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Inelastic Electron and Proton Scattering from Nuclei*

R. M. HAYBRONr M. B.JOHNSONrt' AND R. J. METZGERf

Oak Ridge Eationat Laboratory, Oak Ridge, Tennessee

(Received 6 September 1966)

The relation between the inelastic scattering of high-energy electrons and impulse-approximation scatter-
ing of protons from light nuclei was investigated for the excitation of collective levels described in a shell-
model picture. A search code was developed to Gnd best-fit form factors for the electron scattering to define
the nuclear transition density for proton scattering. Calculations were performed for the 6rst 2+ and 3 levels
of "C.The data for the two types of probe were found to be consistent as regards enhancement and angular
distribution for both transitions. The sensitivity of the comparison was tested by expressing the proton
interaction in terms of three different sets of nucleon-nucleon phase shifts. The available data did not allow
a choice of a preferred phase-shift set.

I. INTRODUCTION

'HE excitation of predominantly collective excited
states of nuclei by inelastic electron scattering

carl be represented in terms of the longitudinal portion
of the electron-nucleus interaction. ' For high-energy
electrons and for nuclei whose charge is small compared
to the fine-structure constant the scattering is accu-
rately described in the plane-wave limit. ' The inelastic
cross section is then, aside from factors describing the
electron-proton interaction, proportional to the square
of the Fourier transform of the proton transition density
which is characteristic of the nucleus involved, In
principle, assuming the restrictions mentioned above,
we can 6nd the proton density in configuration space
from the electron cross section and if we further restrict
our attention to nuclei where the neutrorl and proton
distributions are similar, wc can assume that wc have
obtained thc complete nucleon transition density i.c.
the overlap of the final state with the initial (ground)
state.

The inelastic scattering of high-energy protons can
be described in the distorted-wave impulse approxima-
tion (DWIA), s wherein the portion of the transition
amplitude which depends on the nuclear wave functions
involved is just this overlap, provided that one ignores
the energy dependence of the nucleon-nucleon inter-
action. Therefore one can presumably use the inelastic-
electron data to predict the inelastic-proton results
without assuming a nuclear model as has been done up
to now.

We shall be interested in this preliminary investiga-
tion in transitions for light, even-even nuclei with J=0,
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T=O ground states. In particular, data for p-p' ' and
e-e' ' experiments on "C exist as well as DWIA calcula-
tions of the p-p' cross sections where transition densities
obtained from structure calculations were used. ~

The longitudinal portion of the electron-nucleus inter-
action can only tlansfcI oI'bital angular momentum to
the nucleus: In particular, nuclear spin Rip is excluded
and therefore we get no information about the spin-Qip
transition density which can, for proton scattering,
contribute to normal parity transitions. However, the
spin-Aip density is expected to be small for predomi-
nantly collective excitations so that we anticipate a
reasonable result for p-p' by ignoring it.

II. INELASTIC PROTON SCATTERING

The transition matrix element for inelastic-nucleon
scattering can be written as

X (
~self o, T'o&o)x„.„,&+& (r)dr, (I)

where X&+& and X( ' are distorted. waves and the inter-
action produces a nuclear transition J03fo,' Togo —+

J~M~,. T~X~ and a projectile transition nzoeo~ ns~wy.

(Capital S's stand for nuclear isospin projections;
small n represents the same quantity for the projectile.
Since the distorted waves have spin-Rip components wc
use m, and m~ as intermediate spin states before and
Rftcl tile lllclRstlc scattcllllg. ) Tile 11ltclRctloll, 111 'tile

distorted-wave impulse approximation, can be written

Q M (r r.)=P 8(r r)—.

where rl is a spherical tensor operator of rank t ((=0, I)
' References for these data are given in Ref. 7.
' J. D. Kalecka, Phys. Rev. 126, 653 (1962); J. H. Fregeau,

ibid. 104, 225 (1956);H. F. Khrenberg, R. Hofstadter, U. Meyer-
Berkhout, D. G. Ravenhall, and S. E, Sobottka, ibid. 113, 666
(1959}.

'R. M. Haybron and H. McManus, Phys. Rev. 140, 3638
(1965).
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XMt(J)«=(&) I J~o; Tpli „m.). (3)

We shall restrict our attention here to p-p' scattering
for which top

——Ij——rs. In that case (3) becomes

Ifp (IjMf TftVf ms
I p 6 (r—rf)Mt (j)rt'( j)

X I JoMo,' To&o,' m. )4jjxo (4)

Evaluation of Eq. (4) depends on the ground-state
isospin. The important cases are (Itr f=le p for all):

TQ=O: Tg=0, t'=0
Tf=i 1=1

TQ 2 T~——~~t=0, 1

Ty ———,', t= 1 )

Tp= 1: Ty=0, f= 1

Ty= 1, t=O, 1.
The M, (j)'s can be expressed in terms of the target

and projectile spin operators. A convenient way to do
this is the form'

M(j)= E d""(t) " '"(j) (6)

The d coeKcients depend on EQ and q and also on the
choice of quantization axes.

If we put (6) into (4) we get

Ifo= E d» '"(t)&mol a~'lm &&JfMf; TPfl
tss'
&s&i.

'

Xp 8(r—rj)o&,."(j)rt'(j)
I JpMo, TplVp&. (7)

The delta function can be expanded in terms of spherical
harmonics and if we de6ne a spherical tensor of rank
J' by

Irt" (r )og."(j)= g C(ls'J'. m) 'M') tjf, ~'(l s'), (8)

Eq. (7) becomes

Ifo= Z d». "'(t)C(ls'J':m)t'M')(msI trx'Im, )
JfM'los
tss9)i'

~( —)
X&"*(r)(JfMf, TjIt"oIp

'
'tl ."'(t,s'),'(j)

r

X I JoMp; Tokyo&. (9)
8 R. M. Haybron and H. McManus, Phys. Rev. 136, Bi'tp'30

(s9s4).

representing projectile isospin. The coeflicients Mt(j)
are functions of projectile spin e, target spin tr(j),
bombarding energy Ep, and momentum transfer q.
Their explicit form can be found in Ref. 3.

We wish to evaluate the matrix element in (1)
(which we shall label Ifp). Substituting (2) into (1) we
can get

Ifp= 2( 1)"&ttfl rt"
I ttp&&J jMj i TPfi ms

I Z's(r r)—

The Wigner-Ekhart' theorem can be applied to (9) so
that the expression becomes 6nally

Ifp —— p d)&;"'(t)Ft""(r)C(ls'J'. mX'M')

XC(JpJ'Jf MoM. Mf)C(TptTf. itlpONo)C( ', s ', :-m—,)tmo)

S(r—r,)
X&lll 'll-:&(Jj Tfll 2 'tlf (l,"& &j&IIJo'To&.

j rJ'
(10)

All the nuclear structure information available to
p-p' scattering is contained in the reduced matrix ele-
ment in (10). Once this entity is determined by one
means or another, the transition amplitude in (1) and
thus the pertinent observables in the reaction can be
computed using existing codes (Ref. 7 and Appendix A).
We shall call this quantity the transition density, desig-
nated by F, tf'(r).

It can be seen that for J' and I given, we have at
most four densities to determine. For the cases of
interest we do not need all these and frequently one
density will suKce. For example, let us consider the
excitation of "C(Jp——0+, Tp ——0) to its excited state at
4.43 MeV (Jj——2, tf=0). Here l=2, t=0 and s'=0
and 1, a mixture of nonspin Rip and spin Rip. We need
in this case at most two densities: In fact, the s'=1
density turns out to be small and the excitation is well
described by Fpops(r) only.

Another case is the 0+ —+ 3 transition in 'Ca. Here
we must consider admixtures of isospin in the levels
involved so that Fpp", F~p", Ii p~", and F~~" all contrib-
ute. (We have written the formulas in our development
as though Tp and Ty were good quantum numbers.
They can be generalized for heavier nuclei by summa-
tion. ) However the isospins are only weakly mixed so
that Tp T~O. Also the spin-Qip contribution is small
once again so that the transition can be described with
reasonable accuracy by Fpo's(r).

The low-lying normal parity excitations of light
nuclei are usually enhanced by a factor of from 2 to
10 and the spin-Rip contributions to these excitations
will invariably be small. This is just saying that the
transitions are predominantly collective with no change
in intrinsic state. Also, contributions from the t=i
terms will, in general, be small even when allowed. This
is due to the spin-isospin correlation produced by the
two nucleon interaction. " Transitions are strong for
s'=0, t=0 or s'=1, t= i. The "mixed" transitions are
weak.

The description of enhanced, normal parity transi-
tions to low-lying states in terms of one transition

'We use the definitions of D. M. Brink and G. R. Satchler
PArtgtdar Morrterttttrrt (Oxford University Press, New York,
1962)g, wherein

&1'm'I ~s' lf'~& = (—1)'"c&Jtif':~em') &f'll«llf'&
1o E. A. Sanderson, Nucl. Phys. 35, 557 (1962).
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density which we have just described is very close to
the collective theory of excitations" in form. On the
other hand, we have managed to separate the inter-
action producing the excitation from the transition
density which is not possible in the collective theory.
This latter quantity is the most we can learn about
nuclear structure from the scattering and its deter-
mination is the ultimate purpose of this experiment.

If we were sure that the description of high-energy
proton scattering which we have is correct, we could
use the available data to determine transition densities
for the various excitations. However, a number of un-
certainties exist of sufficient importance that such a
procedure is perhaps not yet unwarranted. Perhaps the
most important of these are: (1) uncertainties in the
distorted waves, (2) choice of the two-nucleon inter-
action, and (3) corrections to the way in which the
impulse approximation is applied due to refraction
effects, exchange, etc.

We shall not comment further on this list for the
moment, but only acknowledge that it exists. The point
is that we shouM like to find some method to test Eq.
(10) for some simple collective transitions without using
calculated transition densities as has been done previ-
ously. The way we shall attempt to do this is generated
by the similarity between proton and electron scattering
for normal parity transitions. The results of e-e' meas-
urements will be used to determine the required transi-
tion density. This will then be used in (10) to compare
with available p-p' data. At the least we can look for
agreement between the two types of experiments. If
data are good enough, we may be in a, position to com-
ment on some of the uncertainties previously mentioned.

III. INELASTIC ELECTRON SCATTERING

The cross section for the inelastic scattering of a
high-energy electron from a nucleus due to the Coulomb
portion of the interaction is given in the Born approxi-
mation, for a transition of multipolarity X, by (Ref. 2)

4m

do I,),= —d~l))I (t" B(cx,()). (11)
Ze [(2K+1)!!]'

The quantity do.
l ))r is the Mott scattering from a point

nucleus with charge Z, given by

Ze' ' cos'(-'0)
d~I,~=

hc 4k' sin4(io8)

The rest ma, ss of the electron has been neglected in these
expressions: k is the incident wave number of the elec-
tron and q is the momentum transfer. Ke shall ignore
the energy loss of the electron so that

q'=4k' sin'(-', 0),

"R. H. Hassel, G. :R. Satchler, R. M. Drisko, and. E. Rost,
Phys. Rev. 128, 2693 (1962).

where 0 is the scattering angle. The reduced transition
amplitude B(ch,(t) is given by

where

&f I m(cz, u, (s) I
0)

2Ji'+ 1
I &fll~(c~, v) II0) I',

2Jo+1

and

(2l).+1)!!
j&, ((jr)V&"(r)&fl p)vl0)dr, (13)

&flp~l0)= lcl&flZ ~(r—r-)Io) (14)

These expressions describe the excitation of a nucleus
from its ground state IO) with spin Jo to an excited
state

I f) with spin Jr. The quantity o, in (14) normally
equals 1 for a proton and 0 for a neutron. [The
expression (12) appears to be (2Jq+1) times the corre-
sponding quantity in Ref. 2, because of our choice of
definition for the reduced ma, trix element. ]

We want to find the nuclear transition density in
terms of the inelastic electron-scattering data. Using
(12) and (13) in (11), one can obtain the relation

j)(qr)l'), "(r)(fl p~l 0)dr = (—1)'"C(Jo&Jr.~o~i1f y)

2Jf i 47r do. ~

where we have used the expression for a reduced matrix
element given in Ref. 9. Taking the expression for the
charge-transition density in (14) and expanding the
delta function contained there, we obtain an expression
which can be transformed to

—]/2do
I

c))

X j),((lr) — q'd(t . (16)
0 -d(r

I
ili-

We have now specified IO) and
I f) with their quantum

numbers for what follows.
The operator e; can be written in the form

oj = o (op+on)+o (oyon)'71 (J)y'
where e„and e„are the fractional charges on the proton
and neutron. We should expect to set e„=1, c„=o,but
in some cases, as briefly discussed in Ref. 2, another

() (r—r,)
o, &i"(r,) I

Jo~o, &oXo)
j=l rj

2Jo+1 )(' Z 2

(—1)"C(J,'h J, M=adIi)( :), (
—

)(
—)——
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choice is indicated. Equation (17) can be rewritten for
convenience as

~ =Z «'«'(i),
t

IV. CALCULATION OF TRANSITION
DENSITIES

The quantity which must be computed in order to
use (19) which we will call I&„(r) is the integral

00 —l/2

Ii, (r) = ji, (qr) q'dq,
o

(20)

Equation (16) becomes, using (18) and applying the
Wigner-Eckart theorem,

Q C(T(itTg, XOOXr)

~ 8(r—r, )
~(If ~fll 2, li 9 0)«(i)llano' To)«'

p „2

which must be computed from the experimental deter-
mination of the electron cross section.

It is apparent that experiment will not provide the
cross section at enough points to allow an accurate
evalua, tion of (20), so that to perform the integral, we
must ht the electron data with a continuous function of
q. YVC have chosen the expansion

-d~
~

„-i/2

=(Z ~e')~ ""'"=-f~(v),
da'~~ i i

(21)

where we have used notation chosen to correspond
closely to Eq. (10) and some factors have been
cancelled.

Several remarks are in order about the form of Kq.
(19).First of all we note that in terms of the definition
introduced after Eq. (10), the left-hand side can be
wI'lttcn as

2 C(To~Ty 'LV00$y)«OIi oi""(r),

in other words in terms of the non-spin-Rip transition
densities, so that we are assured that we can compute
at least some of the transition densities for inelastic
proton scattering from the electron data. Now if the
nuclear states have mixed isospins or if the ground-
state isospin is nonzero, then in general (19) gives us a
linear combination for the 3=0 and t= 1. densities which
is not separable except in terms of a model. We shall
therefore be most interested in E=Z nuclei which do
not have appreciable isospin mixing. (This latter re-
stI'lctlon ITlolc oI' less covcI's thc nuclcl foI' which thc
Born approximation is good. )

We have just remarked that Eq. (19) applies only to
nuclear isospin changes of 0 or 1. This is a direct result
of the neglect of multiple scattering of the electron:
Since it collides with only one nucleon the isospin
change is thus limited.

It has been previously noted that Eq. (19) only
gives the non-spin-Hip transition densities, %e could,
if we wished, work out expressions for the spin-Qip
transitions as well, which would be expressed in terms
of the cross section for magnetic transitions. These are
however of much less importance, since the number of
spin-Rip transitions which can be observed with the
high-energy particles we are considering is quite small
and we leave this for another time.

which is essentially the form one obtains if the nuclear
wave functions are represented by oscillator functions
in Eq. (11).The coeKcients in the expansion (21) are
then determined by ending a minimum X' 6t to the
electron data, that is, the c s are determined by mini-
mizing the quantity

f-'(c)-f~'(c) '
X2— (22)

In Eq. (22),
-d~(.g-

f-'(Vr) =
-d~

I iir- e= eg

A computer code has been written which performs
the calculations just described. This code allows a

as measured by experiment at q= q;, and

~(f-'(c ))
is the experimental error attached to that point.

The parameter P in (21) is simply related to the
range parameter for the underlying oscillator functions.
If the nuclear wave functions are of the asymptotic form

q(r)~e- "'

then a simple computation shows that

P= 1/4n.

In fact, the value of e used must be corrected for the
6nite size of the proton and center-of-mass CBects. If
one determines a range parameter o.

' which yields a fit
to the elastic electron data, the value of n which should
be used in (23) is related to a' via

1
n =a'

1+2@~'n' —1/A)
where
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TABLE I. The expansion coeKcients for the electron form factors for the 4.43-MeV level (2+) of "C are shown, along with
the corresponding p' and P&'s. Analysis of proton-scattering data yields P& in the range 0.60—0.67 ~

Search
No.

0.2197
0.2589
0.2300
0.2215
0.2211

C4

0.0—0.01693
0.01043
0.02597
0.03276

0.0
0.0—0.005224—0.01179—0.01194

0.0
0.0
0.0
0.000701
0.000615

1.434
1.434
1.434
1.434
1.485

130.0
47.9
23.1
22.5
22.4

0.439
0.517
0.461
0.443
0,442

simultaneous search on up to fifteen powers of q and P
in (21). When an acceptable fit to the electron data has
been obtained, I&,(r) in (20) is output. This brief de-
scription will be augmented by an example in the next
section.

V. TRANSITION DENSITY FOR THE
FIRST I,EVEI, OF»C

We shall discuss in this section the calculation of the
transition density for the 2+, T=O, 4.43-MeV level of
"C.This has been the most popular transition for high-

energy studies with both protons and electrons so that
a reasonable amount of data is available for both types
of probe.

0.020

&?C( ')l2 C»

2+, 4.43 MeV

O.of 5

NQ. ((q )——- NO. 2 (q2, q4)
N0. 5(q2 q4 q6)

Q.ofo

0.005

0-
0 t,Q ).5 2.0 2.5

FIG. 1. Some of the fits to the e-e' data are shown for the
first excited state of "C. The curve labeled No. 3 was used in
subsequent calculations. The triangular points were assigned er-
rors of 100Pp in the fitting.

The electron data we shall attempt to fit were taken
at energies from 80 to 600 MeV (Ref. 6). Points for
q&2.5 F ' were omitted. The points for 0.5&(&1.8
were assigned the experimental errors. The large q
points were assigned errors of 100%. The fitting was
thus biased to smaller q values.

With the shell-model picture and oscillator functions,
the lowest power of q allowed in Eq. (21) for a normal
parity transition of multipolarity I is q . Therefore,
the erst nonzero coeKcient for the transition we are
considering is c&. Further, only coeKcients c„are allowed
with indices n= L, L+2, L+4,

The general procedure we have adopted is to start
with the lowest allowed power of q and obtain a best
fit, introduce the next allowed power of q and obtain
a new fit (searching on both coeKcients) and so on
until one or all of the following criteria are met: (1)The
computed curve "looks" like the data, (2) the percent
reduction in X' is small when an additional power of q
is introduced, and/or (3) too many powers of q are
required. Statement (3) is essentially a shell-model

requirement, that is, by inspecting the single-particle
levels which may participate in the transition, one may
limit the largest power of q allowed. However, higher
powers of q than expected on a shell-model argument
can appear due to the neglect of distortions in the
electron scattering and also due to the inadequacy of
the form of the expansion in Eq. (21).

Distortion eRects are certainly present in the electron
wave functions although they are ignored here. Inclu-
sion of distortion eRects in general shifts the peak cross
section to smaller q without essentially changing the
magnitude or shape of the angular distribution, " and
most of this eRect seems to be described if one picks a
slightly larger effective radius for the transition (smaller

P). For the light nuclei with which we are concerned
such corrections should be minimal and we are assuming
the plane-wave limit is adequate.

The inelastic form factors for the level under consider-
ation which were obtained at various levels of the search
procedure are shown with the data in Fig. i. The curves
are labeled according to the key in Table I where the
parameter values are displayed along with the value
of x' obtained in each case. Not all the form factors

"D. S. Onley, J. T. Reynolds, and I. E. Aright, Phys. Rev.
134, B945 (1964). %e should note that this remark is only true
at q values below the first diffraction minimum.
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TABS.E II. The expansion coeKcients for the electron form factors for the 9.6-MeV level (3 ) of "C are shown.
Analysis of proton-scattering data yields P3 in the range 0.44-0.57.

Search
No.

0.1010
0.1275
0.1390
0.1491
0.1509

0.0—0.01616—0.03232—0.05373—0.04299

0.0
0.0
0.00481
0.01845
0.01836

C9

0.0
0.0

—0.00265—0.00279

1.434
1.434
1.434
1.434
1.650

31.9
16.4
15.99
15.91
15.85

0.475
0.599
0.653
0.700
0.710

have been shown in Fig. 1, since No. 3, No. 4, and No. 5
are essentially identical.

These data are very creditably fit by No. 3, with
three powers of q and P as inferred from the elastic-
electron data. Higher powers of q, or the variation of P
does not improve the fit appreciably. If we now in-
cluded the very high q points which have been ignored
(q) 2.5 F ') or increase the weighting of the points for
1.8&g&2.5 F ' the story might be different. However,
large momentum transfers for either electron or proton
scattering can reveal complexities for which our present
picture must fail, so that we leave such an investigation
for a time when the quantity and quality of the data
require it.

The procedure just described was repeated for the 3,
T=O, 9.6-MeV level of "C, yielding the results shown
in Fig. 2 and Table II. It is obvious that these data do
not define the form factor for this level (at least in
terms of our parametrization) as accurately as was the
case for the 2+ level.

Data also are available for the 0+, 7.6-MeV level of
"C. Unfortunately, they are not consistent enough to
define the form factor to an extent which would justify
attempting to find a fit.

VI. REDUCED TRANSITION' PROBABILITY

The reduced transition probability B(X) for radiative
decay is given by

B(X)=limB(ch, q),

0.006

f2C( r)f2 Ca

3, 9.6 MeV

N0. 1 (p' )

""--N0.2 (q3, q5)
NO 3 (q3 q5 q7)

0.004

Thus, one may compute the reduced transition proba-
bility from the value of the first coeScient obtained in
the search on the electron data. Alternately, one could
use values of B(X) to determine this coeKcient and
perhaps reduce the numbers of independent parameters
needed in the expansion of the form factor.

The predominantly collective transitions we are in-
terested in can be characterized by a deformation pz.
The reduced transition probability can be expressed in
terms of this quantity as

B(X)= (3/4s)'(Ze)'R, '"Pi' (27)

where R, is the nuclear radius. The deformation in (27)
is associated with axially symmetric deformations of
the nuclear charge distribution. In fact, the deformation
parameters measured with nuclear probes (which pre-
sumably "see" the entire nucleus) indicate that the
charge deformation follows the nuclear deformation"
so that pz can be determined either by electron scatter-
ing or, say, proton scattering.

where B(ch,q) is expressed in terms of the reduced
nuclear matrix element in Eq. (12). The lifetime ri, for
radiative decay is then given by 0.002

8rr(X+1) 1 E* '"+'
ry BP,),

XL(2K+1)!~g' is hc
(25)

where E* is the deexcitation energy. Using (11) and
(21) the reduced transition probability may be ex-
pressed as

2.0 20%0.5 ).0 1.5
q(F )

Fro. 2. The 6ts to the e-e' data for the 9.6 MeV, octupole
level of "C are shown. The solid points were taken at 187 MeV;
the points shown with circles were taken at 150 MeV.,-((»+1)"]' Lf (V)j'

B(X)=lim (Ze)'
q—+0 4~ q2A "For a review of work in this held, see G. R. Satchler, in Pro-

ceedings of the Confierence qn Di~ect. Interactions and ENclear. Re-
action Mechanisms, Padlu, IP6Z, edited by E. Clementel arid

(26) C. Villi (Gordon and Breach Science Publishers, Inc. , New York,
1963), p. 80.
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ig

I

«2C (,)~2C~

2+, 4A3 MeV

Eo=155 Mev

~ )55 MeV

TS

O, S'=1)

0)

where the Gillet —Vinh-Mau" (GVM) hole-particle
transition densities were used. This comparison is shown
in Figs. 3 and 4. The Gammel-Thaler phase shifts"
were used to obtain these curves. The experimental data
are described in Ref. 7. To get an idea of the importance
of the spin-fhp contributions, which we have neglected,
calculations were performed for just the non-spin-flip
GVM density and for the mixture for the quadrupole
level. The results of both computations are shown. It
can be seen that the spin-Rip contributions are small as
we anticipated.

We have shown the results for the No. 1 and No. 3
form factors described in Tables I and II to get an idea
of the sensitivity of the p-p' cross section to how well
the electron data are fit. For the 2+ level density No. 1
is just that which would be obtained for a single-particle
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~c M("&)
40 50

FlG. 3. The p-p' cross section for the 4.43-MeV level of "C
as predicted from the electron data is compared to the proton
data and also to the predictions obtained from the GVM transi-
tion densities, both with and v ithout spin flip.

The deformations obtained for the various form fac-
tors are tabulated in Tables I and II.

VII. INELASTIC PROTON SCATTERING

The inelastic transition densities obtained in Sec. V
were used to evaluate Eq. (10) and compute the cross
section for inelastic proton scattering at 156 MeV for
these two levels.

The first feature of interest is the comparison of the
results obtained here to those of previous computations
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does not have the same angular dependence as does that obtained

. from the GVM density due to the contributions of spin Rip in the
latter density which are not entirely negligible for this level.
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Fn, 5. The p-p' cross section for the 4.43-MeV level obtained
using the "best-fit" electron form factor with the three choices of
phase shifts considered.

representation of the transition (1P3i~ —& 1Pii2 for j-j
coupling, or a recoupling in the p shell for 1.5coupling)-
with an adjustable normalization. The results obtained
here indicate that such a picture is inadequate. If one
tries to obtain the proper enhancement for the electron
data, the shape of the form factor will not resemble the
data. Therefore, additional configurations are clearly
i equll ed.

Similar remarks may be made for the 3 level. The
simplest description involves a, 1p-1d transition which
produces a q' dependence for the electron form factor.
Inspection of Figs. 2 and 4 indicate an insufFiciency for

"V, Gillet and N'. Vinh-Mau, Nucl. Phys. 54, 321 (1964)."I. 1.Gammel and R. M. Thaler, Phys. Rev. 107, 291 (1957).
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sity in the fitting program is too small. This may be a
reAection of the fact that the parametrization in Eq.
(21) results from a Gaussian dependence on radius in
the nuclear wave functions which is known to fall off
too fast outside the nucleus. In order to extract accurate
B(X)values from the electron data by our procedure Lor
conversely to use measured B(X)'s reduce the number
of parameters in the expansion], it may be necessary to
choose a different expansion in (21). On the other
hand, for large q the oscillations of the Bessel function
in (28) for r, also large, probably tend to cancel out the
importance of the wave-function tails, insofar as fitting
the electron data is concerned.

Of course, one can fit a set of data to an arbitrary
degree of accura. cy using the expansion in (21) by using
enough powers of q. The point is, the first coeKcient in
the expansion cannot assume its "correct" value unless
the expansion is of a form appropriate to the underlying
physical situation. The form used also forces the transi-
tion densities obtained in (20) to have a Gaussian be-
havior for large r. Therefore, no matter how many
powers of q are determined in the search, there will be a
value of radius beyond which the I&,(r) obtained from
the search will fall off too rapidly with radius.

It is not expected that the difficulties mentioned will

have too much effect on the proton calculations at
these energies. However, the calculations shouM be
redone with Saxon-Woods functions, or more generally
with basis functions falling off exponentially for large r.
The GT prediction is too sma, ll. However, we have
previously noted that an increase in normalization might
be in order for the density we have used which would,
if applied, render the GT fit acceptable and the Breit
result too large.

The comparison of calculation and experiment for the
polarization is essentially indeterminate as regards a
choice between phase-shift sets. In the angular region
30'—40' where spin-orbit distortion effects are small, the
data, may favor Yale or HJ somewhat. Effects of dis-

tortion are not small, and are probably only qualita-
tively correct in these calculations, since the parameters
of the spin-orbit part of the optical potential are not
well determined.

Spin-Rip contributions to the results should, as we

have said, be small. The transition densities of Gillet
and Vinh-Mau (Ref. 14) yield very small spin-fiip
densities for both these levels. In addition, all three
two-nucleon amplitudes we have considered have small
AS=1 parts, so that inclusion of the spin-Rip part of
these transitions should produce small corrections.

rectly treated in their separate descriptions. However,
only qualitative statements regarding this consistency
are supported by these results. Investigation of several
levels in different nuclei would have been desirable since
one is interested in the systematics of the comparison
of the electron and proton data. It is likely that only
such a survey could reveal, for instance, a definite
preference for one set of nucleon-nucleon phase shifts
or demonstrate the deficiency of all the sets available.
Of course, other data exist. We have looked at some of
the data on levels of "Ca, but the quality of the data
and the relatively small number of points taken did
not allow a meaningful search. One needs a sizable
number of data points to make a search procedure such
as we have adopted have much significance. The use
of 17 points to determine three coefficients for the 3
level of carbon is a debatable procedure statistically,
and here we are on surer ground than for a heavier
nucleus like calcium where the form-factor expansion
may have to account for deviations from the under-

lying harmonic-oscillator representation.
The use of the electron-scattering form factors to

define the proton interaction has been emphasized in
the foregoing. Of course, the form factors determined
from the search procedure are of value in their own

right, especially if one is ultimately concerned with the
shell-model behavior of these transitions which underlies
the collective features most often emphasized in scat-
tering analyses to date.

The utility and significance of the procedure outlined
here are apparent. Active exploitation of this method
must however await more experimental information,
both for electron and proton scattering. It is hoped
that in this way the inelastic-proton interaction can be
reliably determined, both at the energies considered
here and at lower energies where the impulse approxi-
mation is liable to fail. It is also hoped that the com-

parison of results for the two types of nuclear probe
can finally yield a quantitative picture of the nuclear
transition density with all that implies regarding the
structure of the target nucleus.
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IX. CONCLUSIONS

The inelastic electron and proton data for the two
levels considered here seem to be consistent with one
another, assuring us that the essential assumptions con-
necting the two processes are correct and that at least
the main features of these two types of process are cor-

APPENDIX A

The distorted waves X '+'(x) in Eq. (1) satisfy the
Schrodinger equation

2p
P+k' ——(U+U, L o)—V, X,„(r)=0, (A1)
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where the choice of + or —represents either outgoing
or incoming boundary conditions on the distorted
waves. k is the wave number of the relative motion of
the target and projectile, p is the reduced mass, and
t/, is the Coulomb potential produced by a uniform
spherical charge distribution of radius

and

U, is given by

x'= (r—rs'A" s)/u'.

d 1
U, = —2(V,+iW, )——

r dr 1+e*

(AS)

(A6)

where
U = —V/(1+e*) —iW/(1+e*'),

x= (r—rsA "s)/a

R,=r,A"',

where A is the atomic weight of the target.
The optical potentials in (A1) are defined by

(A2)

(A3)

(A4)

The parameters used in the calculation presented here
were V=22.1 MeV, W=15.9 MeV, W, =0 MeV, V,
=4.31 MeV, W, = —0.11 MeV, ro ——0.902 F, a=0.452 F,
ro = 1.19 F 9 =0.556 F, and r, = 1.33 F.For the present
calculations Eq. (A1) was solved in a manner appro-
priate to the evaluation of Eq. (1) using an adaptation
of the Oak Ridge code jULzE due to R. M. Drisko.
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Levels of F" from the 0"(He', p q)Fts Reaction*
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Angular correlations in the 0"(He', pp) F' reaction have been studied through two-parameter analyses of
proton —gamma-ray coincidences at He' bombarding energies of 4.65, 5.40, and 6.40 MeV. Protons were
detected by an annular solid-state detector centered at 8„=180', gamma rays were detected with a NaI(Tl)
spectrometer for five angles in the range 0'&8~&90'. Branching ratios were determined for nine of the ten
F"levels of 3.4 &E. (4.9 MeV; the exception is the 4.74-MeV level, which was not observed. From analysis
of angular-corre1ation data the following spin-parity limitations are obtained for the triplet of levels at
E,„3.8 MeV: 3.72-MeV level (J= 1);3.79-MeV level (J= 1, 2, or 3); and 3.84-MeV level (J~=2( &) .The
preference for an even-parity assignment for the 3.84-MeV level is quite strong. The decay modes of the
3.79-MeV level are consistent with the assumption that this is the 3 member of the group of odd-parity
levels which includes those at 1.08 MeV (0 ), 2.10 MeV (2 ), and 3.13 MeV (expected 1 ). For those levels
with E,„)4MeV, the correlation analysis provides restrictions on possible level spins and on multipole-
mixing amplitudes for some of the principal deexcitation transitions. These results are consistent with other
available information. The 4.65-MeV level of F' is found to have J~& 3, and decays by transitions to the
0.94-Mev level (J~=3+) and to the 1.13-MeV level LJ~= (5)+g with branching ratios of 15 and 85'jj', re-
spectively. This appears to be the most likely candidate for the J =4+, T=1 analog of the 3.55-MeV 4+
state of 0".The F"4.40-MeV level is also observed to decay to the 1.13-MeV level, and is a possible but less
likely candidate for the analog of this 0"level.

I. INTRODUCTION

' 'N a recent publication' we reported an investigation
of the first 10 excited states of F" (E,„(3.4 MeV)

from the 0"(He', p~)F" reaction (Q=2.021 MeV). In
the present paper we report an extension of these
measurements into the range of excitation 3.4&8,„&4.9
MeV. For convenience, previously available' ' informa-

*Work performed under the auspices of the U. S. Atomic
Energy Commission.
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tion on the F"level structure is summarized in Fig. 1 for
levels of E,„&4.9 MeV. Excitation energies and
branching ratios for those levels of E,„(4 MeV are
those summarized in a recent report' of high-resolution
Ge(I.i) studies of F" gamma rays, and incorporate the
earlier results of Refs. 1—8. The position of those levels of
E,„&4 MeV are taken primarily from the compilation
of Ajzenberg-Selove and Lauritsen, ' but include some
results from the present work. indicated spin assign-
ments are from the information presented, or reviewed,
in Refs. 1—9. We note in particular that the J=O
assignment for the 1.08-MeV level is from the results of

7 S. Gorodetzky, R. M. Freeman, A. Gallmann, F. Hass, and
B. Hensch, Phys. Rev. 155, 1119 (196l).

A. R. Poletti, Phys. Rev. 153, 1108 (1967).
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