
The preceding arguments and the results of Paper I

indicate that a fully adequate solution of the problem
has to include both phonon and particle mixing at the
same level. The results of Tamura and Udagawa' show
that it is necessary to include the e6ect of "higher-
phonon" states. As a typical value of the quadrupole
moment of a "vibrational" nucleus like Cd "4 is approxi-
mately 6 single-particle units, we are in a~ intermediate-
coupling situation.

—ho'u, (Jv,a)+g h g„*{a,b)e;(Jv, b), (4.6)

L
—&,„—~.;+~,(A —2)ju (» a) = —o.;u;(Jv a)

—a, 'e, (Jv,a)+P Ag."(a,b) u(Jv, b), (4.7)

2 le'(», a) I'=A' (4.9)

where

2 j. J
2{I e'(», a) I'—Z(2J+1)

v 2 j- J'

y I
u, (J'v, a)

I

') = —,'(2J+1), (4.8)

J=j.+2, (4.2)

Iv. HaRTRzz-aoGOLIUjjov zqU~TIONs
FOR THE 2+ STATE

It was mentioned in the preceding section that under
the assumption of only "particle mixing, " we obtain
separate sets of equations of motion for the different
A-nucleon core states. For the ground state we thus
retain the usual BCS equations.

For the first excited 2+ state, we then have only
amplitudes of the type

+ ..'(,2q)={Jp (A —1)I -I2q(A))
(41)

pz;, '*(u,2q)=(Jpv(A —1)la .,'I2q(A —2)),

where the states
I
Jpv(A —1))are an admixture of states

of a one-phonon state coupled with a hole (particle).
Therefore, the angular momentum J satisfies

Do' ———,'6, Q u, (Jv,b)e, (Jv,b), (4.10)

2 2 2
Ag„'(a, b) = —25 P X;, P ( )~'+"—

-2c2a J v

2 2 2
r, (a,b) . (4.11)

ga gb

Aq„"(a,b) has the same form as Aq„'{a,b) except.
that e;(J'v', j,), e;(J'v', jz) are replaced by u, (J'v', j,),
u;(J'v', jq), respectively.

If we ignore the difference between ~o(A) and coo(A —2),
Eqs. (4.6) and (4.7) can be solved to determine the

elgenvec tors

where j, is the angular momentum of the single particle.
For convenience, we introduce the following definitions:

eg„=Wo(A) —Wg„(A —1),
(ui (A) = Wr(A) —Wo(A),

2X(A) = W'o(A) —Wo(A —2),
2Xi'(A) = 2K(A)+6, ,

of;= h, +F„—Xi',

E&J„;= —eJ„+Kg'.

with the eigenvalues (—E+~o). Equation (4.8) serves

as a, normalization condition. Equation (4.9) is

used as a check on the solution. Ke shall not in. this

simplified theory utilize the self-consistency condition

(2.11) for the even nuclei energies. With the final solu-

tion one can calculate the quadrupole moment of the 2+

state by the equation

Ke also introduce the reduced amplitudes u and e by
g, =10{2220I22) p ..„' p (—)~+

+z„„'(0.,2q) =s(j Jm u I 2q)e, (—Jv, a), (—4.4) i Jvab

Pzp„'*(u, 2q) —= (j.Jm.—p, I 2q)u;(Jv, a) . (4.5)

Equations (2.9)—(2.12) are then reduced to the simple

2 2 2

JQ
v;F;(ab)e, (Jv,a)e, (Jv,b), (4.12a)
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or, alternatively (to be used as a check),

Q2= —10(2220I22) p e.gj Q (—)'+&''
J'~a&

on J and v. We express this fact by the relations

I
~'"'(»,a) I

'= (&~-'")'s-(2J+1)
I
~""'(J~,a) I

'

I
u, &"(Jv)a) I

'= (Ãg„.&"')'—'(2J+1)
I
u.&"'(Jv a) I

'.
(4.16)

2 2 2
X v;F;(ab)u, (Jv, a)N, (Ju, b) . (4.12b)

The actual solution of Eqs. (4.6) and (4.7), however,
involves a number of subtleties which require further
consideration. The general method of solution is an
iteration process. We determine a reasonable initial
set of values ~&'), I"' to calculate ~2', A.g, ', and A. ,y„"
in the zeroth-order iteration. This set is obtained by
spreading out the solution of the ground-state calcu-
lation Lsee I, Eqs. (3.8) and (3.9)] for each j, over all
the J states

J=i +2, ",li.—2l (4.13)

The ground-state calculation provides at the same time
values for Xi'. In principle, a value of Xi' could, as in
the ground-state calculation, be determined using the
condition (4.9).Because of the approximations involved,
this value would generally deviate from the ground-
state value.

With the calculation of the Hartree-Fock pairing and
quadrupole potentials 6"' and A"' (A"'), we have
reduced the problem to a linear one which can be solved
with standard methods. %ith the usual matrix diago-
nalization process, we obtain a normalization of the
form (the eigenstates are labeled by Jv)

2 LI ~ "'(»,a)
I

'+ lN'"'(J~, a) I'3=1

/ 7."I' J'vs &2)physic@i~ (&~Jvs 2 unphysical p

LP sj (Jp~a)r j (Jp a)jphysjgg[

The superscript indicates the first iteration, the prime
preliminary normalization.

It is a particularity of the pairing Hamiltonian to give
redundant solutions. The selection of the "physical"
states was carred out using the following equivalent
criteria:

Substituting (4.16) into (4.8), one obtains systems
of linear inhomogeneous equations for (1Vq„,&")'. We
have to keep in mind though that the relations (4.8)
involve two approximations, the replacement of u(A)
by u(A —2) and the truncation of the intermediate
sum to a special set of states

I Jpv). The error involved
can be expressed generally by multiplying the right-hand
side of each of the Eq. (4.8) by an appropriate factor
e;&1. A brief investigation showed that the solution
(1V&„,)' can in some cases depend very sensitively on
the values of ~„. For example, a variation of the
inhomogeneous terms by maximally 5% gave a varia-
tion of some of the Eq„,2 of more than 100% in a
model case, adapted to our calculation for Cd'". This
point will be taken up again in the presentation of our
results.

With the properly normalized solution of the first
iteration ~(", z~(" we can repeat the cycle described
above, until the eth solution differs only by a prescribed
amount from the (n 1)th so—lution.

V. RESULTS AND DISCUSSION

Utilizing the approximations described in the previous
sections, we calculated the quadrupole moment of Cd'"
and Ni". All single-particle levels are taken from
Kisslinger and Sorensen. '"

For Cd'", the pairing force constants G; are Axed
at the values of Kisslinger and Sorensen, and the
quadrupole force constants X;; are taken to be X„„=X»
=X„„=X. The quadrupole moment of Cd'" is calculated
for various values of X by using an effective charge
e,ft"——0.8. The results are shown in Table I. We see

TABLE I. Quadrupole moment of Cd'" calculated by means of a
self-consistent theory of the 2+ state. Kith the exception of line
2,' the parameters x;; are all set equal in this calculation, and X
is defined by X=(5/4')b4p, where b is the fundamental length
of the harmonic-oscillator problem. The effective charge for
neutron e.ff(") is taken as 0.8.

) I Q u, '(Jv, a)v (Jv, a)j„.pg,„„,„. i (4.15) X (MeV) g. (10 "cm')

at any state of the iteration. These criteria are in
analogy to the ones used in the BCS ground-state
calculation.

After the selection of the physical states, we have to
connect the normalization (4.14) with the normaliza-
tion (4.8). From Eq. (4.14) we can extract that the
preliminary eigenvectors v' and I' can differ from the
properly normalized ones only by a factor depending

0.034b
See caption'

0.0352c
0.037
0.038
0.042
0.051

—0.00121
—0.00126
—0.00292
—1.83
—1.86
—1.92
—1.95

X&f are the same as those in line 3, Table I, of Paper I. The y value
vms fitted to the energy at the 2+ state using the RPA.

b The X value was fitted to the energy at the 2+ state using the RPA.
& This value was chosen to give a 2+ energy 25% smaller than the experi-

mental value.
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TABLE II. Quadrupole moment of Ni" calculated by
using the parameters G„=0.3 and e,f f&")=1.0.

X yreV)

0.0864
0.0987
O.ii1
0.I23
0.136

Q2 (10 24 cm')

—0.000227—0.000371—0.00390—0.117—0.212

8 V. K. Thankappan and %. W. True, Phys. Rev. 137, O'B3
()9'�}.

a sharp phase transition at about X=0.036. While the
first three lines show almost spherical solutions, the
quadrupole moment increases sharply from almost zero
to a large value within only a few percent change in X,
and then it stays nearly constant for a further increase
of this coupling constant. It is interesting to note that
the value of X which yields co2= 0 in the RPA is 0.0363.
Thus the deformation due to the mechanism considered
in this paper occurs in the range of X where the RPA no
longer yields physically acceptable results. This is an
indication that the particle mixing alone is insufFicient
to produce the experimentally observed large deforma-
tion of the first excited 2+ state (at least for Cd"4).
However, we consider the closeness of the value of X
needed to produce a large deformation to the value
which yields the correct 2+ state energy to be an en-
couragemcnt for a more a bltlous study.

For Ni62, Thankappan and Trues have argued from a
study of Cu" using a core-particle coupling model that
the quadrupole moment of the 2+ state of Ni62 should
be about 0.191 b. Although their treatment may be open
to some question, it is probable that the 6rst 2+ state of
Ni62 has a 1.arge quadrupole moment. The suggested
value of the quadrupole moment again is about the

same magnitude as the quadrupole transition matrix
elemen«0IQ~I». A caicul«ion using X=o1~1,
G„=0.42, and e,i@=I.O, which are normally accepted
values in the RPA, yields Qq+= —0.0424 b. A series
of calculations using G„=0.3 and variable X yields the
results shown in Table II. The small 6 value is used
because of the fast convergence in computer calculation

.and for the purpose of seeing the variation of Q~+

with X. Again we see a sharp phase transition at
around X=0.12.Companng the values of Q2 rn Table II,
we see that the physical values of the force constants
quoted above llc ln the transition rcglon.

%C used the normalization Xg„'=i in the calculation
of Cd'" since the more satisfactory normalization (4.8)
gave imaginary roots for Xg„;. A countercheck of the
normalization (4.8) showed that it was satisfied to
within an average of 15% by the choice of XJ„/=1.
Such diKculty in the normalization should disappear
eventually in a more complete treatment in which the
pMtlclc number conscI'vatlon Rnd 06-diagonal ampli-
tudes are taken into account. However, the tentative
norIIlallzRtlon employed ln this CRsc pI'obRbly docs not
R6ect the quadrupole moment too much. For Ni"
where such diKculty did not arise, the difference in the
quadrupole moments between the two normalizations
was less than 4%.

The results of this calculation and the results reported
in I indicate strongly that both phonon mixing (mecha-
nism of Paper I) and particle mixing (mechanism of
this paper) whould be included simultaneously to
account for the quadrupole deformation of the 6rst
cxcltcd 2+ stRtc of so-called spheI'lcRl Iluclcl. Such a
treatment is possible within the framework of the
general formalism given in Sec. II of this paper by re-

taining off-diagonal amphtudes and higher excited
states, possibly the two-phonon states. %C shall report
oui pI'oglcss lIi such R dllcctlon ln, future pRpcl's.


