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The high-energy approximation is used to evaluate an effective local optical potential to describe nucleon-
nucleus scattering in terms of soft-core two-body potentials.

INTRODUCTION

HE nonlocality of the Watson! potential has been
shown by Mulligan? to be an important effect in
describing nucleon-nucleus scattering in terms of a
two-body ¢ matrix Tz(k,k’). One may derive an effective
local potential if one knows the value of a certain deriva-
tive of the ¢ matrix.’=3 It is the purpose of this paper to
indicate how such a derivative may be calculated for
not-too-singular potentials in the high-energy ap-
proximation.
A typical potential V (r,r’) is given by
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where G is the nucleon form factor of an assumed
independent-particle nucleus with N nucleons. Assum-
ing the nuclear radius to be much greater than the
range of the nucleon-nucleon force gives
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where the last step follows because U is of very short
range compared to V. The nuclear density is p and
U(R) is given by

UR)= ! /“"RT (k,k)d*%
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This “superseparable” form of the nonlocal potential
is so peculiarly easy to handle that one might assume
from reading some of the physics literature? that this is
the only form a nonlocality can take. This is certainly
not the correct form to describe nucleon-nucleus scatter-
ing at low energies, but at high energies, when we
neglect antisymmetrization and correlations, it happens
fortunately to be the correct one.

Following the procedure of Ref. 4 we solve the
scattering problem by defining a phase .S such that
the wave function ¥, describing particles of momentum
kg scattering from V (x,r’), is given by

v=exp(tkg - r+i5).

In the high-energy approximation® we then have

as
——hva—= exp[ —ikg - r—iS(r)]
2

XfV(r,r’) exp[tkg-t'+iS(') ] . (2)

The z direction is taken as the direction of kg. The
scattering amplitude f(kz',kz) is given by
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where r= (b,z) in cylindrical coordinates. This is the
same expression as one would find for a local potential,

Ve(r), when
3)

and v is the velocity of the particle. Thus, if we can
solve the integral equation (2) for 8.S/dz we can find
an effective local potential V,.(r) which will reproduce
the scattering amplitude f.

It is convenient at this point to introduce a new
variable R;

Ve(r)=—hvdS/ 9z

R=1t'—r.

+J. F. Reading, Phys. Letters 20, 518 (1966).
8 R. Glauber, Lectures in Theoretical Physics (Interscience
Publishers, Inc., New York, 1958), Vol. 1.
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We then rewrite Eq. (2) as
as

—hy—= V(r)/U(R)
0z

X exp[ik s R4S (R+1)—iS (r) J&°R.

Expanding S(r+R) about the point r, and keeping
only the first derivative of S gives

oS
—n V() / UR)e* s R(1+iR-VS)FR. (4)
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With Tr(kk) a function of the scalar £ (which is
the case if we assume the two-body potential W is
spherically symmetric) U is a function of the scalar R.
Thus, the only contribution from the second term in the
integration of Eq. (4) comes when R is pointing in the
z or kg direction. Therefore, we have

as aS
—tw—=V()Tekekr)+ V(’)-a—TE' (kgkz),
2
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0
TE/ (k,k) = —TE (k;k) )
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k| kel ,
Wkpgt=2Em.
This gives
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which completes the calculation of V(7). We only need
the derivative of Tr(k,k) evaluated on the mass shell.
This is-a nice simplification but, of course, the knowl-
edge of the derivative implies knowledge of the off-
mass-shall behavior in the immediate neighborhood.
Thus, in V,(r) which is experimentally measurable, we
have a method of exploring the off-mass-shell behavior
of the two-body ¢ matrix over a whole range of energies.
The only off-mass-shell effects that have been obtainable
directly from experiment before, have been those from
bound states or negative energies.® As we can go up to
300 MeV for E with no difficulty at all, and consider-
ably higher than this if we are prepared to treat pion
production, we have a tool which should be of great
value in the study of the nucleon-nucleon interaction.
This is well known, of course, and was the original
motivation for studying nucleon-nucleus scattering.’
The Watson potential we have considered so far has

6 See, however, M. I. Sobel, Phys. Rev. 138, B1517 (1965).
TH. A. Bethe, Ann. Phys. (N. Y.) 3, 190 (1958).
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ignored effects due to correlations both dynamic and
kinematic.® The extraction of T’ (kgkz) from the
experimental data is somewhat complicated by these
effects, but it is hoped that these difficulties may be
circumvented by comparing deuteron-nucleus scatter-
ing to nucleon-nucleus scattering.® Thus, we need two
nuclear experiments (deuteron and nucleon) and a
knowledge of T'z(kg,kz) in order to calculate 7%’ (kk),
an involved program; one, however, that is well worth
attempting, considering the valuable insight it can give
us into the proposed two-body interactions.

Ty’ (kg,kz) IN THE HIGH-ENERGY
APPROXIMATION

We have stated above that in Tz (kg,kz) we have a
measure of W which is not obtainable in a normal two-
body experiment. We now show exactly what measure
of W we have in a simple model situation, where we
assume that for a range @ of W,

E>W,

kga>1, ©
These conditions will hardly be applicable in practice
(considering the hard-core fits of most interactions)
below 300 MeV which is our upper limit in energy
without discussing pion production. However, soft-core
fits to the two-body data are now available and in any
case it is nice to have an analytic expression to under-
stand the general features of the problem and to obtain
a deeper understanding of the factors involved. The
square-well hard core in any case can be treated exactly.?
The generalized off-mass-shell wave function satisfies
the following equation:

m
Yr(t,k)=exp(tk-r)—

/‘ exp[ike|r—r'|]
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where |k|#|kg| and the ¢ matrix Tx(K k) is de-
fined by

Tr(k' k)= —2—”;—2 / exp(—ik"-0)W (r)r (t kg)d’r.

vy

Thus, we have
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We calculate dy(r,kg)/0kr in the high-energy
approximation. Following Glauber,® we define Q by

‘I/E’(r)= a‘l/E(r,kE)/akE=Qg‘ikE-l’.

Then differentiating Eq. (7) gives

m
Q)=iz—— / expikgr’ —ikg 1]
2
XW(—1)Q@—1")dsr .
The exponential in the integrand is oscillating
rapidly. Using the method of stationary phase gives
’i z
Q@) =iz—— W(b,2)Q(b,s")dz’ .
J
This we may solve, with the boundary condition that
Q(bz) =1z,

neglecting scattering in the backward direction. This
gives

Q(r)=iexp(—£—

VJ—w

([ [l [ woere)-iesd. o

Combining the high-energy expression for yg(rkg),

z

W (b7 )dz’)

¢E(r,kE)=exp(ik,v;-r—hi / W(b,z’)dz’) ,
VJ—x

with that for Q from Eq. (9) gives, on substitution into
Eq. (8),

k i [
TE (kgkg)=—— / [exp(-——— W(b,z')dz')-—- 1:]
2 . ) o

X[exp(—-’%/:o W(b,z’)dz’)—l]. (10)

From Eq. (10) we see that T5 (kgkg) is at least
second order in W. This is to be expected as in Born
approximation T'z(kk’) is local (for a local potential)
so that the nonlocality which is measured to some
extent by T (kg,kz) should be at least second order
in W. In fact, Eq. (10) represents an approximate
summation of all terms in the Born series.?

The approximation satisfies unitarity (or at least
a simple generalization) if we are prepared to make the
usual small-angle approximation of Glauber.® We know
that for all Hermitian potentials, and for W in particu-
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lar, we have
T k)=W & —k)
1 / Tp (K kg ) Tp*(kkg)

T
272

- B,
kEr'2~kE2—i€

where W (k'—k) is the Fourier transform of W(r) and
Wkg*=2E"m.

Differentiating and taking the discontinuity across
the cut in complex E, gives

ke Tk
ImTE' (kE,kE)='—‘ / l:TE* (kE,k)——(kE,k)
4 kg

v

T g*
+ p (kE,k)TE(kE,k):Iko (11)
B
with |kg|=|k|.
In the high-energy approximation, we have
kg
2wt
[ ( T Wb 1],125
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] m (12)
———TE(kE,k)z~—/exp['i(k—kE)-b]izW(r)
ke 2h?
,i z
X expl: —_ w (b,z’)dz’:ld‘*r .
7 J o

In Eq. (12) we have assumed that there is negligible
contribution to the integral unless kg is in the k or
direction. Using the closure property of the angular
integration, it is then straightforward to show that
Eq. (11) is satisfied. Perhaps the most interesting result
of Eq. (10) is that T5'(kg,kg) is not zero in the high-
energy approximation. Glauber® has derived the
optical potential using the high-energy approximation
and found it to be local, so we might expect at suffi-
ciently high energies for soft-core potentials that the
nonlocality of the Watson potential should disappear.

This apparently is not the case. The nonlocality of
the potential is directly traceable to the occurrence
in the calculation of off-the-mass-shell matrix elements.
These occur because of multiple scattering. The wave
incident on a target nucleon consists of a plane wave
plus all the outgoing scattered waves. The latter
immediately involves one in off-the-mass-shell matrix
elements. The failure of the Glauber method is due to
the absence in the approximate wave function of
outgoing internally scattered waves. The correction
for the nonlocality is so large? that this must be
considered a serious defect in the application of the



156

high-energy approximation to the multiple-scattering
problem.
APPLICATION TO A SQUARE WELL

As an example of the method, we calculate Tz (kz,kz)
and Tg' (kgkg) for a square well of radius ¢ and
strength W. It is straightforward to show that

Tg(kpkg)=ka¥i[3—iec /a4 (1—e*)/a?] (13)

and,
Ty (kgkg)
1 7 4deie 4i(1—e o)
=——2ka3l:—+—(e‘“*+1)—'ﬁ - :|, (14)
3 «a o? a?
where

a=2Wa/hv.

It is shown in Ref. 4 that the ratio L=T%/T is the
length involved in determining the correction to the
Watson potential due to the nonlocality. It is also
stated there that

L=O(k Ed2)

and is always negative. The proof of the latter state-
ment was conditional on the real and imaginary parts
of the nonlocality as typified by U(R) having the same
radius. From Egs. (13) and (14) it is clear that neither
of these statements is true for all values of W. If « is
small, then

I ( ka%ﬁ) < 3 ) —Wa? Watm
15 N\eed/ S swer
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This is only negative if W is positive and is inversely
proportional to k. Similarly, if « is large, then

L= (—%ka*2)(2/ka%)=%ai,

which is purely imaginary and proportional to a. Thus,
the behavior of L which has been inferred in Ref. 4
from apparently quite general arguments, is completely
wrong.

From Eq. (5) we see another important ratio is f:

f=LV(")/h]TE (ks,kr)

Vo(=Vi(r)/(1+1),

where Vi(r) is the potential one would get if one
ignored the locality. Assuming W is large, but E is
larger, would give

()2

with

which predicts therefore that | V.| <| V.| and that the
real and imaginary parts of V, and ¥ are proportional.

CONCLUSION

We have derived an expression for Tz’ (kg,kz) to be
used for soft-core potentials in evaluating the optical
potential to describe nucleon-nucleus scattering. The
approximation satisfies a generalized unitarity condi-
tion. It is hoped that the analytic expression obtained
for a square well may contain some of the features of
an exact calculation. The length L is, in general,
complex.



