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roblem with two of the particles charged is presente in terms of
h

t to o tio. Th t h' ho 1

ed roblem. Coulomb wave functions are use in e r
becharged particles and the resulting expressions subjecte to an approxim

useful for He' calculations.

I. INTRODUCTION
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LTHOUGH a great deal of attention has been paid
the triton using "exact" three-body techniques,

surprisingly little work has been done
Coulomb force, which is operative in that system, is

articularly unsuited to expansion in terms
separable potentials. This is a severe restriction in an
area of physics where separable potentials are found to
be so useful. In this paper we present an approximate
method for handling this complication. Althoug t e

hose of He' thearameters given in examples are those o e, ep
technique is more general. Moreover, separab'

'
y p ybilit la s

no essential role; however, we feel that in that context
the approximation will 6nd greatest use.

In Sec. II we show in detail where the approximation
enters in a simple three-body problem. Much of our
notation here follows that of Mitra. ' More detailed

feeling for the domain of validity of the approximation
and argue in favor of its usefulness in He'. This section
also has a short derivation of the result which makes its
greater generality apparent. Section IV is a summary.

II. THE APPROXIMATION IN A SPECIFIC
THREE-BODY CONTEXT

We start from Schrodinger's equation in momentum
space. e o no. W d t symmetrize and consider (beside the

se arableCoulomb force) only a short-range two-body separa e
central potential.

The V~ term is of the form

d'~'~'p'(Py
I
V"

I
P'p')4(P', p'),

with V~= V»+ V»1 V~3. The
I Py) matrix elements of

each of these conserve the momentum of the non-
interacting particle:

(Ppl v»IP'p') =g(P—P') &y I Vm ly'),

(P I
V IP'y')=~(y+lP —O' ——:P')

X(lp' —lPI Vialkp' —lP'), (3)

(P I
V IP'p') =6(—p+-', P+y' ——',P')

X(—-'p ——,'Pl v
I

—-', y' ——,'P'),

(where V;; is the two-body operator corresponding to
V;;). For convenience we assume

(ql V,;Iq')= g(q)g(q') for all i, j.
Schrodinger's equation is then

3 p2 p2

+ +&'(~P) &)4(P,v)—4' M

=&g(p) d'p'g(p')4(P, p')+l g(-:y—-"P) d'5g(f)

XII —&+l(p+lP), -+-'(p+lP) I+(y —y) (4)-P2 P2 P2
+ + + Ve(2,3)—E )p(P), P2)P)))2' 2M 2M

VNuoleurp (I)

where neutrons and protons are taken witn mass M,
index No. 1 refers to the neutron, Nos. 2 and 3 to t e
protons; Ve(2,3) is the Coulomb 'interaction. In the
center-of-mass system P&= —P2—P3, and ta ing
P=Pg+P3, p=2(P2 —P~) (1) becomes

-3 P2 p2

+ +V'(2,3)—E 0(P,y)= V"f (2)—'4M M
*Work performed in part at the Lawrence Radiation Labora-

tory, University of California, Livermore, California under the
auspices of the U. S. Atomic Energy Commission.' A. N. Mitra, Nucl. Phys. 32, 529 (1962).
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The Coulomb potential, of course, is not diagona in
this representation. However, we can diagonalize t e
left-hand side of Eq. (4) by transforming to momentum-
Coulomb space, i.e., the representation whose basis
vectors are plane waves in P and repulsive Coulom
waves in the relative momentum of the two protons, p.
Let U be the unitary operator which accomplishes t is.
Then U[(P'/M)+VejU '=k'/M and U)P(P,y)
=)pe(P, k), with k interpreted as the asymptotic relative
momentum of the Coulomb wave.

In non-Coulombic problems, @=0, one usually de6nes
D(P,y,E) =M[(3P'/4M)+(p2/M) —E], and the left-
hand side of the equation corresponding to (4) is
D(P,y,E))P(P,y). For e&0, we see that after U is
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667 19S1)
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U, however, is not diagonal; and while it is tailored
to simplify the kinetic and Coulomb parts of the
Hamiltonian, it only complicates the nuclear potentials
existing between the protons and the neutron. U can be
represented by 8(P—P) (p ~

k)*, where (p ~
k) = tt»(p), the

momentum-space Coulomb wave function. One then
takes advantage of the concentration of Q near p =k and
introduces the approximation

(p ~
k) =8(p —k)C(k), (12)

T=kinetic energy, V~ = Coulomb potential, V~ =nu-
clear potential. Let U be as above. Then U(T+ Vc) U '
= T(P,k), i.e., the same functional form for T, except
that p is replaced by k. To UV~U ' apply Eq. (12)
to obtain UV~U '=C(k)"V~(P k,Pk')C(k'). Let P'

=C(k)UIt, and (13) becomes

T(P,k) —L
p'(P, k)

[C(k) fs

V~ (P k P'k'))t '(P', k')dsP'dsk'= —V~&'. (14)

It should be clear that the separability or other
special properties of V~ play no role other than to put
the approximation in an otherwise solvable framework.

We now compare the result of the approximation
given by Eq. (8) with a sample exact integration. The
function to be integrated is a very practical one, the
Yamaguchi two-body potential g(y) =1/(ps+ps). This
integral of g arises in the expression for the p-p potential
either in the present context or in the two-body work
of Harrington. I.et

d'p (p l
k).

p2+ p2

This can be evaluated exactly, giving I=g(k)C(k)
exp[2y tan t(Ik ~/p) j; where y=ktes/

~
k ~, p is the

reduced mass of the particles giving rise to the Coulomb
wave (p~k) and

where
~
C(k)

~

'= (barrier penetration factor). That
(p ~

k) is sharply peaked is evident from, e.g. , the Born
approximation [Eq. (7)j, where not only the first term

(a 8 function) exhibits this singularity, but all subse-
quent terms are infinite at y=k (magnitude and direc-
tion) as well.

One can also derive easily the result of Sec. II in
another way. The Schrodinger equation for He' is

LT(P,p)+ V'j4 = —V"~(+L4 (13)

the validity of the approximation in a wide variety of
cases, it will indicate where the approximation is bad
and will give a feeling for its validity —although we

point out that this example does not have the angular
dependence that would appear in the general situation.

(I/I') =exp[2y tan '(~k~/P)]
f(k—) (e'&"'~=1.023 for He' parameters,

)2=-'M =2X4.75 F ' e'=1/137 p=15F '

The approximation is thus good to about 2% for He'
parameters. But this, however, is not yet sufhcient.
Coulomb effects are small to begin with and not only
do we desire terms deleted by approximations to be
small but they should be smaller than the effects we are
seeking.

It is then of interest to compare C(k) with f(k) for
various values of k. When C(k) differs from unity by a
good deal more than 2% we can be sure that our calcu-
lation accounts for the bulk of the Coulomb effects. If
f(k) and C(k) are expanded about k=0 and k= ~, it is
seen that for small k, C(k) dominates, and for large k

they differ from unity by about the same amount (with
opposite sign). Table I gives k, f(k), C(k) and the
kinetic energy in MeU in the proton relative coordinate
system for the given k. P = 1.5 F ' is approximately the
value obtained from two-body data.

Below 1.6 MeV C(k) is quite adequate. From 1.6 to
10 MeV (1—C(k)) is from 6 to 2 times as large as the

f(k) correction. Between 10 to 40 MeV using C(k) alone
tends to overestimate the Coulomb effects (f(k)&1);
i.e. , the product C(k) f(k) (exact result) is closer to
unity than the use of C(k) by itself (present approxi-
mation) would indicate.

In general, larger P brings f(k) closer to unity, so that
C(k) alone provides a reliable measure of the Coulomb
effects for higher values k. Greater reliability of the
approximation for larger P is quite reasonable: C(k)' is
the barrier penetration factor, i.e., the probability of the
protons being in contact (in coordina, te space). If the
potential is of very short range then it is this factor that
cuts down the interaction energy. On the other hand,
for P( ~, the protons can interact at a finite distance
and the interaction is closer to what it would be without
charge effects. Hence the 6nite range of the potential
tends to counteract the Coulomb-induced unlikelihood
of proximity.

An important consideration in using this approxi-
mation is the location, in k space, of the principal

TABLE I. Comparison of C(k) with f(k) —=exp(2p tan '(~k~/p))
for various values of k. P =1.5 F '.

[ C(k) [
=C,(,) = [22r~/(es-'r —1)g'~2

The result of the approximation in Eq. (8), denoted
here by I', is I'=g(k)C(k).

While comparing I and I' will certainly not guarantee

kinp '

C(k)
f(k)
(k'/M„)

in MeV

0.0 0.01 0.05 0.1 0.2 0.5 1.0

0.0 0.014 0.526 0.743 0,867 0.949 0.974
1.023 1.023 1.023 1.023 1.023 1.022 1.020
0.0 0.004 0.104 0.415 1.6 10.4 41.6
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contributions to various charge-induced effects, such
as the Coulomb energy difference between I' and He'.
The regions where

~
f(k) 1—

~
=C(k) —1 are regions

where electrostatic effects are not very impor Lant

altogether (both numbers are small) for reasonable P.
Thus where charge effects are important C(k) domi-
nates. Of course, one must also examine the wave
function P (obtained perhaps from the uncharged
problem) since in special cases this argument may be
false.

An analysis of the approximation for the V» term
shows a similar favor for short range. The exact ex-
pression from Eqs. (6) and (3) and using the Yamaguchi
form for Vgs is

&Pk~(V»), ~P k &

d pl~ p24k (Pl)~(Pl+ 2P P2 2P )

If g is very "short range" (P large) its characteristic
feature is its flatness in momentum space. This fatness
will be unaffected by the presence of additional vectors
(P) in the argument of g. It should be noted that the
peaking of g&(p) is not only in magnitude, but in
direction also. Since, however, there are additional
integrations inextricably tied in here (Vq~ appears
Vq~tt) there is an additional, though less stringent,
requirement on the smoothness of P (less stringent,
since there are several vectors in its argument). This is
expected to have roughly the shape of g, although it
probably decreases more rapidly in k (consider the size
of the He' nucleus).

IV. SUMMARY AND CONCLUSION

Starting with the rnornentum-space Schrodinger
equation for a three-body system, where all of the
particles have a short-range force and two of them have
a Coulomb interaction, we diagonalize exactly the
Coulomb and kinetic parts with a unitary operator U.

Although U is not diagonal in momentum space, our
approximation takes advantage of its being nearly
so in order to replace it by a diagonal matrix with
"effective" values of U along the diagonal. This
simpli6es its action on the short-range potentials.

We have tried to obtain a feeling for the validity of
this approximation and have found that it is likely to
be better for shorter-range (in coordinate space) forces.
Speci6cally, if the range is (1)P) and the mass of the
particles 2p (k=c=1), then the smaller p(P is, the
better the approximation. For (2pe'/P) =0.02 (He'
case), we expect the present approximation to account
for the bulk of Coulomb effects.

Perhaps the most useful aspect of the suggestion put
forward in this paper is that separable potentials retain
their simple form in the face of local—and therefore
nonseparable —interactions. It is the peculiar nature of
the Coulomb interaction that lends itself to this
treatment. 4

It is likely that there are other three-body systems
for which a similar combination of range, charge, and
mass parameters would indicate a useful role for the
present approximation. Clearly, the method could be
appjied to the scattering of protons and deuterons at
low energies.

The chief disadvantage of this approximation is its
fuzziness. Even if in a given case it is good, one does not
know how good —and if it is bad, how bad. It is, how-

ever, quite convenient and provides the solver of non-
Coulombic three-body problems with a quick entry to
the effect of charge.

ACKNOWLEDGMENTS

The author is grateful to Dr. Abraham Goldberg,
Dr. Judah L. Schwartz, and Professor Leonardo
Castillejo for many helpful discussions.

4 In a sense this approximation is best for 1/r potentials. con-
sider the identical problem but with V {r)=A e &"/r replacing 1/r,
and consider the corresponding U~. Then the Born approximation
to the off-diagonal matrix elements of U7 in momentum {relative
coordinate of particles No. 2 and No. 3) space are proportional to
~/({P'—&'—i~)I y'+{p—k)']). As y~ 0, the peaking near k=p
becomes more pronounced.


