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Furthermore, it seems to be necessary to consider
corrections to these approximations if quantitative
agreement is to be obtained at 142 Mev.

We believe that the present calculation somewhat
favors the Yale phase-shift set at all energies. This
conclusion must remain tentative until the corrections
mentioned are considered in detail. It is, of course,
possible that all of our fits to the data are fortuitous
and that careful examination of the necessary corrections
will show them. to be major. This seems unlikely, how-

ever, in view of the fact that we obtain qualitative
description of the data over large angular ranges as well
as quantitative its at small angles. Given the reasonable-
ness of their approximations, as demonstrated in this
paper, Saperstein and Feldman have shown that such
qualitative fits to the data are rot characteristic of all
E-E phase-shift sets. The use of Ã-X scattering to
differentiate between E-N phase-shift sets, while not
firmly proven, seems highly plausible at the present
time.
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To describe deuteron-nucleus scattering accurately at high energies, one has to correct the approximation
that the potential which acts on the deuteron is the sum of the neutron and proton optical potentials. This
correction is largely due to nuclear correlations and presents a method of determining the correction to the
nucleon optical potential due to correlations. The method is applied to 650-MeV deuteron-carbon scattering.
Good agreement is found between theory and experiment.

INTRODUCTION

1
~~NE hopes that from nuc1eon-nucleus scattering at

high energies one can get information about the
two-body force and nuclear correlations. The nucleon
is scattered in intermediate two-particle states "off its
energy shell" and, with a wavelength of a fraction of a
fermi, the strongly interacting nucleon multiply scat-
tered from many target nucleons provides an excellent
probe for nuclear correlations. '' The off-energy-shell
scattering leads to a nonlocality in the Watson potential.
This nonlocality, which has been shown by Mulligan'
and Reading4 to contribute an important part to the
potential, can be shown to be directly related to the
derivative of the two-body T matrix for "going oB the
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energy shell. '" 4 If this extremely important information
can be extracted from the experimental data, we have
the possibility of nucleon-nucleus scattering becoming
an extremely important tool in the study of the two-

body interaction. Unfortunately, the situation is some-
what complicated by the nuclear correlations, which
are expected' to give corrections of the order of //R to
the optical potential, where l is the correlation length
and R is the nuclear radius. In this note is presented an
experimental method for determining the correction to
the optical model due to correlations. While some
information is necessarily obtained about the correlation
function, we should perhaps emphasize that this is not
a method for obtaining that function, such as, for
example, the methods discussed by Srivastava or
Reiner. ' The pair correlation function enters the optical
potential as part of an integrand which is integrated
over all the two-body space. There are contributions
to this function both from short-range correlations due
to the repulsive core, and from long-range correlations
due to the exclusion principle and attractive forces. The
correlation function for a repulsive core oscillates as the
nucleons try to form a crystalline structure, but on the
whole it tends to work with the exclusion principle to
keep the particles apart whilst the attractive forces

' R. Glauber, Lectures in Theoretical Physics (Interscience
Publishers, Inc. , New York, 1958), Vol. 1.' Y. N. Srivastava, Bull. Am. Phys. Soc. 9, 15 (1964};A. Reiner
(private communication) .
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keep them together. Thus there is a great deal of
cancellation involved, which makes it desirable to
determine the correlation correction experimentally
rather than calculate it from some more basic premise—
though of course once the answer is found one can
compare lt with such cRlculRtlons.

The trouble with determining the nuclear correlation
correction comes when comparing a theoretical calcula-
tion with experiment. A calculation of the elastic
diGerential cross-section using the zero-range approxi-
mation for the nucleon-nucleon force, while reproducing
the general details of the experiment, typically divers
from it by about 10%at small angles, and this disagree-
ment tends to get worse at large-angle scattering. The

difhculty is to determine what causes this. One has the
choice of nonlocality, 6nite range, correlations, or the
failure of the impulse approximation at the two-body
level.

%e propose to compare deuteron-nucleus scattering
with nucleon-nucleus scattering. Given the nucleon
amplitude for elastic scattering, Glauber' has shown
how to derive the deuteron difterential cross section.
The derivation depends only on the validity of the
high-energy approximation applied to the optical
potential. As the potential is well behaved with no
singularities, has a range of a few fermis, and can be
considered local, 4 there is no difhculty with the deriva-
tion. If deuteron scattering can be described by scatter-
ing from the sum of the neutron and proton potentials
V and V„, this method should give extremely good
answers. It has been applied by Franco and Glauber'
to deuteron-proton scattering and found to work well.
It has been apphed to deuteron-nucleus scattering' "
and found to be bad. It is suggested that the reason for
this is that deuteron scattering cannot be described by
the sum of the proton and neutron potentials —a well-

known fact that hRS been pointed out, by Zamlck Rnd

Mcauley, "and also by Campbell and Kerman. "It will

always be true whenever the deuteron interacts with a
system which has internal degrees of freedom, and the
deuteron can excite the system to an intermediate state
without being broken up."For an independent-particle
model of the nucleus, the correction is of order O.r/2mrg,
where a.q is the nucleon-nucleon total cross section and
r& is the radius of the deuteron. This is usually a negli-

gibly small correction at high energies, when op 40
mB—which is just a statement of the fact that the
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deuteron is so loosely bound that it is usually broken
up when it excites a nucleus. However, nuclear correla-
tions increase the correction by a factor of 5, and we use
this fact to study them. As the correlations represent
such a large proportion of this correction term, it is
hoped that this will provide a useful method for sorting
out the various corrections to the nucleon-nucleus case.

The method has been applied to deuteron-carbon
scattering at 650 MeV. Assuming that the only other
correction term for nucleon-nucleus scattering is due
to the nonlocality, and that this term is well reproduced
by a hard-core potential, we can calculate a correlation
correction. This is in agreement with the correlation
correction that is needed to 6t the deuteron data."

DEUTERON-NUCLEUS SCATTEMNG

The derivation given here follows closely that for
proton-nucleus scattering given in Glauber's paper, '
and also the derivation given by Zamick. ' Further
details, together with a complete discussion of the high-
eneI'gy RppI'oxlInatlon Rnd its RppllcRtlon to scRttellng
from compound systems, may be found in Ref. 5.

In the following, it is assumed &jlat the high-energy
approximation can be applied to nucleon-nucleon
scattering. This is not true because of the hard core.
Most of what we derive here can be obtained in ways
which do not depend on the high-energy approximation.
However, this is undoubtedly a problem which should
be looked into before the method is applied to studying
the nucleon-nucleon interaction. At the moment we
have a theory which is only strictly valid for soft-core
potentials and sufficiently high energies.

%e use the following notation. In cylindrical coordi-
nates the position vectors of the proton, neutron, and
the jth nuclear particle in the nucleus of A particles are

P=(ps„) N=(ns„) (=(s s)
respectively, with center-of-mass and relative coordi-
nates of the deuteron satisfying the usual identities,

R= (S,Z) =-', (P+N), r= (b,s) =P—N.

Elastic scattering amplitudes will be denoted, by
F„(Q) or f~(q), the subscript p, e, d denoting neutron,
proton, and deuteron amplitudes, respectively; Ii for
interactions with a nucleus, and f for interactions with
a nucleon. The only diAerence we shall consider between
f„and f„ is that due to the Coulomb force, and we shall
neglect this when convenient. (We shall use nucleon
and neutron interchangeably. ) Deuteron rnornentum
transfers are denoted by Q,

Q=2Z sinq8g,

where 9q is the deuteron sca, ttering angle and E is the
wave number. %e shaH always be concerned with
nucleon scattering at wave numbers of Xj2 and
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momentum transfers q, where

/=2k slngO~=K singe~ ~

amplitude P (q) is

e ''I' d'e

In the high-energy approximation we have the
quantities P„, x„which are related to f„and each other

by the following equations:
X Idol'(exp[i Q x (n—s;)]—1}IId))(;

ki

f (q) =—e-'&'1' (b)d'b
2'

lx (b) —1 eixxx(b) ——
2gki

eiq. bf (q)de

e '& "(exp[ix„'p(n)] 1—}d'n, .

where we have written

exp[ix„o&(n)]= (ol exp[i P) x„(n—s )]I 0)

piete set of nuclear wave fuIlctious p, with and x„' (n) is the Phase given bY the oPtical Potential

~=0 denoting the ground state, are written as

p„= Im)=)j' (g&, , f;, , g~)
x '&(n)= V„(n,s)dz,

hv

The nuclear density functions are defined in the here v 's the veloc t f th tw ere v ls t e veoclty o t e neutron.
usual way as The usual approximation is to write

p'~) (4,4, ,4)=
I A(4 4 ' ' &~) I'

For convenience we introduce the quantities e, n(2'

such that

exp (ixe) —= (0 I exp[i P;x„(n—s;)]
xexp[i 2;x.(p-;)]lo)

(0 I exp[i Q; x (n —s,)] I
ns)

X(ml exp[i P; x„(p—s,)]I 0)
= (0 I

exp[i P; x„(n—s,)] I 0)
X (0 I

exp[i P; x„(p—s;)] I 0)
=- exp[ix„' (n)] exp[ix, ' (y)],

As usual for the limit of large A, the correlation function

g is defined as

Finally, the deuteron wave function is Q(r).
The deuteron scattering amplitude can be written in

the high-eneI'gy appI'oxlIQatlon as

x&=x„'p(p)+x„»p(n).

This is, as can be seen from Eq. (&), equivalent to
writing the potential acting on the deuteron as the sum
of the neutron and proton potentials.

The approximation explicitly neglects all inter-
mediate excited states. The physical reason for hoping
this is a good approximation is that the deuteron cannot
excite the nucleus without a high probability of being
broken up because it is so loosely bound.

YVe have

(o I
exp[i p x„(n—s,)]exp[i g x,(y—s,)]I o)

l&0I' exp i+x„(y—s,)

+i P x.(n—s;) —1 II d'g, d'«'&. (1)

The Grst term in square brackets in the integrand of

Eq. (1) can be written as

A similar equation to Eq. (1) for the neutron-nucleus

Thus x~ is given by a sum of terms t„„,where

t „.=(0lr„(n—s;).
1'.(n —s-)P. (p—s )" 1;(p—s")Io)

As r ls nothing more than the two-body T matrix in
coniguration space, we see that the above term repre-
sents a process in which the neutron interacts with I,
and the proton with I', target nucleons. Assuming an
indepeeden)!-Particle model for the nucleus, we see that
only terms for which the proton and neutron scatter
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from the same target nucleon are approximated by
neglecting the intermediate excited states. This state-
ment follovrs from merely noting that for an independent
model

Expanding the logarithm, keeping just tvro-body
correlations, we obtain

zan=i ss(g)
i,„—= (O~r„(n —s,) . r„(n—s„)~0)

x(0lr. (y- )".r.(y-..) I0) XLr, (y—s)+r„(n—s)—r, (y—s)r„(n—s)jds(

(~) (&.)Eg(& -&.)-13

xLr, (y—s,)+r.{n—s,)—r, (y—s,)r„(n—s,)j
XD', (y—ss)+ I'.(n —ss) —I'„(n—s,)rs(y —s,)j

if none of the labels j, k, ~, u are equal to any of the
labels j', k', , u'. It is a peculiarity, and one that is
often missed, of the high-energy approximation that an
incident particle never interacts with the same nucleon
tvrice. To suppose that it does so, vrhen one assumes
forvrard scattering together vrith the assumption that
the wavelength of the incident particle is much less
than the average spacing betvreen the target nucleons,
would be a contradiction in terms. (This is the reason
we limit ourselves to double scattering events in
discussing deuteron-potential scattering. ) The incident
particle is moving so fast that the target nucleons are
frozen in position. After interacting with one of them,
the incident particle travels on in the forward direction,
as it does in all subsequent interactions, and it is not
possible for it to interact vrith the same nucleon twice.
Ke have called this effect a kinematic correlation and
have discussed it in detail elsevrhere. '4 However, one
consequence of the effect is that those terms of the type
vre have been considering which have any of the labels

j, k, , u, j', k', , u' repeated are smaller by a
numerical factor of uN'jA than those for which the
label is not repeated if vre assume that u, u'«A.

As the latter condition is very mell satis6ed in
practice because of the essential meekness of the two-
body T matrix together with its short range, vre are
making an approximation by neglecting the intermediate
excited states in terms vrhose numerical vreight is small.
Hovrever, for a correlated nuclear model this condition
is no longer satisfied, and we can expect nonnegligible
corrections in this case, which therefore come largely
from correlations. Thus in (xs—z„'&—z„'&) we have a
quRntlty which 18 eRslly measurable Rnd 1s directly
related to the correlation function.

Returning to Eq. (1), which can be written as

This expresses xg in terms of the two-body amplitude
functions I'. Thus, in principle, vre can calculate xq
directly from two-body data. We break x~ up into
four parts.

z,=z„"(n)Px,"{P)+S+C.
We have, by comparison with Eq. (3),

g„n(n) =i e(t)r„(n—s)ds( —-',i e((i)e((s)

xLg(~.-~)-1jr.(.— )r.(.-")d'~.d'~. , (8)

and a similar expression for x„'~(y). The two correction
terms to Eq. (5) are S and C, where as a first approxi-
Inatio11

5= i n(—g)I'„(y—s)I'„(n—s)dsg

(~.) (~.)Lg(& -&.)-1j
Xr.(n —»)r&(y —»)Aid'6

p, (g) = e 'o n~y(r) i (s'*s 1)d-ad'r, (6)—
2%i

we hRve fol &g

ms= —i ln p'"'($i, $~)

Let us 6rst study S, which is present vrhether or not
there are any correlations in the nucleus. The term
represents scattering processes in which both the
neutron and proton interact vrith the same target
nucleon. As such, it may be interpreted as an internal
shadow eEect. It will contribute a correction which is
roughly the same size as the shadow effect in deuteron-
nucleon scattering. Ignoring the correlation term in
g„'&(n) and assuming zero range/for the nucleon-
nucleon interaction, we obtain

xZ D—r, (y—s,)—r.(n—s,)

+r„(n—s;)r„(y—s;)jQ d'pg.

2 f(s0)A +"
z„'&(n) =

k

In the same approximation

p(n, s)ds.

'4 J. F. Reading, Ph.D. thesis, Birmingham, United Kingdom
(unpublished).

iA5=— 1(»&)ds "'f.(q)f.(q)d'V.
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To get some idea of the magnitude and sign of S, we
assume f~ is mostly imaginary and f„(q) is given by

f.(a) = f-(q) = f(o) exp( —C'a'/4) .
Then,

If we assume the correlation function and the two-
body force have a range small compared to the radius
of the nucleus, we have

A b2 — +oo

S=—LImf (0)]'—exp — p (S,s)ds.
k2 a 2a

C= —i (rs(Il, Z)]'dZ Lg(sg —s„s)—1]

Xrm(n sy)Fy(p sg)d sgd $2ds.

We see that x '~(n), or equivalently x„'~(B—h/2),
has the same shape as S, as a function of 8, when b=0.
The ratio of the strength of these two terms when the
deuteron radius is much smaller than the nuclear size
is given by

5 or
exp

x„o& 4vra' 2'

S ~c b' 8VOA'R
exp

4g a2 2a2 3k7Na

( $2

exp~—
2a'

This puts the correction in terms of the optical
potential which is directly obtainable from the scatter-

ing amplitude F . At 300 MeV, we have Or/47ra'=0. 1.
We now turn out attention to C, the remaining term

in Eq. (6). This term is only present if there are nuclear

correlations.

C= —~ ~(()~(( )Lg(( —
& )—»

Xr „(n—sg) F„(p—s2) d'$gd'$2. (10)

This should be compared with the correlation term in

x„'~(n), the last term in Eq. (g), which we call C~.

Because in Eq. (6), where this term enters, we still
have an integral over 8 to do, S contributes a term of
order or/27rrd' to the integral. This is small at high

energies, but may not be completely negligible at low

energies, if one attempts to apply the impulse approxi-
mation there. As we have written it, the ratio of S to
x„'I' has been determined in terms of o.y, the two-body
cross section. We can equally well find it in terms of

the optical potential V„. Assuming the nucleus has a
square-well shape —which is not a bad approximation
for most nuclei —and that the optical potential has a

strength V, with a radius R(=ROA'") —we obtain

Lg(sg —s, , s) —1]
x„"(8) 2~f(0)4~R,'

XI'„(n—s,)I', (p—s,)d's, d's, .
The assumption

g(r) = I+e """ (12)

gives as an estimate of the ratio C/x„'~,

0 y' —b'
y 3~P

exp —
~

— . (13)
4s (a'+ 'P) 2 (a-'+-,'P) I 4RO'

With such a crude expression for g(r), Eq. (12), we
should not take Eq. (13) seriously or use it to calculate t
and expect to get a reasonable answer for a correlation
length. Attractive forces give positive values for g

—1,
while repulsive forces and the exclusion principle tend
to give negative values, though the correlation function
for repulsive forces tends to oscillate as the nucleons
try to build up a crystalline type of structure. Thus in
the integral of Eq. (10) there will be a great deal of
cancellation. With our limited theoretical knowledge
of what the correlation function is, it is essential,
therefore, to have an experimental measurement of
C(8,0) rather than to rely on calculating it from some
more fundamental approach. ' Once we have C(8,0),
we can calculate the correction to the optical potential
due to correlations. With t presumably of the order of
Ro, we see from Eq. (13) that such a correction may
by no means be negligible.

APPLICATION TO DEUTERON-CARBON
SCATTERING

Given a square-well distribution for the nucleus, we
have

p(r) =p'(r)47rR'/3.
This gives

C = —-', i ~(&~)~(()Lg((i—5)—I]
XI'„(n—s~)1'„(n—s2)d'(ad'6 (11)

We see that C~ and C are very similar. A good value

of either is a good estimate of the other. In describing

the correction C~ to the optical potential due to corre-

lations, it is not necessary to find g, however interesting

that function may be for other purposes.
In fact, writing C as a function of 8 and b, we have

2C~(8) =C(8,0).

Ke have applied the method to analyze the experi-
mental data of Button et al." on deuteron-carbon
scattering and have compared the results with the data
of Ashmore et al."for neutron scattering.

In Fig. 1 we plot the deuteron elastic differential
cross section. The broken line is calculated under the
assumption that

xg=x~o"+x„o&.

"A. Ashmore, D. S. Mother, and S. K. pen, p«c. pgys. Soc
(London) 71, 552 (1958).
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It was assumed that F„(q)=F„(q) and that both
were purely imaginary and could be represented by a
single Gaussian. The agreement with experiment is
fairly good, but the calculated curve is consistently
higher than the experimental one.

We next try to 6t the experimental elastic differential
cross section with one parameter y, where now we use I.O—

y b2

xq ——x„"(y)+x„'&(n)+—x„'&(8) exp
L2 21.2

The quantity L would be given by L'=a'+-,'P, if we
were to make the Gaussian behavior assumption above.

The solid line in Fig. 1 represents a calculation for
which y was chosen to be 1.0 F'. The calculation is
insensitive to the choice of I.; it was taken to be 1.4 F.
Only linear powers of y/L' were kept, and all contribu-
tions from L1—exp'„'~(e)] raised to powers higher
than 2 were neglected. These approximations seem
fairly reasonable, considering the others. The fit to the
data is encouraging, considering that we only have one
parameter.

However, as pointed out above, y can be determined
from the correction to the optical potential due to
correlations. Mulligan has already corrected the optical
potential for the nonlocality. The correction to the
imaginary part of the potential is small, and he gives
the corrected imaginary part as 23 MeV. The experi-
mental value of the optical potential is AS+5 MeV.
This gives y as 1.6~1.0. Thus, at the moment, the
deuteron and the nucleon data seem to be in reasonable
agreement.

CONCLUSION

We have presented a method for determining the
correction to the optical potential due to correlations.
Once the difFiculty of making this correction has been
overcome, one can use nucleon-nucleus scattering to
study the two-body T matrix. The method applied to
deuteron-carbon scattering removes the discrepancy

o.ol—
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FIG. 1. Comparison of experimental data of Dutton et A. on
elastic difFerential cross section for deuteron-carbon scattering
with two calculations. Dashed line: y =0.0; solid line: y = 1.0 F'.

between proton-nucleus scattering and the Watson
theory at 300 MeV.
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