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A method is given for finding the relative-angular-momentum-zero part of the wave function of two
particles moving in a finite single-particle potential. The results are applied to form factors for two-nucleon
transfer reactions and to two-nucleon interaction matrix elements.

I. INTRODUCTION

ANY calculations in nuclear physics involve the

use of two-particle shell-model wave functions.

The most familiar example is the calculation of the

matrix elements of a two-particle interaction. Another

example is the distorted-wave Born-approximation

(DWBA) treatment of direct two-particle transfer
processes, such as the (¢,p) or (He?p) reactions.

These shell-model wave functions are products of
functions of the variables of the separate particles. How-
ever, the calculation can usually be performed more
simply if the wave function is expressed in terms of the
relative and center-of-mass (c.m.) variables of the two
particles. Talmi! and Moshinsky? have developed
methods for effecting this transformation to relative and
center-of-mass variables when the single-particle wave
functions are characteristic of an infinite harmonic os-
cillator well. These methods, especially when used in
conjunction with the transformation brackets tabulated
by Brody and Moshinsky,? have enormously facilitated
many calculations in nuclear physics.

However, there are some circumstances in which one
must use wave functions characteristic of a finite po-
tential well. This is the case in Hartree-Fock calcula-
tions, in which the single-particle wave functions are
eigenfunctions in the self-consistent potential, which is
of course finite. Also, Drisko and Rybicki* have em-
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phasized that the proper treatment of transfer processes,
which are sensitive to the nuclear wave functions in the
vicinity of the nuclear surface and beyond, requires
wave functions with the asymptotic behavior of a finite
well.

This problem of performing the transformation to
relative and c.m. coordinates with the single-particle
wave functions of a finite well has been treated by first
expanding the finite-well wave functions in terms of
harmonic-oscillator wave functions of varying numbers
of nodes, and then performing the Talmi-Moshinsky
transformation on the individual harmonic oscillator
components.*® The number of these components re-
quired depends upon the radius out to which one wishes
to approximate the wave function, and upon the ac-
curacy one desires. In this paper, we describe a method
for performing the transformation which works directly
with the finite-well wave functions, and does not involve
the harmonic oscillator expansion. It is thus free from
uncertainties about how many terms to include. It is
limited, however, to that part of the wave function in
which the two-particles have relative angular momen-
tum zero. This is sufficient for many purposes.

II. DERIVATION OF THE FORMULAS

We begin with a normalized two-particle shell-model
wave function

W n1hds nelads; I’T(l'10'1,1'20'2) =

1
L2(148nynsBru1a0sy ) M2 v

Here T is the isobaric spin, zero if the state is symmetric in the two-particles and unity if it is antisymmetric. The
bracket notation indicates vector coupling to total angular momentum 7 and its z component M. The single-particle

states ¥»"¥(r,0) have the form

Y H(r,0)= [ (1)X!%(0) ]n?,
b (D)= 14nj(r) V(7).

(2a)
(2b)

For convenience, we have suppressed the # and j dependence of the orbital functions ¢,,!(r). The radial functions
n1;(r) are normalized solutions of the radial Schrodinger equation with the chosen single-particle potential. We
use the Condon-Shortley® phase convention for the spherical harmonics.

* Work supported by the U. S. Atomic Energy Commission.

T Present address: Argonne National Laboratory, Argonne, Illinois.
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Our aim is to find the part of the wave function (1) in which the two-particles have zero relative angular momen-
tum. To this end we expand in an L-S-coupling representation

W i LT (pygy raoe) = 3 (1) 1 (led) 50| (o) (33) )1
L,8

v {(Ce"(r)ep(r) 4 (— 1) 5+ (9" (r2) " (ry) J)XH (o) X2 (00) 15} 2"

The part of the wave function in which the two par-
ticles have zero relative angular momentum is permuta-
tion-symmetric in r; and rs. Thus if =1 we keep only
the S=0 term and if 7’=0 we keep only the S=1 term.
We then introduce relative and center-of-mass coordi-
nates defined by

r=(r,—11)/V2,

R=(r2+11)/V2,
and envisage an expansion of the form
(" (r1)$"(r2) Jas™+[p" (x2) " (r1) Jar™

[2(1+4 By nabu1,05100) M2
Suat(r,R)

=y —[V®) YA(R>:|ML- (5)
A 7R

(4a)
(4b)

To obtain fo,.%(r,R) we set R=2 and integrate (5) over
d?. This integration picks out the A=0, A=L term on
the right-hand side. Since

201\ 12 1
YMA@):aM,o( - ) Vo) =——

™

we get

fo.rX(r,R)=

7R
(2L+1)12
[ (r1)ep"(r2) Jar "+ [S"(r2)$" (x1) Jar™
X / R dr. (6)
(R=%) [2(1+67»1"2611126-71-72)]'/2
The “distribution function” fo,.*(r,R) obtained by per-
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‘@r‘ gration of equation
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g and r; and rz in the
o« x-z plane.
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3)
[2(1+ 5n1n2511 126]'11'2)]1/2

forming the integral in (6) contains all the information
about the relative-angular-momentum-zero part of the
two-particle wave function (1).

To integrate over ¥(=0,¢), we set M =0 in (6) since
fo,.E(r,R) is independent of M. With M =0 and R=R%
the integrand in (6) is independent of ¢. It is sufficient
then to allow the ry, r» plane to coincide with the X, Z
plane, as shown in Fig. 1. Since

r=7 cosf Z-+7 sinf X,

it follows that

R—r (R—7 cosf)z—r sinbx

n= = s
V2 V2
R+r (R+7 cosh)z-+r sinfx
Iy= = .
RV V2

Thus we can express ry and re in terms of 7, R, and § as
follows:

<(R——r c0s6) 2+ (r sinf) 2>1/2
V1=
2

R*4-r*—27R cosf\ /2
(e

2
cosfy= (R—r cosb) /N2ry, ¢1=m
((R—{—r cost)?-(r sin6)2)1/2
Vo=
2

R2+472+42rR cosb\ 12
-(————) . @™
2
cosfy= (R+7 cos)/V2rs, ¢2=0.

The explicit expressions for the spherical harmonics are

2041\ 12
le(0)¢):eim¢dm,ol(0)( 4 > ) (83')
! NLEm)\(—m) 1 ]2
m 0Z = —1)n
Gm.oH0) ,Em( )nl(l—l—m—n)!(l—n)!’(n—m)!
X (cosif)2tm—2n(gindf)2—  (8b)
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in terms of which we write
[Yu(p)VE(P2) Job =3 (dam—m| LO)Y n"(81,m) ¥ _m2(82,0)
(2L+1)(2l+1)71/2 '
:[T] > (llgm—m| L0)e™d,,, g1(61)d—m,0%2(62) 9)
‘8 m
I"(2l1+1)(2l2+1) 12
= T] > (ldom—m| LO)dm,0"(61)dm,0"2(02) .
— T m
Expression (6) then becomes
(2h+1)(2l+1)712 ™
fo, LL(r,R)erI:———————w] 2w / sindd6 Y (llsm—m| L0)
(4m)2(2L+1) 0 m
X%z (rD) %1, (72)dm,0"(01) dm, 02(02) +-141, (72) 41, (¥ 1) om0 (02) 1,02 (01) (10)

[2(1"!‘ 6n1n2611126j1j2)]1/2

According to (7a) and (7b), replacing 6 by w— 6 interchanges (r1, cosf:) and (rs, cosfz). Since 16,5 in (8b) are con-
fined to the interval between 0 and %, so that cos36:,» and singf;,» remain positive, this operation will also inter-
change d,o!(01) and du,o'(f2). Thus the two terms in the integrand make the same contribution to the integral.

Furthermore, since

(abam—m| LO) = (— 1) b+=L(lyfy— mm| LO)

A o1 (0) = (— 1)™dm o1(0)

(11a)
(11b)

the m and —m terms in the integrand of (10) differ only by a factor of (—1)u+2~L, Finally, then, we get

1
dx wy (1), (rs)

X[ (11500 LOYdo,0"(01)do,02(62)+2 2= (llam—m| L0)dm,o"(01)dm,o2(62)], (12)

1+(_1)l1+l2—Ll— (2[1+1)(2l2+1) 1/2
Jo,L(r,R)= :l XrXRX/
2 I_Z(ZL"—1)(1+5n1n26l1126111'2) -1
in which
R2472—2rRx\ 12
()

R4 27 R\ 12
72=< > , (133.)
2
cos3f; 1 R—rax\12
-G2a)
sin¥ 6, 2 2V2n
cosil 1 RHrax\/?
-G2a)
sinf, 2 2V2r

The # integration in (12) was performed numerically in
a manner described in Sec. III.

(13b)

III. NUMERICAL CALCULATION OF THE
DISTRIBUTION FUNCTION

We evaluate the integral in (12) by means of the
Gauss-Legendre quadrature formula.” This approxi-
mates a definite integral by a sum of Ny terms.

7 Zdenek Kopal, Numerical Analysis (Chapman and Hall Ltd.,
London, 1955).

/ g(x)dx%g wg(%s). (14)

t=1

The weight coefficients w; and the abscissas x; are tabu-
lated for various values of Ny.

In an actual calculation we usually need fo,.%(7,R) at
many (7,R) points. Since we must perform a separate
x integration at each (r,R) point, we would like to mini-
mize the number of terms N, in the approximation (14)
without sacrificing too much accuracy. We can be guided
in our choice of the minimum acceptable Ny by consider-
ing the case in which the radial wave functions in (2b)
are those appropriate to the 3-dimensional harmonic
oscillator potential. We will show that the integrand in
(2) [equivalently in (6) with M=0] is then a poly-
nomial in %, in which case it is possible to find a value of
N, for which (14) ceases to be an approximation and
becomes exact. This value of N, should then also serve
well when the radial wave functions are those of a finite
potential.

Thus we now assume that we have harmonic oscil-
lator radial functions. To see that the integrand in (6)
is then a polynomial in x, we expand it with the aid of
the Brody-Moshinsky transformation brackets into
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vector-coupled products of functions of r and R;
([ emMH(ry)pm2(rg) JoE+ [ dm11(rs) pm22(1y) ]oL>
C2(148n1nab102,65130) 12

X (LM o)V A(RE) Jo™+ [N (— 1)V (RE) 1o") = gl

X4 (= D) Jun(Nuna(R)LV @) Y A®) Jo"=

BAYMAN AND A.

KALLIO 156

(naby,nals| YN, NA) 1,

R=R: ¥ANA [2(1+ 6n1n2611126f1j2)]l/2
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% (
YANA 4

1/2
) (\A00| Z0)
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L (=DM Jun(una(R) Y M (F) . (15)

[2(1+ 6n1n2611l261'1.’f2)]1/2

Since Y o*(?)=[(2A+1)/4x]2Py\(x) is a polynomial of
degree \ in «, the sum in (14) is a polynomial in & whose
degree equals the greatest value of A (\max) Occurring
in the sum. This will occur when » and IV are both zero,
and A is as small as it can be, consistent with the re-
quirement that (\A,L) form a triangle, namely,
A=XAnmax— L. Since the total number of quanta is pre-
served in the Brody-Moshinsky transformation, we
then have

anll—i— 2%212-—— )\max+>\mﬂx- L )
Amax=m1+ns+3(h+l+ L),

for the degree in x of the polynomial integrand (12).
Under these circumstances, the expression (14) is exact
provided that N, is sufficiently large that

2N0—1> )\max;
No2 i[2(n+n2)+lt-lt-L+-2].

For example, for two-particles in the 413/ orbital near
the Fermi surface of Pb28, we would need

so that an N of 7 would cover all possible cases. Equa-
tions (12) and (14) would then yield exact expressions
for the distribution function for harmonic oscillator
wave functions, and good approximations for the dis-
tribution function when other reasonable radial wave
functions are used. Using Woods-Saxon radial functions
in this case, we found that changing N, form 4 to 8 had
very little effect on the calculated fz,0(7,R). Numbers of
the order of 10! were changed by about 2X1079,
whereas numbers of the order of 10~'° were changed by
about 2X 10713,

(16)

IV. FORM FACTORS FOR A 2-PARTICLE
TRANSFER REACTION

In a zero-range DWBA treatment of pickup from or
stripping into the two-particle state (1), we need to
evaluate form factors Fy,g(7s) defined by

/ Ar1drad(rs— % (11412) ) Pret or me3(T1,T2,T3)

\I[Mnllljl:nZIZjﬂ;I(rlgl’rzg‘z) = Z FL,S(73)
L,S

XAV E(Re) (XM (0 1)X (02) I} ar”

We take the three-particle (triton or He3) internal orbi-
tal wave function to be

(17)

12 [(r1—r2)2+ (ra—r13) 2+ (r3—11)2]

2165\ /2
q)H‘ or He’(rl,r27r3) = ( )

21668\ 1/2
= ( ) 3_3"2 [r2+52] ,

w3

3

(18)

where 7 was defined in (4a) and p is defined by
2r3— 11— (32 )[ R
== -
V6 v \/2']

The mean-square radius of the triton or He? described
by (18) would be 1/6x2. The normalization in (18) is
chosen so that

/{q’H’ or Het (T1,Ia,T3) | 2drdp=1. (19)

We use the expansions (3) and (5) to write (17) as

R 7216k8 1/2 [ 2 R\2 [
= ()atil i [ R o= () esp| =3 (=) ||
L,S

V2

8

V2

Saak(r,R) N 864x%\ 1/
X T FE I @Y AR L)X 1) = (~—~) % ((a1)12b)a] (b () o)
, 7. ™
0,L (7'
x o ‘3“3“%2‘“7“**{[1’0(%) T 43 JHX 03 (02) 1)
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Comparison with (17) then yields

3

Fus(re)= (1728) 1 ((1});:(12d)5 | () 2(33) )1

w3
X ] rdre=37 fo LL(rV2r5). (20)
0

To evaluate the integral in (20) we make use of the
Gauss-Hermite approximation

"0

/ e'g (7)d7§1§ Hig(a;))+g(—a:)], (N even)

(21)
W-1/2

= _E Hilg(a:)+g(—ai)]
+H (v41)28(0), (N odd).

The H; and @, are tabulated” for various values of N.
The approximation (21) becomes an equality if g(r) is
a polynomial whose degree does not exceed 2N—1.

Reference to (13) will show that the integrand in (12)
is unchanged if the signs of x and 7 are both reversed.
Thus f(r,R)=— f(—r,R) and the integrand in (20) is an
even function of 7. If g(r)=g(—7), the approximation
(21) becomes

® N/2
/ eg(r)dr= 3 Hig(as), (N even)
0 =1
(22)
W-1)/2
=~ 3 Higla)+3H w+122(0), (N odd)

=1

which is the form of the approximation that we need.
Now suppose that the radial wave functions belong

to a harmonic oscillator well with range parameters
t [= (mw/%)Y%]. Then

fg,LL(f,\/Z_rg) = 6_%(")26‘(7’,\/2“}'3) , (23)

where C(r,V2r3;) is a polynomial in 7 of degree 2(n,+#,)
+15i+1l— L+1. In this case the integral in (20) can be
written

/ rdy e~ BRI C(r V2pg) = —— ——
: [3e+37]

XEI H{MC<W, \/2_7'3) , (24)

where m is an integer satisfying
m2 3(nitng)+3(h+lh—L+3). (25)

Thus for the previously mentioned case of the (0i)2
configuration in Pb, an m of 4 would give exact results
if harmonic oscillator wave functions were used in the
construction of fo,.%(r,V27s).
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If wave functions from a finite well were used,
C(r,V2r;5) as defined in (23) would not generally be a
polynomial of finite degree in . However, if the oscil-
lator parameter ¢ used in the definition of C(r,V2r3) is a
reasonable one, then C(r,v2r;) differs only slightly from
a polynomial of degree 2(n1-+n2)+h~+1l.—L+1, and we
would expect an accurate result from (24) and (25). Of
course, we can improve the accuracy by taking higher
values of m. For example, an 7 of 9 used in (24) would
give exact results not only for =0, /=6 harmonic os-
cillator radial wave functions, but for any linear com-
bination of /=6 harmonic oscillator radial wave func-
tions with #<S5.

Figure 2 shows the form factor Fs,(r;3) calculated in
this way for the reaction Pb2%3(p,)Pb2¢ (E,=0.803
MeV). Pb?% is assumed to be composed of doubly-
closed shells, while the 0.803-MeV 2+ state in Pb2 is
assumed to be the linear combination of two-hole states
given by True and Ford?:

W 3 %(Pb?%, E,=0.803)=0.7229% 2(2p1/54,1 f5,57%)
—0.6017¢ 32(2p1/571,2p3/57Y)
+0.2168¢M2(1f5/2—1,1f5/2_1)
+0.1509¢M2(2p3/2—1,1f5/2_1)

+0.2134¢ 2% (2p3,571,2p327Y) . (26)

The single-particle states? are calculated in the Woods-
Saxon well*:

1 h2
= Vﬂ[ +X
1+exp[(r—ro)/ao] 4m2?
exp[(r—70)/a0] { ! } ]
{1+exp[(r—7r0)/ao]}2aer |—I—1 ’

= Nl

for J= {l+] 27)

2

8 W. W. True and K. W. Ford, Phys. Rev. 109, 1675 (1958).

® We are grateful to Professor E. Rost for giving us a computer
program to determine these finite-well radial functions.

10 A. A. Ross, Hans Mark, and R. D. Lawson, Phys. Rev. 102,
1619 (1956).
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O—= ——
1

Fic. 3. A(Rom.)
and k(Rcm) of Eq
(30) for the I=0
state of the (2p3/2)?
4 configuration.
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with 70=1.25X(208)'* F, a¢=0.7 ¥, \=29.0, and
depths chosen to give each single-particle state a sepa-
ration energy of —7.46 MeV. This gives the correct
two-neutron separation energy of —14.92 MeV, which
determines the slope of InFy o(rs) for large 75. The in-
dividual terms in (26) lead to partial form factors with
essentially the same shape as that of the total form
factor.

The general features of these curves are determined
by the exponential decay for large 73, and the fact that
all the two-particle states in (26) correspond to oscil-
lator states with 10 quanta. There can thus be at most
10 quanta of c.m. motion, which, for L=2, leads to a
c.m. wave function with 5 radial nodes.

V. TWO-PARTICLE INTERACTIONS

The fundamental problem in the theory of nuclear
matter is that of two nucleons, moving in the presence
of a Fermi sea, and interacting via the true nucleon-
nucleon force. We will discuss only the singlet, relative
angular-momentum-zero part of this force. The separa-
tion method of Scott and Moszkowski!! has provided a
very useful approximation to the solution of this prob-
lem. It expresses the nucleon-nucleon potential v(r) as
a sum of two terms;

v(r)=1,(r)+ur), (28)
where

2,(r)=0 for r>d,
(r)=0 for r<d.

The “‘separation distance” d is a function of the relative
momentum k. The separation distance is chosen so that
a nucleon of momentum % scattering in the potential
2,(7) has zero phase shift.

If we wish to apply this method to finite nuclei, we
must be able to ascribe an effective relative momentum
to particles moving in specified shell-model states, at

1S, A. Moszkowski and B. L. Scott, Nucl. Phys. 29, 665 (1962).
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least when they are within about 1 ¥ of each other.
Reference 12 presents a natural way of doing this when
the shell-model states are those of a harmonic oscillator
potential. It is based on an approximate relationship be-
tween the harmonic oscillator wave function of relative
motion and the spherical Bessel functions. For particles
moving in a finite well, we may proceed as follows:
Write (12) in terms of the variables

(29a)
(29D)

T19= 1'2—“I'1=\/2r,
Rc.m.E (r2+r1)/2= R/\/7 )

and for a given value of R.m., try to express the de-

7 2
I <(3p|/z),0 |v|(zf7,2).o>
>
L3
3
" °
o3
s -2r
-4
-4 4
..8 _‘
-2 -
> - i
]
’ -
£, i Fic. 4. M(Rom),
Ef? | as defined in Eq.
s 31) for the I=0
-24 -4 states of various con-
2 4 GR {fm) figurations near the
Ok T T Fermi surface of
| Pb28, The arrows in-
dicate the location
—4r- } 1  of the nuclear radius.
2 2
-8r 3p ),0lvi(3p )00 -
N ( P r"‘/z)' )
-2 -
> -l6F
z .
AE. [o] T
mo
= -4
_‘8._
-2
=16
i 1 1 1 1 1 1 1 1

12 A. Kallio, Phys. Letters 18, 51 (1965).
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pendence on 7;5 as follows:

Jo,.2(r,R) = fo,.*(5V2r12,V2Re.m.)
gA (Rc.m.) Sin[:k(Rc.m.)rm] . (30)
If the 712 dependence can be so expressed, at least for
712 less than about 1.2 F, then the coefficient k(Re.m.)
will be the effective relative momentum at this value of
R.m.. Figure 3 shows the functions A(R..m.) and
k(Re.m.) so obtained for the I=0 state of the configura-
tion (2p3/2)% It is apparent that k(R..m.) varies strongly
as a function of R, .. However, the expression for the
interaction energy will be dominated by values of Re .
at which the amplitude 4 (R...) is large, and for these
Rom., k(Rom.) varies much less. Using the E(R,...)
shown in Fig. 4, together with a curve of separation dis-
tance versus relative momentum such as that given
in Ref. 11, we conclude that d=~1.1 F for Re.m,. =2 F,
d=1.08 F for Ren.=4F, and d=1.04 F for Rem.
=7.5F.
To understand the relationship between k(R...,.) and
A(R..m.) exhibited in Fig. 3, let us write the independ-
ent-particle Hamiltonian in terms of the variables 79

Borod L)
 Rem?

S

ARem) | 202m)LdR, .2
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and R, .. defined in (29):
h? h?

H=— Ve .m.z_
2(2m) 2(m/2)

+U(l Rc.m.*%rm[ )+U(| Rc.m."l“lz‘rlzi ) . (31)

V7'122

A Taylor expansion of the potential energy terms about
r12=0 gives

2U(Rc.m.)+(%r12‘ VRc.m.)ZU(Rc.m.)+ Tt (32)

Let us suppose that 7y» is small enough that U(R¢.m.)
changes by a small fraction of itself in this distance.
This will be true for 7,2<1.2 F, except perhaps in the
vicinity of the nuclear surface. Then the second term in
(33) will be small compared to the first, and H becomes
approximately separable in R.m. and r12. If we then
seek an eigenfunction of (31) of the form

M(T].Z)A (Rc.m.) I/ML(Rc.m.)

712Re.m.

U l(Rem ., t12)=

, (33)

the radial functions U(r15) and 4(R...a.) must satisfy

Here e is the sum of the two single-particle energies. Equation (34) implies that

where

+2U(Re.m.) }A(R = v ] 34
] c.m. € rm) = u(rlz) { z(m/z) drm? %(7’12) . ( )
#(r19) =sin[ (Ro.m.)712],
LIL+1)\ m |V
e e ) iR (59)

k(Rc.m.>={ : E( z

A(Rom )LA\GR, .2

Thus %k(R..m.) becomes large near the zeros of A(R, ..).
On the other hand, £(R..m.) has its minima near values
of Rom. making A(Rem. ) 'd24(Rem.)/dR;.m.2 most
negative.

If we neglect the R..... dependence of d, the expression
for the interaction matrix element is

0

A_E= dRc.m.M(-Rc.m.) ) (36)
where Re.m.=0
® 712 2
MRem )= Vz(”m)I:fo,LL('-, \/Z_R12>:| driz. (37)
r1g=d ‘\/Z

Figure 4 shows M (R.....) calculated for the =0 states
of various neutron configurations near the Fermi surface
of lead. V(R) was taken from Ref. 13, with d=1.045 F.
The nodeless single-particle wave functions of the
(%13/2)? configuration causes the effective interaction to
be concentrated near the nuclear surface. For all other

13 A. Kallio and K. Kolltveit, Nucl. Phys. 53, 87 (1964).

cases, the interaction is distributed throughout the nu-
clear volume.
Finally, we give in Table I a comparison of matrix ele-
ments of the force of Ref. 13, calculated between har-
TaBLE I. Matrix elements for Pb2¢ in LS coupling. The oscil-

lator parameter is Zw="7 MeV. The Woods-Saxon (W-S) wells
use79=1.25 F, ¢p=0.65 F, and A=20.

M atrix elements

W-S W-S
I Oscillator V=447 V=39.0
(2p%|v1,| 29?) 0 —0.851 —0.978 ~0.784
Af2|og|112) 0 —1.22 —1.34 ~1.23
(042] vy, | 042) 0 —1.54 —1.7 —1.64
2p*|vr|1/2) 0 —0.477 —0.423 —0.380
(2p%|v1,|03%) 0 0.455 0.357 0.324
(12|91, 032) 0 0.835 0.684 0.656
2p2|vr|29%) 2 —0.468 —0.546 —0.426
(112|or|112) 2 —0.347 —0.386 —0.351
(042] 0| 042) 2 —0.404 —0.451 —0.431
2p2|oz|112) 2 —0.162 —0.145 —0.130
(2p%| 01, 032) 2 0.149 0.117 0.107
(112|v1,]032) 2 0.244 0.184 0.175




1128

monic oscillator wave functions, and wave functions
from a Woods-Saxon well. The oscillator parameter was
chosen from w=41 MeV/A/3, It is seen that the Woods-
Saxon wave functions generally yield larger diagonal
elements, but smaller off-diagonal elements, than do the
harmonic oscillator wave functions. We also show in
Table I that a rather large change in the depth of the
Woods-Saxon potential has little effect on the interac-
tion matrix elements. This change in potential depth
has a sizeable effect on the single-particle energies, and
on the tails of the single-particle wave functions. How-
ever, although these tails are important in the calcula-
tion of form factors for particle transfer reactions, they
contribute little to interaction matrix elements.

VI. DISCUSSION

We have described a method of obtaining the relative-
angular-momentum-zero part of a two-particle wave
function. If this wave function is a product of single-
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particle wave functions, an alternative method is the
expansion of the single-particle radial functions in
terms of harmonic oscillator radial functions, and the
subsequent use of Brody-Moshinsky transformation
brackets. However, suppose the orbital part of the two-
particle wave function has the more general form

w(r1,ro) [ Y (1) Y 2(P2) | a”
F1(ro,r) [ V(7o) V2(P1) ]ar®

where the radial function #(r1,72) is not simply a product
of one-particle radial functions. Terms of this form could
arise from a solution of the two-body problem that did
not start from an independent-particle basis. The double
expansion of #(ry,rs) in terms of harmonic oscillator
products #,,1,(71) X #s,1,(72) would generally be very in-
volved. But the more general wave function (38) poses
no additional difficulty for our method. One need only
replace the product #:,(r1) Xu,(rs) in the integrand in
(12) by u(ry,rs).

(38)



