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Watson Potential*
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The high-energy approximation is used to evaluate an effective local optical potential to describe nucleon-
nucleus scattering in terms of soft-core two-body potentials.

INTRODUCTION

HE nonlocality of the Watson' potential has been
shown by Mulligan' to be an important effect in

describing nucleon-nucleus scattering in terms of a
two-body/matrix T~(k,k'). One may derive an effective
local potential if one knows the value of a certain deriva-
tive of the t Inatrix. ' ' It is the purpose of this paper to
indicate how such a derivative may be calculated for
not-too-singular potentials in the high-energy ap-
proximation.

A typical potential V(r,r') is given by

This "superseparable" form of the nonlocal potential
is so peculiar]. y cRsy to hRndlc that onc Blight assume
from reading some of the physics literature' that this is
the only form a nonlocality can take. This is certainly
not the correct form to describe nucleon-nucleus scatter-
ing at low energies, but at high energies, when we

neglect antisymmetrization and correlations, it happens
fortunately to be the correct one.

Following the procedure of Ref. 4 we solve the
scattering problem by defining a phase S such that
the wave function f, describing particles of momentum
ke scattering from V(r, r'), is given by

V(r, r') =—
(2~)~~

e+"'Te (k,k') /=exp(iks r+is)

In the high-energy approximationa we then have

where 6 is the nucleon form factor of an assumed
independent-particle nucleus with S nucleons. Assum-

ing the nuclear radius to be much greater than the
range of the nucleon-nucleon force gives

85—hr =expL —iks r—iS(r)j
Bs

X V(r, r') expfikg. r'+iS(r') jd'r'. (2)

Ir'E r+r'
V(r, r') =- e'" &' "&Tg(k k)d'k

(2~)'m 2

The s direction is taken as the direction of ks. The
scattering amplitude f(ke ke') , is given by

2m A'S r r' f(kg', k~) =
2ÃA2

expL ik~' r+ik —g r'+is(r')]

X V(r, r')d'rd'r'

r+r'
U(r —r') =V(r) U(r —r'),

2

expL —i(kg' —kg) bj

XLeis(b, ao) ])d2f,

where the last step follows because U is of very short
range compared to t/'. The nuclear density is p and
U(R) is given by

where r= (b,s) in cylindrical coordinates. This is the
same expression as one would 6nd for a local potential,
V, (r), when

V.(r) = —heBS/Bs

U(R) =
(2s)'

e'~ "T (k.sk)d')r. ,
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and e is the velocity of the particle. Thus, if wc can
solve the integral equation (2) for r)S/Bs we can 6nd
an effective local potential V, (r) which will reproduce
the scattering amplitude f

It is convenient at this point to introduce a Qcw

variable R;

4 J. I'". Reading, Phys. Letters 20, 518 (1966).' R. Glauber, Lectures in Theoretica/ I'hysics (Interscience
Publishers, Inc. , Nevr York, 1958), Vol. 1.
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We then rewrite Eq. (2) as

BS
A—r, = V(r) U(R)

Bs

XexpLikg R+iS(R+r) i—S(r)jd'R

Expanding S(r+R) about the point r, and keeping
only the first derivative of S gives

as—hv = V(r) U(R)e' e'"(1+iR VS)d'R. (4)
Bs

With T~(k,k) a function of the scalar k (which is
the case if we assume the two-body potential S' is
spherically symmetric) U is a function of the scalar R.
Thus, the only contribution from the second term in the
integration of Eq. (4) comes when R is pointing in the
s or k~ direction. Therefore, we have

BS BS—he = V(r) Ts(kg, kg)+ V(r) Tg'(kE, ks),
Bs Bs

where
8

Ts'(k, k) =—Tx(k,k),
Bk

This gives
h'kg'= 2Am.

which completes the calculation of V, (r). We only need
the derivative of Tx(k,k) evaluated on the mass shell.
This is a nice. simplification but, of course, the knowl-
edge of the derivative implies knowledge of the off-
mass-shall behavior in the immediate neighborhood.
Thus, in V, (r) which is experimentally measurable, we
have a method of exploring the off-mass-shell behavior
of the two-body t matrix over a whole range of energies.
The only o8-mass-shell sects that have been obtainable
directly from experiment before, have been those from
bound states or negative energies. ' As we can go up to
300 MeV for E with no diKculty at all, and consider-
ably higher than this if we are prepared to treat pion
production, we have a tool which should be of great
value in the study of the nuc1eon-nucleon interaction.
This is well known, of course, and was the original
motivation for studying nucleon-nucleus scattering. '
The Watson potential we have considered so far has

'See, hov ever, M. I. Sobel, Phys. Rev. 13S, 81517 (1965).' H. A. Bethe, Ann. Phys. (N. Y.) 3, 190 (1958).

BS
h. =V, (r)=V—(r)T (1,1 )

Bs
V(r)

X 1+ T~'(k~,ks), (S)
Av

ignored effects due to correlations both dynamic and
kinematic. s The extraction of Tir'(kg, k@) from the
experimental data is somewhat complicated by these
sects, but it is hoped that these difEculties may be
circumvented by comparing deuteron-nucleus scatter-
ing to nucleon-nucleus scattering. ' Thus, we need two
nuclear experiments (deuteron and nucleon) and a
knowledge of Ts(ks, kg) in order to calculate Ts'(k, k),
an involved program; one, however, that is well worth
attempting, considering the valuable insight it can give
us into the proposed two-body interactions.

E»$',
kEa))1.

These conditions will hardly be applicable in practice
(considering the hard-core fits of most interactions)
below 300 MeV which is our upper limit in energy
without discussing pion production. However, soft-core
fits to the two-body data are now available and in any
case it is nice to have an analytic expression to under-
stand the general features of the problem and to obtain
a deeper understanding of the factors involved. The
square-well hard core in any case can be treated exactly. '

The generalized oG-mass-shell'wave function satisfies
the following equation:

m
Ps(r, k) = exp(ik r)—

2xh'

ex pl ik g [ r r'
~

)—
/
r—r'/

XW(r')Pz(r', k)d'r', (7)

where ~k~ g ~k~~ and the t matrix Te(k', k) is de-
fined by

m
Ts(k', k) = — — exp( ik' r)W(—r)gg(r, k )ds'r

2vrA'

Thus, we have

Ta'(k~, ks) =-
2xh2

exp( —ik~ r)W(r)

8
X fir(r, ks) isis(r, ks) d'—r. (8)

8k~
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TE'(ke, i'r~) IN THE HIGH-ENERGY
APPROXIMATION

We have stated above that in Tz'(k~, kir) we have a
measure of 8' which is not obtainable in a normal two-
body experiment. We now show exactly what measure
of 5" we have in a simple model situation, where we
assume that for a range u of 8',
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T,(k,k) = W(k' —k)

p, (r) =gp, (r,kg)/~&g=Q" ' '

in the high-energy lar, we have~e calculate W'(r z)~
d 6 Q hyapproximation. Fo]]owingin Glauber, ' we e ne

, (kd kz„)T ger (ktkg")
d ~E"

y

/gad kEThen differentiating Eq

of Q' y andvrhere W(k Fourier trans«rm o
ffAPE„2— 18

the discontinuity ~crossDifferentiating and taking t e i
X r—I')Q(r r )dl" ' the cut in complex g, gives

tegrand is oscill atingonential in t e in egr
rapi y. h d of stationary phase givesrapidly. Using the met o o s

QTE
ImTg'(kg, kg)= — Tz (kz, ) (k ,k)

4m

Q(r) =is——
Av

W(b, s')Q (b,s')ds'.
(kz,k)Tg(kg, k) drab (11)

Bk

with
~ g = kf.

ximation, we have
h the bounda y condition thatThis we may solve, wit t e oun

Q(b, s) =is,

ne
'

in the backward direction. Thisneglecting scattering in t e
ves

Tz(kg, k) = expLi(k —kg) b]
27rz

ttr(b, s')dd)
+00

exp ——
heJ „ tP(b, s)ds) —t d'h

zl

exp (—
8 m

s " ' g, Tg(kg, k)=-W(b, s")ds"
~

—1 ds'+s . (9 expLi(k —kg) b]isW(r)

h' h energy expression for r kg),Combining the ig -ene +exp
As

W(b, s')ds' d'r

i g

tt (r,hs)=exp(ths r—

( i x

exp( ——
kU

oo

X exp~ ——
as

~ ~W(b, s')ds' i,
~

g "o» " g
wi

E . (11)i phd. hEq. (8),

gy pp oTz'(kz, kg) = ——
27r
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high-energy approximation to the multiple-scattering
problem.

APPLICATION TO A SQUARE WELL

As an example of the method, we calculate T~(kg,k~)
snd Ts'(ks, ke) for a square well of radius a and
strength 8'. It is straightforward to show that

Tg(ke, ks) = ka'zL-', —ze-'~/n+ (1—e-' )/n'] (13)

This is only negative if t/t/' is positive and is inversely
proportional to k. Similarly, if n is large, then

L= (—~kaz2) (2/kazz) =
3 az,

which is purely imaginary and proportional to e. Thus,
the behavior of I- which has been inferred in Ref. 4
from apparently quite general arguments, is completely
wrong.

From Kq. (5) we see another important ratio is f:

T~'(k~, k~)
with

f= fV(r)/Izv5Ts'(kg, kg)

V (r) = V~(r)/(1+f),
-1 z 4e '~ 4z(l —e ')

= —2ka' -+-(e-' +1)+ +
3 tx CP A

n =2IVa/hv.

It is shown in Ref. 4 that the ratio L= T~'/T is the
length involved in determining the correction to the
Watson potential due to the nonlocality. It is also
stated. there that

L=O(kea')

and is always negative. The proof of the latter state-
ment was conditional on the real and imaginary parts
of the nonlocality as typified by U(R) having the same
radius. From Eqs. (13) and (14) it is clear that neither
of these statements is true for all values of 5'. If e is
small, then

TVa'm

SIg'k

where Vr, (r) is the potential one would get if one
ignored the locality. Assuming W is large, but E is
larger, would give

(AX ~ (ks'2) 2rP

which predicts therefore that
I V, I & I V&l and that the

real and imaginary parts of V, and VJ. are proportional.

CONCLUSION

We have derived an expression for T&'(Q&P&) to be
used for soft-core potentials in evaluating the optical
potential to describe nucleon-nucleus scattering. The
approximation satishes a generalized unitarity condi-
tion. It is hoped that the analytic expression obtained.
for a square well may contain some of the features of
an exact calculation. The length L is, in general,
complex.


