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Relative-Angular-Momentum-Zero Part of Two-Nucleon
Wave Functions*

B. F. BA'jt'MAN AND A. KALIIOt

School'of Physics, University of Minnesota, Minneapolis, Minnesota

(Received 28 November 1966)

A method is given for finding the relative-angular-momentum-zero part of the wave function of two
particles moving in a finite single-particle potential. The results are applied to form factors for two-nucleon
transfer reactions and to two-nucleon interaction matrix elements.

I. INTRODUCTION

"ANY calculations in nuclear physics involve the
- ~ use of two-particle shell-model wave functions.

The most familiar example is the calculation of the
matrix elements of a two-particle interaction. Another
example is the distorted-wave Born-approximation
(DWBA) treatment of direct two-particle transfer
processes, such as the (t,p) or (He', p) reactions.

These shell-model wave functions are products of
functions of the variables of the separate particles. How-
ever, the calculation can usually be performed more
simply if the wave function is expressed in terms of the
relative and center-of-mass (c.m. ) va, riables of the two
particles. Talmi' and Moshinsky' have developed
methods for eBecting this transformation to relative and
center-of-mass variables when the single-particle wave
functions are characteristic of an infinite harmonic os-
cillator well. These methods, especially when used in
conjunction with the transformation brackets tabulated
by Brody and Moshinsky, ' have enormously facilitated
many calculations in nuclear physics.

However, there are some circumstances in which one
must use wave functions characteristic of a finite po-
tential well. This is the case in Hartree-Fock calcula-
tions, in which the single-particle wave functions are
eigenfunctions in the self-consistent potential, which is
of course finite. Also, Drisko and Rybicki4 have em-

phasized that the proper treatment of transfer processes,
which are sensitive to the nuclear wave functions in the
vicinity of the nuclear surface and beyond, requires
wave functions with the asymptotic behavior of a finite
well.

This problem of performing the transformation to
relative and c.m. coordinates with the single-particle
wave functions of a 6nite well has been treated by first
expanding the Gnite-well wave functions in terms of
harmonic-oscillator wave functions of varying numbers
of nodes, and then performing the Talmi-Moshinsky
transformation on the individual harmonic oscillator
components. "The number of these components re-
quired depends upon the radius out to which one wishes
to approximate the wave function, and upon the ac-
curacy one desires. In this paper, we describe a method
for performing the transformation which works directly
with the finite-well wave functions, and does not involve
the harmonic oscillator expansion. It is thus free from
uncertainties about how many terms to include. It is
limited, however, to that part of the wave function in
which the two-particles have relative angular momen-
tum zero. This is sufficient for many purposes.

II. DERIVATION OF THE FORMULAS

Ke begin with a normalized two-particle shell-model
wave function

[$~&2222(rl g1)0~22222(r2 g2)]Mr+( 1)r[pngl&2'2(r2 g )pn2222'2(r2 g )j I
'+22121 '+22222 r r(r g 2 r2g ) =1 1y 2 2

[2(1+8m, n282, 22&2,22)j' '

Here T is the isobaric spin, zero if the state is symmetric in the two-particles and unity if it is antisymmetric. The
bracket notation indicates vector coupling to total angular momentum I and its z component M. The single-particle
states f ""(r,o) have the form

0„"'J(r,g)=—[2t"(r)x"'(g)]„',
2f „'(r)=u„2;(r) I'„'(r) . (2b)

~ Work supported by the U. S. Atomic Energy Commission.
f Present address: Argonne National Laboratory, Argonne, Illinois.' I. Talmi, Helv. Phys. Acta 25, 185 (1952).' M. Moshinsky, Nucl. Phys. 13, 104 (1959).
g T. A. Brody and M. Moshinsky, Tables of Transformation Brackets (Monograhas del Instituto de Fisica, Mexico, 1960).

R. M. Drisko and F. Rybicki, Phys. Rev. Letters, 16, 275 (1966).' R. Muthukrishnan and M. Baranger, Phys. Letters, 18, 160 (1965).
E. U. Condon and G. H. Shortley, The Theory of Atomic SPectra (Cambridge University Press, Cambridge, 1935).
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For convenience, we have suppressed the 22 and J dependence of the orbital functions 2t (r). The radial functions
u„2,(r) are normalized solutions of the radial Schrodinger equation with the chosen single-particle potential. We
use the Condon-Shortley' phase convention for the spherical harmonics.
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Our aim is to f(nd the part of the wave function (1) in which the two-particles have zero relative angular momen-
tum. To this end we expand in an 1.-5—coupling representation

+~"'""'"'""""(rishiro~o)= 2 ((f~o) (4o)8ol(lito)~(oo)s)i

{([~"(r)~"( )]'+(-1)""'L~"(r.)~"(r )]')Lx'"(.)x"'(.)]'} '
X- (~)

L2(1+~~)~88&)&8»u'8)]

r—= (ro—r))/V2,

R—= (ro+r))/v2,

(4a)

(4b)

The part of the wave function in which the two par-
ticles have zero relative angular momentum is permuta-
tion-symmetric in r1 and I'2. Thus if T= I we keep only
the 5=0 term and if T=0 we keep only the 5= ]. term.
%e then introduce relative and center-of-mass coordi-
nates defined by

forming the integral in (6) contains all the information
about the relative-angular-momentum-zero part of the
two-particle wave function (1).

To integrate over r(= 8,818), we set 3f=0 in (6) since

fo,rz(r, R) is independent of 3f. Kith M=O and R=Ri
the integrand in (6) is independent of (t). It is sufIicient
then to allow the r1, r2 plane to coincide with the x, x

plane, as shown in Fig. I. Since

and envisage an expansion of the form

L4 "(r~)4 "(ro)]~'+L4 "(ro)4 "(r~)]~' it follows that

r=r cosH z+r sinH x,

L2(1+8"H~ ~ »»')]"'
f)„~'(r,R)—

I
I' "(r)I"(R)]-' (~)

t'R

To obtain fo,rz(r, R) we set R=z and integrate (5) over
dr. This integration picks out the X=O, A= I. term on
the right-hand side. Since

2K+1 '" 1
I'~'(~) = H~,o, I'o'(r) =

4~ (4)r) '"
t

fo, r,z(r, R) =
(21.+1)'('

L0 "(r )4 "(r )] '+L4 "(r )0'"(r )] '
di. (6)

(8 *) L-2 (1+Hrc) 8888448»») ]
The "distribution function" fo, r,~(r,R) obtained by per-

R—r (R—r cosH)z —r sinHx
I'1=

V2 K2

R+r (R+r cos8)z+r sinHx

K2 K2

Thus we can express r1 and r2 in terms of r, R, and 0 as
follows:

(R—r coo8)'+( oir8)')o'
~1

2

R'+r' 2rR cosH —"'
(7a)

1

2

cosH) = (R rcosH) /V2ry, —

(88+r coo8)'+(r oio8)')'o
r2—

2

E2+r2+2rR coso 'f2

(&b)
2

Fio. I. The 1nte-
gration of equation
of Kq. (6) is per-
formed with R=Rz
and rI and r2 in the
x-s plane. 2t+ ] 1j2

I)' ((8 y) ocmr)rd ((8)
4'

(Sa)

COSHo= (R+r COSH)/V2ro, 8t o=0.

The explicit expressions for the spherical harmonics are

y (PO~NT~NG OUT
OF PLANE I

l l([(l+ ) (~- ) ]'"
d-, o'(8)= E (—1)"

~=m n!())+m —n)!(l—8O)!(e—m)!

X(cos-,'8)o)+m —o~(s)n —', 8)'"-" (Sb)
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in terms of which we write

LY"(rg)Y'&(rp)]p =Q (lglpm m—~LO)Y "(8gx)Y "(8p,O)

(2lg+1) (2lp+1) —'~'

g (lglpm m—I LO)e'~~d p"(8g)d o'&(8p)

Expression (6) then becomes

-(2lg+1)(2lp+1)- 'I'

(4m.)'
g (ill pm m—

I
LO)d o"(8r)d~,o"(8p) .

(2lg+ 1)(2lp+1)
fp, zz(r, R) = rR 2'

(4~) '(2L+1) o

sin8d8 P (l~lpm m—
~
LO)

ul (rl)ul2(r2)dm, p (81)d,p (82)+u4(rp)u&, (r&)d„p (8&)d~ p (8y)

L (1+8nzn28lzlg8jzjg)g

According to (7a) and (7b), replacing 8 by ~—8 interchanges (r~, cos8~) and (ro, cos8p). Since —,'8~, p in (gb) are con-
fined to the interval between 0 and —,'x, so that cos—,'Hl, ~ and sin~Bi, 2 remain positive, this operation will also inter-
change d„p'(8~) and d„,o'(8p). Thus the two terms in the integrand make the same contribution to the integral.
Furthermore, since

(l~l pm mj L—O) = ( 1)"—+'~z(l~lp mm—(LO),

d--, "(8)= (—1)-d-,o'(8),

the m and —m terms in the integrand of (10) differ only by a factor of (—1)"+" z. Finally, then, we get

(11a)

(11b)

1+( ] )ly+/2 —L-

fo z~(r,R) =
2

(2lg+1) (2lp+1) l

x.x~x
2(2L+1)(1+8„,„,8(,(,8,„,) -l

dx u(, (rg)u(, (r,)

XL(lrlpOOI LO)do o"(8x)do, o '(8o)+2 g (lzlpm m
I
LO—)d o"(A)d o '(8p) j, (12)

m&0

in which Np

g(x)dx—-Q oo;g(x;) .
i~1

co@-,'9, 1 R+rw)'&'

sin-', 02 2 242r2
(13b)

The x integration in (12) was performed numerically in
a manner described in Sec. III.

III. NUMERICAL CALCULATION OF THE
DISTRIBUTION FUNCTION

We evaluate the integral in (12) by means of the
Gauss-Legendre quadrature formula. " This approxi-
mates a definite integral by a sum of Xo terms.

'Zdenek Kopal, Numen'ca/ Analysis (Chapman and Ha11 Ltd. ,
London, 1955).

R'+r'+2rRx "'
rp

—— —,(13a)
2

cos~&el 1 R—rx '~'

sin~el 2 2V2rl

The weight coeKcients co; and the abscissas x; are tabu-
lated for various values of Eo.

In an actual calculation we usually need fp, zz(r, R) at
many (r,R) points. Since we must perform a separate
x integration at each (r,R) point, we would like to mini-
mize the number of terms Ep in the approximation (14)
without sacri6cing too much accuracy. We can be guided
in our choice of the minimum acceptable Eo by consider-
ing the case in which the radial wave functions in (2b)
are those appropriate to the 3-dimensional harmonic
oscillator potential. We will show that the integrand in

(2) [equivalently in (6) with M=Oj is then a poly-
nomial in x, in which case it is possible to Gnd a value of
Np for which (14) ceases to be an approximation and
becomes exact. This value of Xo should then also serve
well when the radial wave functions are those of a 6nite
potential.

Thus we now assume that we have harmonic oscil-
lator radial functions. To see that the integrand in (6)
is then a polynomial in x, we expand it with the aid of
the Brody-Moshinsky transformation brackets into
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vector-coupled products of functions of r and R;

r[y""~(ri)y"s4(rs));y[y" 4(rs)y"s's(r, )]:~ (n, l„ns&sl.&,xx),
[2(1+6 i sh44~riis) j ~a=a*" "~+~ [2(1+~ s s~44~iw's)j

(nels, nsls
I
rX,)Vd) r,

X ([P""(r)y"'(»)jp'+ [4""(—r)4"'(»)$p') = Z—.xaam [2(1+g„,„,g44g;„;)j'~

(24+1 'I'
&&[1+(-1)"3'() .(&)[l'"(')I"(~)j'= Z I

— (~001«)
vxNs ( 4s'

(nslr, ns4 I vX,SA) r,
—-[1+(—1)"jN„),(r)

Upped(R)

Fp" (r) . (15)
[2(1+8+1&284ls~rlfs)]

Since 1'p"(r) = [(2K+1)/47r]"sz), (x) ls a polynomial of
degree X in x, the sum in (14) is a polynomial in. x whose
degree equals the greatest value of X (X ) occurring
in the sum. This will occur when v and E are both zero,
and A is as small as it can be, consistent with the re-
quirement that (X,A,I.) form a triangle, namely,
A.=X —I.. Since the total number of quanta is pre-
served in the Brody-Moshinsky transformation, we
then have

2nglg+2ns4=X +&~~—I.,
=nr+ns+-', (4+4+I-),

IV. FORM FACTORS FOR A 2-PARTICLE
TRANSFER REACTION

In a zero-range DWBA treatment of pickup from or
stripping into the two-particle state (1), we need to
evaluate form factors Fz, a(rs) de6ned by

drsdrs~(rs —s (ra+ rs))C'ae' or as'(rsvp'sp's)

tel 4/i, tl st;s I( rp r ps) —Q pz s(r )
L,8

X{I"'(-)[~'"()x"'(.)j') '. (»)

216m' '~'
(16) C'as or a 3(rr rs rs) = &

—a2 f (r1—rm)&+(rg —r3)2+(rg—r1)&]
272&o—j.«» ~,

Sp&&—,'[2(ng+ns)+ lg+ is+1+2j. (18)
2)/~6 1/2

~
—38 tr2+ p&]

X3

For example, for two-particles in the iygg2 orbital near
the Fermi surface of Pb"' we would need

for the degree in x of the polynomial integrand (12). We take the three-particle (triton or He') internal orbi-
Under these circumstances, the expression (14) is exact tal wave function to be
provided that Eo is su%.ciently large that

Xp~&sr(14+I),
so that an Eo of 7 would cover all possible cases. Equa-
tions (12) and (14) would then yield exact expressions
for the distribution function for harmonic oscillator
wave functions, and good approximations for the dis-
tribution function vrhen other reasonable radial wave
functions are used. Using Woods-Saxon radial functions
in this case, we found that changing Eo form 4 to 8 had
very little effect on the calculated fz,p(r R). Numbers of
the order of 10 ' were changed by about 2gi6 ',
whereas numbers of the order of 10 "were changed by
about 2&10 ".

where r was defined in (4a) and p is defined by

2'—I'y —I'2 R-
s) rs-

V2

I
Ca*., a.*(r,,r„r,) I

drdg= l.

We use the expansions (3) and (5) to write (17) as

The mean-square radius of the triton or He' described
by (18) would be 1/6rs. The normalization in (18) is
chosen so that

R 2 R '-~
g ((lP),, (/sos), , l

(l,l,)r, (~ps')s)z drdR 5 rs —— exP —3s' r'+ — rs ——
1,8 W2 3 W2

f~,~'(r,~) 864m' "2' —{[l"(")l'(R)3'[x'"( ) "'( )3'). '=- — X: ((t l), (l l).l(«) (ll) )I,8

fp, r~(r,v2rs)
{il'"(r)l '(r )3'[x'"(~ )&'"(~ )j') '

rr3
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Comparison with (17) then yields j i 2 I t I 2 I I i I i I.I 0—

&z.s(rs)=(1728)' ((4o)2 (4o)221(44)r(oo)s)r
x'r3

rdre '"'"f
p, r~(r2&2ro) . (20)

To evaluate the integral in (20) we make use of the
Gauss-Hermite approximation

X/2
e "'g(r)dr- PFI—;fg(a;)+g( a;)j, (—X even)

Fro. 2. Form fac-
tor for the reaction
Pb"'(P2t)Pb"' lead-
ing to the 0.8-MeV
2+ state in Pb"'. The
mean-square radius
of the triton is taken
to be (1.7 F)'. The
arrow indicates the
location of the nu-
clear radius.

2
222

.Ol—

.OOOI

(N—1) /2

(21)

FI.-Lg(a')+g( —a )j
+FI&/r+i&/og(0), (S odd) .

The H; and ui are tabulated' for various values of E.
The approximation (21) becomes an equality if g(r) is
a polynomial whose degree does not exceed 2E—1.

Reference to (13) will show that the integrand in (12)
is unchanged if the signs of x and r are both reversed.
Thus f(r,R) = f( r,R) an—d th—e integrand in (20) is an
even function of r If g(r)=. g(—r), the approximation
(21) becomes

e "'g(r)dr P II;g—(a;), (1V even)

(22)
(K—1)/2

FI;g(a;)+oFI(/o~i)/og(0), (/V odd)

which is the form of the approximation that we need.
Now suppose that the radial wave functions belong

to a harmonic oscillator well with range parameters
t L—= (mu2/A)' 'j. Then

fo, r, (r,v2ro)=e &i'""C(r,pro), (23)

where C(r,V2ro) is a polynomial in r of degree 2(tti+rto)
+l~+4—L+1. In this case the integral in (20) can be
written

If wave functions from a finite well were used,
C(r,pro) as defined in (23) would not generally be a
polynomial of finite degree in r. However, if the oscil-
lator parameter t used in the definition of C(r,pro) is a
reasonable one, then C(r,v2ro) differs only slightly from
a polynomial of degree 2(tti+rto)+ l~+4—L+1, and we
would expect an accurate result from (24) and (25). Of
course, we can improve the accuracy by taking higher
values of r/t. For example, an rN of 9 used in (24) would
give exact results not only for v=0, l=6 harmonic os-
cillator radial wave functions, but for any linear com-
bination of 3=6 harmonic oscillator radial wave func-
tions with m&5.

Figure 2 shows the form factor Fo,o(ro) calculated in
this way for the reaction Pb"'(p, t)Pb'" (E =0803
MeV). Pb'" is assumed to be composed of doubly-
closed shells, while the 0.803-MeV 2+ state in Pb"' is
assumed to be the linear combination of two-hole states
given by True and Ford':

4'ii'(Pb'oo 8 0 803) 0 72292'/it (2p, /,
—1f,/, —)—060172pir'(2pi/o '«2po/2 ')

+0.21682'/Lro(1fo/2 i21fo/o i)

+0.15092//a'(2po/o 21 fo/Q ')
+0.21342Ptr'(2Po/o ',2Po/o ') . (26)

The single-particle states' are calculated in the %oods-
Saxon well":

rdr e l'"'+1 "l"'C(r2&2ro) =
L3/t'+-,'t'j

trt Ci
XQ 22;g;C, v2r, ), (22)

i=i (3Ko+ ~&to) 2/2

where m is an integer satisfying

r/t )&—,'(ei+no)+4(ii+4 —L+3) . (25)

V= Vp +X
1+expL(r —r,)/a, 7 4r/t'c'

expL(r —rp)/ap]
X X

{1+exp'(r —ro)/ao]) oaor —1—1

I+-',
for J=

1
2

(27)

Thus for the previously mentioned case of the (Ot)'
configuration in Pb, an ns of 4 would give exact results
if harmonic oscillator wave functions were used in the
construction of fo, r, (r,pro).

W. W. True and K. W. Ford, Phys. Rev. 109, 1675 (1958).
9 We are grateful to Professor E. Rost for giving us a computer

program to determine these 6nite-well radial functions."A. A. Ross, Hans Mark, and R. D. Lawson, Phys. Rev. 102,
1619 (1956).
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pendence on r~2 as follows:
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and R, de6ned in (29):

112"I

fo, r. z(r,R) = fo, z~(~vv2r», VZR, )—A(R, ) sin[k(R, )r»j. (30)

If the r~2 dependence can be so expressed, at least for
r~2 less than about 1.2 F, then the coefficient k(R, )
will be the eRective relative momentum at this value of
R, Figure 3 shows the functions A(R, . ) and
k(R, ) so obtained for the I=0 state of the con6gura-
tion (2p3i~)'. It is apparent that k(R, ) varies strongly
as a function of R, . However, the expression for the
interaction energy will be dominated by values of R, „,.
at which the amplitude A(R. ) is large, and for these
R, , k(R, ) varies much less. Using the k(R, )
shown in Fig. 4, together with a curve of separation dis-
tance versus relative momentum such as that given
in Ref. 11, we conclude that d—1.1 F for R. =2 F,
d—1.08 F for R, =4 F, and d—1.04 F for R,—75F

To understand the relationship between k(R, ) and
A(R, ) exhibited in Fig. 3, let us write the independ-
ent-particle Hamiltonian in terms of the variables r~2

2 2

2(2m) 2(m/2)

+U(l R .-.—vr» I)+U(l R..-.+vr» I) (»)
A Taylor expansion of the potential energy terms about
f'j2= 0 gives

2U(R. )+(-',r» V&, ) U(R, )+ . (32)

Let us suppose that r» is small enough that U(R. )
changes by a small fraction of itself in this distance.
This will be true for r~2(2.2 F, except perhaps in the
vicinity of the nuclear surface. Then the second term in
(33) will be small compared to the first, and II becomes
approximately separable in R, and r~2. If we then
seek an eigenfunction of (31) of the form

u(r»)A (R, )F'~z(R, . )
e~z(R, ,rr2)=,(33)

~$2Rc.m.

the radial functions U(r») and A(R, ) must satisfy

I.(I.+1)- It2 d'

Here v is the sum of the two single-particle energies. Equation (34) implies that

+2U(R, )—v A(R, ,)= u(rg2) .
2(2m) dR, m. ' R„..~.' u(r») 2(m/2) dr»'

(34)

where
u(r») = sinl k(Ro. .)r12],

1 1 d' I (I-+1) m ~
I/2

k(R. )= — — — +—(v—2U(R, )) A(R, „.) t

A(R, ) 4dR, ' R, ' k'
(35)

Thus k(R. ,„.) becomes large near the zeros of A(R„. ).
On the other hand, k(R, ) has its minima near values
of R, . making A (R, ) 'd'A (R, )/dR, . ' most
negative.

If we neglect the R. dependence of d, the expression
for the interaction matrix element is

cases, the interaction is distributed throughout the nu-
clear volume.

Finally, we give in Table I a comparison of matrix ele-
ments of the force of Ref. 13, calculated between har-

T~LE I. Matrix elements for Pb"' in IS coupling. The oscil-
lator parameter is So=7 MeV. The Woods-Saxon (W-S) wells
use r 0

——1.25 F, a0=0.65 F, and X=20.

where

dR, ,M'(R, .),
e.m.=0

(36) Matrix elements
W-S

U =44.7Oscillator
W-S

U =39.0

M(R, )—=

12=d

(r»
I l(r12) fO, I l ~2R12 dr12. (37)

kv2

"A. Kallio and K. Kolltveit, Nucl. Phys. 53, 87 (1964).

Figure 4 shows M(R. ) calculated for the I=0 states
of various neutron configurations near the Fermi surface
of lead. V(R) was taken from Ref. 13, with d= 1.045 F.
The nodeless single-particle wave functions of the
(i»/v)' configuration causes the effective interaction to
be concentrated near the nuclear surface. For all other

(2p'Ivt, 2p')
(1f'Ivt, 1f')
(Oi'I vL, I OP)
&2p'I» I tf')
&2pmIv, IOi2)

(1f'I vt, I
Oi')

&2p'I»
I
2p')

(1 f2 Iv~I 1f2)
&Oi'

I
v&10i')

&2p'I v~ I tf')
(2p'Ivy IOi')

(1f'Ivy, IOi')

—0.851
—1.22
—1.54
—0.477

0.455
0.835

—0.468
—0.347
—0.404
—0.162

0.149
0.244

—0.978
—1.34
—1.71
—0.423

0.357
0.684

—0.546
—0.386
—0.451
—0.145

0.117
0.184

—0.784
1.23

—1.64
—0.380

0.324
0.656

—0.426
—0.351
—0.431
—0.130

0.107
0.175
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monic oscillator wave functions, and wave functions
from a Woods-Saxon well. The oscillator parameter was
chosen from co=41 MeV/2'~'. It is seen that the Woods-
Saxon wave functions generally yield larger diagonal
elements, but smaller oR-diagonal elements, than do the
harmonic oscillator wave functions. We also show in
Table I that a rather large change in the depth of the
Woods-Saxon potential has little eRect on the interac-
tion matrix elements. This change in potential depth
has a sizeable eRect on the single-particle energies, and
on the tails of the single-particle wave functions. How-
ever, although these tails are important in the calcula-
tion of form factors for particle transfer reactions, they
contribute little to interaction matrix elements.

VI. DISCUSSION

We have described a method of obtaining the relative-
angular-momentum-zero part of a two-particle wave
function. If this wave function is a product of single-

particle wave functions, an alternative method is the
expansion of the single-particle radial functions in
terms of harmonic oscillator radial functions, and the
subsequent use of Hrody-Moshinsky transformation
brackets. However, suppose the orbital part of the two-
particle wave function has the more general form

'R(1'y r2)[F ~(f1)F ~(f2)]M

+N(rg, rr) [7"(rg)F"(rg)]M~, (38)

where the radial function u(r~, r2) is not simply a product
of one-particle radial functions. Terms of this form could
arise from a solution of the two-body problem that did
not start from an independent-particle basis. The double
expansion of u(rq, r2) in terms of harmonic oscillator
products u„,~,(rq) Xu„,~,(r2) would generally be very in-

volved. But the more general wave function (38) poses
no additional difhculty for our method. One need only
replace the product u~, (rq) &&N~, (r~) in the integrand in

(12) by N(rg, r2).


