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Toward a New Theory of Spherical Nuclei. I*t
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A tentative theory of. the quadrupole moment Q2+ of the first 2+ excited state of spherical nuclei is de-
veloped as a logical extension of the methods used in the usual theory based on pairing plus quadrupole-
quadrupole interaction. In the latter, in which the quasiparticle occupation amplitudes in the ground state
are taken to be of zero order and the oG-diagonal amplitudes connecting the ground state with the 2+ state
to be of 6rst order (and described by the random-phase approximation), Q2+ is nominally of second order.
We Gnd that, in a consistent calculation, the quadrupole deformation is driven by the o6-diagonal ampli-
tudes, but that there is also the possibility of a self-sustained deformation for suSciently large quadrupole
coupling constants. Numerically, one Qnds ranges of the latter, all in accord with the excitation energy and
the E2 transition probability, for which Q2+ shows extremely rapid variations, and in particular, also assumes
values sufBciently large to contradict the whole basis of the calculation. The need for a self-consistent
intermediate coupling calculation is indicated.

I. INTRODUCTION

ECENT measurements of the quadrupole moment
of the first excited 2+ state' of Cd"' and of other

so-called spherical nuclei' have yielded rather large
values compared to a priori expectations. Qualitatively,
the results can be summarized by the statement that the
static quadrupole moment is comparable to the transi-
tion quadrupole moment to the ground state. This is
certainly incompatible with the traditional semiclassical
picture' of the 2+ state as a quadrupole surface vibra-
tion about an equilibrium spherical shape. It appears
also to be inexplicable by existing microscopic theories, '
in particular by the usual mixture of HCS theory plus
random-phase approximation (RPA). ' In this and in

the following paper, we begin the quest for a revised
theory. The aim of the present work is modest: It is to
show that with appropriate methods of investigation, '
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one need go only one step beyond existing ideas to en-

counter mechanisms capable of producing a permanent

deformation of the 2+ states.
The mechanism studied in this paper may be referred

to loosely as the self-consistent blocking effect. Here %e
mean by blocking any physical eRect, which will serve

to distinguish two states whose essential properties are

otherwise identified in some well-defined zero-order

approximation. Thus, the usual theory assumes that in

zero order the 2+ state can be characterized by the same

average (spherical) density and the same energy gap as

the ground state. In first order, we encounter the oR-

diagonal density matrix and gap function, which are

determined by the RPA in an approximation which

explicitly incorporates the zero-order assumptions. Our

purpose is to investigate the leading nonvanishing cor-

rections to the density matrix of the 2+ state which dis-

tinguish it from the ground state; these first occur in

second order.
The core of this work is Sec. V, where this investiga-

tion is carried out. In fact, we compute the reduced

quadrupole moment directly. It is ostensibly of second

order in that it: is driven by terms quadratic in the (first-

order) off-diagonal density. However, because we are

studying perturbations of basically nonlinear equations,
we find that the quadrupole moment is in part induced
self-consistently and this accounts largely for the rather
striking results reported in Sec. VI.

In the next section, we essentially continue and com-

plete the Introduction, though in a more technical vein.
The following two sections contain brief treatments of
the ground state and of the RPA, before we turn to the
subject of primary interest.
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II. FUNDAMENTALS AND OUTLINE OF
PROCEDURE

We study the Hamiltonian of K.S.,'

I'I=K &aiaai aai g Z Gi(saaai a—ai )(spa—piapi)
iap

tion. A more general discussion is to be found in the
following paper.

In beginning our study of the ground state, we suppose
as in the usual theory that the dominant single-particle
amplitudes are those which carry us to the single quasi-
particle states

I n;),

—k 2 X'Qe'Qe" —kx ~ Z(Qe"Q."'+Qa"Qa"'), (2 1)
qi

(uila. ;I0)=s.i.;,
(nila .;tI0)=u.;

(2.8)

where i= p, n for proton and neutron, respectively,
n= (nlj m ), s„=(—1)',n = (nl, j„m,= —m ), and
the quadrupole operator

Q, 't=Q F,(ab)sp(abm mpI 2q)a, tap, (.2.2)
ap

For typographical reasons, subscripts n, p, are
printed as n, —P,—

For harmonic-oscillator shell-model wave functions,
F,(ab) is defined by the expressions

(ail "I'2a
I pi) —=e(abm. ms I 2q) (aill" I' s I »)

(aillr'Y2llbi) —= v;(5/47r)'i'F (ab) (2.3)

v, = [S,+-,'](b/Mcop),

where coo is the harmonic-oscillator frequency, Acro—41/A'i', M is the nucleon mass, and S is the prin-
cipal quantum number of the shell considered.

The following equations of motion are easily obtained:

[aai~II1 (bai+Fai)aai gG'isaa ai Z —spa—piapi
p

—X;g F,(ab)ss(abm msl2q)as', ', (2.4)

[a aitqII j -(bsi Fai Gi)a—ai 2Gisaaai P apita pit-
p

+X;g F,(ba)( )sp(abm mpI2—q)a p; A, ', (2.5)

where
F,„—=-',X,P 5F,s(ab)/20. ,

p

2Q, = 2j,+1,
h, '=Q, '+X„~'Qj', iWi',

x„„'=x.„/x;.

(2.6)

(2 &)

Our major endeavor is to extract information from
selected matrix elements of Eqs. (2.4) and (2.5) and
from associated normalization and consistency condi-
tions. These matrix elements, of which there will eventu-
ally be a fair number, are all associated in some well-
defined. manner either with the ground state IO) of a
given even nucleus, or with the 6rst 2+ excited state

I 2,q), where q is the magnetic quantum number. It may
clarify matters if by way of further introduction we
collect and de6ne the relevant amplitudes used in this

paper, as well as state briefly their role in the calcula-

By failing to distinguish between two adjacent even
nuclei in (2.8), we are of course, making the BCS
approximation. In what follows, it is natural to consider
these quantities to be of zero order. The subsequent
examination of corrections to the lowest-order equations
brings in two additional sets of amplitudes. Explicitly we

encounter the quantities [8(abc ~ .)= (—1)&'+&'+&'+"')

(~il a,, l Iq) = 0(ab) (abm. m, l
2q)..b'(I),

2.9
(nil a p, tlIq) = e(ab)sp(abm msl2q)u. i„(I).

The first amplitude, for instance, describes the possi-
bility that if we start with an excited 2+ state (I refers
henceforth to any one of these, not necessarily to the
lowest one), we thereby deexcite the core and end in one
of the quasiparticle (hole) states. With these as with
subsequent amplitudes, the rules of angular-momentum
coupling must be enforced.

Relative to the amplitudes of (2.8), we suppose
throughout this paper that the quantities (2.9) are of
6rst order. Equally of first order are the amplitudes

((Ib)u;I a, l 0)=s (5/20. )'"e,'(Ib),
2.10

((Ib)ci; I a, &
I 0)= (5/20, )'~'u. '(Ib) .

In this case we start with the ground state and end up
with a state

I (Ib)n, ) which we interpret as arising to a
good approximation from core-hole or core-particle
coupling. When we study the equations for the two sets
(2.9) and (2.10),we discover that in a linearized approxi-
mation they yield a version of the RPA. We subse-

quently find that the quadrupole transition amplitude
is linear in these quantities, whereas corrections to the
BCS amplitudes (2.8) are quadratic.

Finally, to investigate the average quadrupole mo-
ment in one of the states

I Iq) (the major aim of this
work), we study the equations for the "diagonal"
matrix elements,

((Ia)P'Ia 'IIq)= (2aqm Ibm')s, v —'(b)r,
(2.11)

((Ia)P; I
a;t

I Iq) = (2aqm. I bms) u—.i'(b) .

These should be the dominant core-hole, core-particle
matrix elements according to the usual theory. Indeed,
if we temporarily discount the existence of static quad-
rupole deformations in the states IIq), then in zero
order w, r', u r, (b) are independent of b and equal to the
ground-state amplitudes e„, u„of Eq. (2.8), respec-
tively. As in the case of the latter, the corrections are
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ostensibly of second order in the small amplitudes
(2.9) and (2.10). Though many of the corrections are
the same as those operative for the ground state, there
remain terms for which the different angular-momentum
coupling and different transitions available from the 2+
states make their weight felt and a nonvanishing static
quadrupole moment can be induced, not only, it ap-
pears, as the direct second-order effect of the fluctuating
quadrupole moment associated with the RPA, but also
as the result of a self-consistency requirement which
makes the induced quadrupole moment, in fact pro-
portional to itself.

A closer inspection of the expansion for the quad-
rupole moment reveals, moreover, the intervention of
one further set of amplitudes, namely,

((Ib)y; I
a„I Iq)=—s (2aqm, I cm„)u, '(Ib, c),

(2.12)
&(Ib)y, I

a;&
I
Iq&= (2aqm —

I
cm )u, '(Ib, c),

where u/b. Thus we recognize the possibility that a
given state 1(Ib)p,&, though mainly of a character indi-
cated by the notation, may nevertheless be partly
composed by coupling to the core state II) a particle
in a subshell other than b. The equations of motion for
the amplitudes (2.12) indicate that these are of second
order and that they, too, are in fact driven by the quad-
rupole amplitudes themselves. Altogether, we obtain
Anally a pair of linear equations for the neutron and
proton reduced quadrupole matrix elements. This is a
direct consequence of the fact that our starting equa-
tions mere nonlinear. As me shall see, this central for-
mula of our paper yields numerical results strikingly
different from that associated with the RPA itself.

III. THE GROUND-STATE
PROBLEM (PAIRING)

Taking a matrix element of (2.4), we have (the W are
total energies)

LW, (A) —W., (A —1)—h.;—F.,j(-21a., I 0)
= —2Gi Q SasP(up la aita PiaPi10)

P

where the sum is over states of angular momentum 2 and

~r*= (Iql jt;&I o). (3 4)

Utilizing the definitions (2.8) and (2.9), we consequently
find for (3.1), and by a similar procedure for the matrix
element of (2.5), the following equations:

L~ai pai]uai +ipai Faiuai

1X, P 15F;(ab)j20 ]u,0'(I)Ar', (3.6)

wherein E; and ~„.are de6ned as usual,

E„=W.,(A —1)—-,2LWp(A)+ Wp(A —2)]+-'2G,

0„=h.;—&(), 2&(2
——2&(+G, (3.7)

2&(= Wp(A) —Wp(A —2) .

In what follows, we treat the quadrupole coupling
as a perturbation. For X,=o, (3.5) and (3.6) reduce to
the usual BCS equations,

(0)+0,(0)]p (0) g.(0)u, (0)

I
g .(0) 0 , (0)ju , (0) g (0)p (0)

(3 8)

Subject to the normalization condition,

.(0)2+2) .(0)2—1 (3 9)

we can deduce the well-known consequences. ' What is
essential for the further development is that if the
physical solution of (3.8) (positive E„)is written

p ,(0)i

,.(0) =
u. ;(0)j (3.1o)

then the other solution has energy —E„and a mave
function

t Fai+ pa' jpai = i-iiuai Fai()a/

—X, P I 5F;(ab)/20a1 pa 0'(I)Ar', (3.5)

—X;P F;(ab)sp(ab2)2 mp I 2q) ((221 ap&p'10) ~ (3 1)
gp

u,.(0) i

pr $,.(0) =
p, (o))

(3.11)

To evaluate the first term on the right-hand side, we
note that the operator h, =g s a;a; carries zero
angular momentum and thus connects only states with
the same spin. Neglecting seniority-zero excited states,
we therefore get

&-21 a .,t~,
I o&=&a; I

a .;&I o&&o I
~;

I o&& I
~,

l o)
=~,(~pl a .,tlo). (3 2)

On the other hand, since h.,' carries angular momentum
2, me And for the second term

orthogonal to (3.10).
As the prototype of the somewhat more elaborate

considerations necessary for the excited states, we shall
study briefly the leading corrections to (3.8)—(3.10).
To the required order, we write

= (1+-'22&.,)p.,(0)+c., (prpp. ;(0)) (3.12).
gas

&~'I ap'~, 'I o&=2 &~, I ~p'IIq&~r'( —1)',
&o I Ca.;,a.,tj+ I 0&=1. (3.13)

The normalization constant g„. is calculated from the
anticommutator

3.3
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For example,

«la-'a-lo)= «la-"I ')& 'la-Io&

+E(ola.,tl(Ib)~;&((Ib)~, la. ;lo&. (3.14)

%e erst study the equations of motion for the
amplitudes (2.9). With the definition

Recognizing the amplitudes (2.10), we find from (3.14)
and from the commuted product that (3.13) becoznes

[with azi obvious definition —compare (3.10)]

Eq. (2.4) yields

[&oz E.;—oo, —I o,—](&)&,I ap; IIq)

= —-,'G, g sps, ( .;I a p, ta „a„lIq) X; Q—F;(bc)s,
5

0-4-+ — — Z 4.*(Ib)4.'(Ib) =1.
2Q

(3.15) y (bcmpm, l
2q')(n, la„Ii IIq). (4.2)

Substituting (3.12) and keeping only linear terms in

)&, or c„(there are none of the latter here), we derive

Ke shall in fact limit ourselves to a linearized version
of this equation. In the approximation to be considered,
we set

5
(Ib)0''(Ib)

I b 2Q
(3.i6) A, (II)= ', G;Q s.-(Iq.

l
a .,a.; IIq)=h, &o), (4.3)

To find c; and, incidentally, 0E„,where

(3.1't)

( I a, '&"IIq& =Z( 'I a.*II'q"&&I'q" l~''IIq&

—bh, u.,&o)+F. o.,;&'&++
Ib

5X,F,(ab)
v„j (I)Jtz*

5X,F, (ab)—bk v~ & )+F u &")—Q u '(I)A '

20.
(3.i9)

is the perturbation. Here we have recognized that the
self-consistent potential 6; must also change,

we write (3.5) and (3.6) in the condensed form, using
Pauli matrices,

F...p. ,= (—...&».,+z~, &o).,)p. ,—&&. , (3.1S)

(-, la„lo&(olii, 'IIq) 6(ay)8( q'q) s. .o," )zi'z(4.4).

Counting the a,mplitudes (2.9) and (2.10) as first order,
it is not dificult to ascertain that the corrections to
(4.3) and (4.4) are two orders smaller than the terms
retained. Equation (43), in particular, emphasizes
that our initial treatment neglects the blocking ef'feet.

By means of (4.3) and. (4.4) and of similar approxi-
mations applied to Eq. (2.5), we obtain the pair of

equations:

[&o E&"—o —")]it '(I)= —6 &"u '(I)
+X;F,(ab)o.,&o)Az', (4.5)

[&o E, &")+o &"]u '(—I)=—6 &')s '(I)
XF (ab)u &"—Az' (46)

For the amplitudes (2.10), we obtain similar equations,

With the help of (3.12) we find to first order

(3.20) [o)z+Eo,&"+o.,&o)]v.'(Ib) = tI&, &'&u.*'(Ib)

+X;F,(ba)oo, &o)Az', (4.7)

2E,O))c,—P,&o) (pro)& ~)

p, &o)X, .

(3.21)

(3.22)

and, after a short calculation, utilizing the definition
(3.2),

[ +E &o),&o)] '(Ib) 6 &o) '(Ib)

X,F,(ba)uo, &o)ttz—', (4.S)

if we suppose, from the definition of the state
I (Ib)&zi&,

that its energy is given, consistent with the current
approximation, by

b~'= oG' E (o Z k.'(Ib)»4"'(Ib) W (Ib) Wo+Eo+o&z. (4 9)

+Q,[)&„P„&o)rz))t, &o) —2c„g,&o) ryP„&o)]) . (3.23)

Comparing (3.19), (3.21), and (3.23), we see tha, t in
virtue of the change in the self-consistent potential 6;
Eq. (3.21) is not yet an explicit solution for c„.The
latter is, however, easily found. Ke omit the result,
since it is not required ..in any. of our calculations.

From (4.5)—(4.8) it is not dificult to deduce the well-

known phonon dispersion relation of the RPA, if we

notice from (2.7) and (3.3), that hz' is a linear combina-
tion of the quantities

Qz*=—(Iql Q."10)=EF'(ab)

X[e(ab)o„&o)oo.'(I)+ ...&o)ob'(Ia)]. (4.iO)
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We find after some algebra, the dispersion equation': which we. unite with the definition

[EP (ub) —(o'] ',
g, (ub) —+ (0)+go, (0)

(4.12)

The excitation energies are thus determined from
(4.11). To normalize our amplitudes, we utilize the
energy self-consistency condition

P((u') = [1—XQ, ((o)][1—X„S„(cq)]
—X„„'S~((a)5„((v)=0, (4.11)

where

S (~) =Q F'(ub)E, (ub)(u, &'&mt, &'&+up. &'&z &")'
ab

t' e-z'(b)
Az'(b) =

I

ku.z'(b)
(5.1)

In order to maintain a firm hold on the chain of argu-
ment we restrict ourselves in this section mainly to
results. If we write the energy of the state

I (Iu)Pi) as

W,z'(b) = Wp+F.„+arz+8F,z'(b), (5.2)

we ultimately obtain by the methods exposed in the
previous sections for the quantity (5.1) the following
equation:

~i= ~r—&~0 (4.13) [&.+8&..'(b)]a"'(b) =[—".""+A.'" ]& (b)
—x„—x,z'(b), (5.3)

Several examples of this kind of calculation have been
carried out in our previous work' and we shall therefore
omit the details. The result is

coz=-,' Q g s.'(I)[E.,&'&+e.;&'&rs —6,"'rz]Pbg'(I)
ab, i

+P '(Ib)[E.;"'+e. "&r —6 &'&r ]g '(Ib)}

where x„is given by Kq. (3.19) and

xgz'(b) = —86~(I)(rzf~~z ~)—(5/20b)X~F~(ub)Az~r fy'(Iu)

—X, P 58(bb') W(2bb'2)uu)F, (ub')Az'r3lf gt, '(I)

+X,58(ub)F, (uu)W(2u2u, b2)(IIIA'III&ryP„"'. (5.4).

—Q X,Qz'Az'. (4.14) I„K (5 4)

Since part of the proof of Kq. (4.14) involves the demon-
stration that

Qz'= X,S;((vz)h.z', (4.15)

e,= (1+e.„)(e),
e~=eat(e)

&

(4.17)

and e,f~ is chosen to fit the experimental value. We shall
then utilize the same value to study the static quadru-
pole moments of the one-phonon states.

V. STATIC QUADRUPOLE MOMENT OF
'

THE ONE-PHONON STATE

We come now to the essentially new part of our work.
We shall first study the relevant aznplitudes (2.11),

:. 'The proof is similar to demonstrations carried out in both
papers cited under Ref. 6.

we see from (4.9)—(4.14) that &oz is a known quadratic
function of AI', which is then determined up to a sign.
Returning to (4.9)—(4.14), the random-phase amplitudes
are similarly determined. It can be shown that the con-
dition (4.14) is equivalent to the usual RPA normaliza-
tion condition. ~

Finally, we add that from the results of this section,
in particular from the Qz', Kq. (4.10), we can calculate
the E2 transition probability from a one-phonon state I
to the ground state

5
B(E2, I +0)=—IQ e, v,Qz'I'—,

4x

where e, is the effective charge of nucleons of type i,
namely,

J(even), J(odd)
2 (2u+ 1)(2J+1)W (22bc,Ju') W (22bc,Ju)

b (uu') + (2u+1)8 (bcuu') W (2bc2,u'u), (5.10)
'See, for instance, A. R. Edmonds, Angular Momentum sn

Quantum Mechanscs (Princeton University Press, Princeton,
New Jersey, 1957).

9 A version of this formula has been given by Rottenberg et al. ,
in Tlze 3j and 6j Symbols (Technology Press, Cambridge, Massa-
chusetts, 1959).

bA (I)= A (II)—A ~'~ —8A (5 5)

(Iq"
I
A'"

I Iq& = (22qq'I Iq") (IIIA'III& (5 6)

Both of these quantities, so far unknown, will be
computed below.

The comparison of (5.3) with (3.18) and (3.12)
suggests that a solution to the first may be written as

4.z'(b) =P-+2n.z'(b)4. "'+c.z'(b)z'r2$-'", (5 &)

where f„is given by (3.12). The extra normalization
constant g,z'(b) is determined from the anticommutator
condition

(Iql Lu-, u-']+ IIq&=1 (5 g)

This leads, after some calculation to the following
result:

5
ri.z'(b) =-

tabb. '(I)~..'(I)+Z»(bc)
20'

XW (2bc2, uu)P (Ic)P,'(Ic), (5.9)

where 8' is the original Racah coeS.cient. ' In reaching
this result and others to follow, we make use of the
relations'
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where the upper sign goes with J(even) and the lower
with J(odd).

On the other hand, c,z'(b) and 8E,z'(b) are deter-
mined from Eq. (5.3) as follows:

The calculation of the contributions from the one-
phonon states, however, requires special care. For this
part, we have for u=b,

(Iq"
I a-'as'I Iq& (Iq"

I
a-'I (Iah')

X ((Ia)y, I
ap, IIq), (5.16)(5.11)2E„io&c,z'(b) =P„io&[irm&t.',z'(b)],

E"'(b)= —0-"&X.z'(b) (5.12) which results in the following contribution to (5.14):

In order to evaluate the right-hand sides of Eqs.
(5.11) and (5.12), we must, according to (5.4), evaluate
the quantities defined by (5.5) and (5.6). For the former
we 6nd

» (I)= lG' 2 4.'(I)rid. '(I)+4.'(Ib) rA"'(Ib)

2Qb
+ [gz'(b)P, P&rip, P& —2cz'(b)P, P&ryg„i &] . (5.13)

5

As to the quantity (IIIA.'III&, we shall study it in a little
more detail, since it is the cere of this work, and because
the analogy with previous calculations is not complete.

Ke begin by calculating the quantity

&iq"
I
Q''"

I Iq) —=2 F'(ab)sz&(abm rN»
I
2q')

X(Iq" Ia.,t;, IIq&, (5.14)

which is linearly related to the quantity of interest.
For the contribution from zero- and two-phonon inter-
mediate states, we get easily

—-', P 58(ac)F, (ab) W(2a2b, c2) (22qq' I
2q")

abc

X[/,.'(I)rip, i'(I)+P.'(Ic)r3gi'(Ic)]. (5.15)

——', P F;(aa) (20,)8(ac)W(2a2a, c2) (22qq' I
2q")

XLn.z*(c)A-"&rsvp-"&+2c.z'(c)k-"'ra@'"&] (5 12)

For a/b, a new type of particle nondiagonal matrix
element is involved, namely, that defined in Eq. (2.12).
We have, for example,

&Iq" I a-'as'I Iq& = &Iq"
I a-'I (Iahi&&(Iahil as'I Iq&

+&Iq" Ia "I (Ib)v' &((Ibh'Ias'IIq& (51g)

Utilizing Eq. (2.12), terms of the form (5.18) can be
shown to contribute to (5.14) the amount

F(ab) [z&ir, '(I b)
—ui„s, '(Ib)](22qq'I 2q"), (5.19)

where

r '(Ib) =—P 8(bc)20,W(2a2b, c2)zt, '(Ib, c),

s,'(Ib)=g 8(bc)20,W(2a2b, c2)u, '(Ib, c). (5.20)

By studying the equations of motion for these
quantities we shall ascertain that they are of second
order. The equations sought can be obtained by now
standard methods, and we find in lowest approximation

(E&,;+e„)r, '(Ib) =&;s,'(Ib) —X;F,(ab)z&&,

;(Illa'.

'III)+X;P SF;(ac)8(bc)W(2a2b, c2)Az'[z&, '(Ib) —
z&i j(I)],

(Ei„—e„)s '(Ib)=dr, '(Ib)+X F,(ab)u&, ;&IIIA'III& X; P SF,(ac)8—(bc)W(2a2b, c2)Az'[u '(Ib) —u&„'(I)]. (5.21)

We see indeed that the "driving terms" of (5.21) are, according to our assumptions, second order. The total
contribution (5.19) is then of the same order as the previously computed contributions (5.15) and (5.12). Alto-

gether we find

(IIIQ'III)= —
~ Q 58(ac)F;(ab)W(2a2b, c2)[P,,'(I)ref, i,'(I)+$,'(Ic)ryg '(i)I]c2+ F;(a—a)20,8(ab)W(2a2ab2)

X[» z'(b)P 0&ref„i &+2c,z'.(b)f„io&rid„io& QF;(ab)[z&i, r—,'(Ib) —ui, ;s '(Ib)]. (5.22)
agb

From this expression we obtain &Illa', III& by means of the equation

= &IIIQ'III&+ x„,'(IIIQ" III (5.23)

The most important observation of this section is that we can solve (5.22) explicitly for (IIIQIII&. First of all,
from (5.9) we find

Z 8(ab)(2b+1)W(2a2a, b2)rz z'(b)= 5 Z 8(ab)W(2a2a b2)[pi '(I)P&~'(I)+P '(Ib)P~'(Ib)] (5 24)
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From (5.4) and (5.11) we find in turn"

P 8(ab) (2b+1)W(2a2a, b2)2c~r'(b) =P 8( ab) (2b+1)W(2a2ab2)g„~ 0&[ir 2X r'(b)]/E„@&

= (F..;)-'P.;»i r2[Ej (a)+E2'(a)+Em'(a) (IIIA'III&], (5.25)

where the two-column matrices E~ and E2 are given by

'-X;Q 58(ab)W(2a2a, b2)F;(ab)[eg'(Ia) —e,g'(I)]Ar'
b

X;Q 58(ab) W(2a2a, b2)F (ab)[ug'(Ia) —u, p'(I)]&r' (5.26)

E2'(a) =X;F;(aa)r 8&.;"&.

Noting that (5.21) can be written in the form

r.'(»)= ~,—.*(»)+~,:(Ib) &Illa''III&,

s '(Ib) =—Si,'(Ib)+S2, '(Ib) &III&'III&,

Eq. (5.22) takes the final form to be recorded

&IIIQ III&+ &Ill~ III&f 2 Z F;(aa)4.;"&mt.;"&~.;-'&.;"&~r,E, (a)+ Z F;(ab) C»&,.(Ib)—u„s,.(Ib)])

(5.27)

(5.28)

= ——', P 58(ac)F;(ab)W(2a2b, c2)g«'(I)r3$, '(|I)+&t~'(Ic)rygq'(Ic)]
abc

+2 Q F;(aa)58(ab)W(2a2a)b2)g, g&r»f„&'&gb, '(I)gb, '(I)+$,'(Ib)P, '(Ib)]
eb

—g F;(ab)[eqQq '(Ib) —uq;S~, '(Ib)]—-', Q F,( a)aP„&'&r f„&' &F.0„'P„&'&[irE2~'(a)]. (5.29)

2=-2 e, ,&IIIQ'III)(2222 I 20), (5.31)

where in the erst version the subscript "op" refers to
the second-quantized form of the operator for the type
of particle in question.

Vl. RESULTS AND DISCUSSION

The main new result of this paper is the expression
(5.29) which determines the quadrupole moment of the

' Considerable simplification results here from the relation
gf, 8(ab) (2b+1)8 (2a2u, b2) =0, see Ref. 8.

With (5.23), (5.29) constitutes a pair of linear inhomo-
geneous equations for the (IIIQ'III& which can be solved
explicitly, since all coefficients and the inhomogeneous
term are known either from the BCS theory of Sec. III
or from the RPA of Sec. IV. The results of Eq. (5.29)
will be compared with what is normally taken as the
RPA value, 4 which in our notation is

&IIIQ'll» = —-' g 58(ac)F'(ab) W(2a2b c2)

&&CP..*(I).,P„*(I)+4.'(Ic).,P,'(Ic)]. (5.30)

In terms of these quantities, the quadrupole moment in
the state J, the observable of interest, is given by the
formula

1 16m~'"
Qr=-

I
2 e'&III Cr'F2o]..'III)) ~=a, p

first excited 2+ state of "spherical" nuclei according to
an apparently well-defined approximation method. In
(5.29) we have a pair of linear inhomogeneous equations
in which the driving terms are indeed of second order
and the determinant of the coeKcients of zero order.

We must 6rst ask whether the solution of (5.20) is
guaranteed by the nonvanishing of the determinant of
the coefficients. In this connection the following interest-
ing result can be proven: The determinant in question
has the value $(0), where the condition P(aP) =0 [Eq.
(4.11)]is the RPA equation for determining the excita-
tion energies. Since the condition &(0)=0 must be
interpreted here as yielding those values of the param-
eters for which the 2+ state can experience a self-sustain-
ing deformation, it is an interesting addendum to
Thouless's theorem" that in the approximation of this
paper, this does not occur until the 2+ excitation energy
vanishes.

The numerical consequences of Eq. (5.29) turn out to
be rather striking. In Table I, we exhibit some results
obtained for Cd'" as follows: for a given X„~,X~=X
was determined from Eq. (4.11) to give the correct 2+
excitation energy. The effective charge was then com-
puted using Eq. (4.21) for the F2 transition probability.
Finally, Q, + was computed from Eqs. (5.29) and. (530),
respectively, for the present theory and for the RPA
approximation to it. We remark that the values of Q2

"D. J. Thouless, Nucl. Phys. 22, 78 (1961).
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TABLE I.Quadrupole force parameters (X ~, X„=X„)obtained
by htting Grst 2+ energy, effective charge (e,«) needed to describe
E2 transition to the ground state, and quadrupole moments (Q2+}
determined by the RPA on the one hand and by a self-consistent
calculation on the other. The additional parameters such as single-
particle energies and pairing forces are taken from K.S.

Qg+ in barns
RPA Present theory

0.50
0.60
0.64
0.70

1.21
1.16
1.12
1.01

0.57
0.59
0.60
0.61

—0.046—0,066—0.072—0.082

0.98—0.092—0.50—1..01

0
Al

I I I

0.4 0.5 0,6

Xnp in MeV

I I

0,7 0.8

FIG. 1. Quadrupole moment (Q,+) of the 6rst excited, 2+ tate
for three isotopes of Cd in units of 10~4 cm' plotted versus X„„,
the strength of the neutron-proton quadrupole force. Each point
of any curve is associated with values of the remaining parameters
chosen to Gt the excitation energy of the state and its E2 transition
probability to the ground state,

found by us are extremely sensitive functions of the
quadrupole parameter with quite large values (including
the experimental one) easily obtainable. For the usual
choice X„„=X=X„, we would be well beyond the
experimental value

Qs= (—0.50&0.25) X10—'4 cm'.

The most important conclusion to be drawn from
these results, however, is the inadequacy of the present
theory since for a quantity which was supposed nomi-

nally to be of second order, we obtained numerical
values comparable with first-order quantities. This
demonstrates the inadequacy of the usual linearized
theory and shows that the diagonal elements of the
quadrupole operators must be treated on an equal foot-

ing" with the nondiagonal elements. Put otherwise, it
appears that the theory has within it at least one
mechanism for achieving qualitative accord with
experiment, but any serious comparison must await a
consistent nonlinear intermediate-coupling calculation.

We have also done calculations for the neighboring
isotopes of Cd. That these give qualitatively similar
behavior is shown in Fig. 1, where Qs is plotted for
several isotopes as a function of X„„.Ke emphasize
again that no egort should be made to compare these
results tojtk experiment

We may finally remark. that the nature of the results
is easily explained from the properties of the expression
(5.29). The fluctuation in sign is a consequence of the
sensitivity of the driving terms to the quadrupole param-
eter. These terms never become large in absolute value,
however. The enhancement arises from the fact that 5:(0)
is sensibly smaller than unity hinting the approach to a
self-sustaining deformation.
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"Such a point of view' is to be found in the version of the
phenomenological intermediate coupling theory of V. K.Thankap-
pan and W. W. True I Phys. Rev. 137, 8793 i1965)].These authors
found that in order to fit the one-phonon, one-particle states of
Cu" they needed to invoke comparable diagonal and oR-diagonal
quadrupole matrix elements for the first 2+ state of Ni".


