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Attemyt to Fix the Nucleon-Nucleon Parameters by Examining
Nucleon-Nucleus Scattering*
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The scattering of protons and neutrons from carbon at 142, 210, and 310 MeV is calculated using an
optical potential obtained from nucleon-nucleon scattering amplitudes with the impulse, single-scattering,
and energy-shell approximations. The integral scattering equation in momentum space is solved numerically
using this potential. The present calculation is compared to previous approximate solutions and to the data.
An attempt is made to choose among the currently available nucleon-nucleon phase-shift sets.

I. INTRODUCTION

~ ~

ATSON' has shown that it is possible to express
the optical potential for elastic nucleon-nucleus

scattering in terms of nucleon-nucleon scattering ampli-
tudes. A persistent hope has been that by using this
potential to calculate the differential cross section and
polarization for the scattering of nucleons by nuclei, one
might be able to make a choice among the various
parametrizations of the two-nucleon scattering matrix
by comparison with the nucleon-nucleus data. (In the
following, we shall refer to nucleon-nucleon scattering
by E &and to n-ucleon-nucleus scattering by X-K.)

Previous studies have employed various approxima-
tions in calculating the E-K scattering observables from
the S-X amplitudes. One such approximation' is the
neglect of the variation of the X-E transition matrix
elements with momentum transfer. This approximation
implies that the nuclear potential has the same shape
as the nuclear density (see Sec. II) and has the eRect
of underestimating the range of the E-X force. '
Further, as pointed out by Bethe, ' the imaginary part
of the optical potential in momentum space for zero
momentum transfer is determined by the X-X forward
scattering amplitudes, and hence by the E-E total
cross section. Optical potentials calculated from all
phase-shift sets which correctly give the X-A total
cross section would therefore have nearly the same
imaginary parts. This would make any choice among
phase-shift sets rather dificult, particularly at 310
MeV, where the central optical potential is primarily
imaginary. For this reason, it is necessary to include
the momentum-transfer variation of the E-E ampli-
tudes; this requires the calculation of E-X scattering
observables at nonforward angles, for which the Born
approximation is not even expected to give reasonable
predictions for the X-X polarization. (By the Kohler-
Levintov theorem, the polarization is accurately given

*Work partly supported by National Science Foundation under
Contract No. GP5077.' K. M. Watson, Phys. Rev. 105, 1388 (1957).

'H. A. Bethe, Ann. Phys. (N. Y.) 3, 190 (1958), hereafter
referred to as B.

R. Wilson, Phys. Rev. 114, 260 (1959).
H. S. Kohler, Nucl, Phys. 1, 433 (1956);I. I, l.evintov, Dokl.

Akad. Nauk SSSR 10?, 240 (1956) [English transl. : Soviet Phys.—Doklady 1, 175 (1956)].

by the Born approximation for small scattering angles. )
Previous efforts in this direction have obtained approxi-
mate solutions to the E-X scattering problem using a
%KB' or a distorted-wave Born' approximation.

In a recent work. by McDonald and Hull, ' the mo-
mentum-transfer variation of the Ã-E amplitudes was
included in the calculation of the optical potential.
This potential was transformed to coordinate space and
used in the numerical solution of the radial Schrodinger
differential equation. McDonald and Hull then calcu-
lated the double-scattering correction to the potential
following the formalism of Johnston7 for the Yale
E-E phase-shift set. Their work showed that the double-
scattering correction significantly affected the E-X
scattering at 150 MeV but was much less important
at 300 MeV.

In the present work, the single-scattering potential is
calculated in momentum space as it arises naturally
from multiple-scattering theory. This potential is then
used to solve the Lippmann-Schwinger integral scat-
tering equation numerically by means of matrix inver-
sion. In addition to performing the calculation in mo-
mentum space, our procedure divers from that of Mc-
Donald and Hull in the means of extrapolation of the
potential to large momentum transfer and in the treat-
ment of the Coulomb potential for proton-nuclear
scattering. Our aims are also somewhat different.

The objective of this work is twofold: (i) By perform-
ing the present calculation with some of the early X-N
phase-shift sets, we intend to examine the accuracy of
the various approximate methods which have been
used in obtaining scattering solutions. (ii) By perform-
ing the present calculation with the most recent E-E
phase-shift sets, we will attempt to choose among them
on the basis of E-X data, insofar as this is possible with
the single-scattering potential.

In Sec. II we consider the problem of obtaining the
E-X optical potential in momentum space. In Sec. III,
the numerical solution of the Lippmann-Schwinger
equation is discussed and a somewhat unusual method
of treating the Coulomb amplitude is discussed. The

'A. M. Saperstein and D. Feldman, Nuovo Cimento 14, 457
(1959), hereafter referred to as SF.

6 F. A. McDonald and M. H. Hull, Jr., Phys. Rev. 143, 838
(1966).' R. R. Johnston, Nucl. Phys. 36, 368 (1962).
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present results are compared with previous calculations
and with the data in Secs, IV and V.

Since in addition to the single-scattering approxima-
tion, we also employ the impulse and E-X energy-shell
approximations, our final results cannot be unambigu-
ous. Attempts at corrections to these approximations
will be made in later work.

II. THE OPTICAL POTENTIAL

In Watson's theory' of multiple scattering, the
optical potential for elastic E-X scattering is expressed,
in terms of S-E scattering amplitudes, as a sum involv-

ing all orders of multiple scattering. The first term in
this series can be interpreted as the scattering of the
incident nucleon by a single bound in the nucleus. The
second term implies successive scatterings of the inci-
dent nucleon by two different nucleons in the nucleus and
so forth. We will confine ourselves to the first term in this
series: the single-scattering approximation. In addition,
we use the impulse approximation and, neglecting the
binding energy of the struck nucleon and the difference
between the E-S and E-X energy shells, use the free
E-E scattering amplitudes to calculate the optical
potential. We will postpone the discussion of these
approximations, except to mention that they are ex-

pected to improve with increasing energies.
We write the optical potential in momentum space in

the form
&k'IVlk)=~&k'lllk)F(q), (2 I)

where k, k' are the initial and final momenta of the
incident nucleon, respectively, in units of h, q=k' —k
is the momentum transfer, t is the E-E transition matrix
averaged over spin and isospin states, F(q) is the nuclear
form factor, and A is the target mass number. The rela-

tion between the Ã-E scattering matrix t and the Ã-X
scattering amplitude f is

(k'l ~lk) = ( 4h2/—~)f(k', k), (2.2)

where m is the nucleon mass. U'pon avera, ging over spin
and isospin states for a spin-zero target nucleus, we
have'

in momentum space only for this limited range of g.
If we regard the potential in momentum space as a
Fourier transform of the coordinate-space potential,
then knowledge of the potential in momentum space
only for limited q is equivalent to knowing only the
gross features of V(r).

In order to solve the scattering equation, however,
the potential in momentum space must be known for
all momentum transfers. That is, we must extrapolate
the potential (2.4) into the region of large q in a way
which is physically reasonable and which joins smoothly
onto (2.4). There is no point in looking for an exact
extrapolation of Eq. (2.4), since the difference between
the Ã-X and S-K energy shells implies that (2.4) itself
is an increasingly poor approximation for increasing
momentum transfer even in the region for which g and
A; are known. We expect the small-angle S-X scattering
to be insensitive to the particular method of extrapola-
tion used; the form factor causes the potential to de-
crease rapidly with increasing q, so that the detailed
contribution of the large-q region to the small-q region
in the Born expansion of the Schrodinger equation
should not be very important. Such an assumption
should be, and was, tested by using different extrapola-
tion procedures.

The particular procedure we finally used was to as-
sume that the potential in coordinate space is of the
usual Fermi spin-orbit form

(2.5)

where Al is the relative angular momentum of the nu-

cleon and nucleus. In momentum space, Eq. (2.5)
becomes

(k'l Vlk)= V, (q) —iV, (q)e (k)&k'). (2.6)

We adopt the normalization

&k lk)= (2~)~~(k —k),
so that

V.(q) = e '&'V, (r)dr,
f(k', k) =g(k', k)+h(k', k)o 8, (2.3)

where
6=

krak'/l

kxk'l,
so that

34m 6'
(k'l Vlk)= —

l g(k', k)+h(k', k) A]F(q). (2.4)

The identity of the incident and target nucleons is
incorporated in the formalism by using the properly
symmetrized X-X amplitudes. s

Since the S-E amplitudes are defined only for q&kl„
where AkI, is the momentum of the incident nucleon
in the lab system, the expression (2.4) gives the potential

' G. Takeda and K. M. Watson, Phys. Rev. 97, 1339 (1955).

h(k', k) =h(k', k) sin8, (2 g)

where 0 is the elastic scattering angle in the X-X
center-of-mass (c.m.) system corresponding to the

and similarly for V, . Comparing Eqs. (2.4) and (2.6),
we can make the association

V, (q) = —(A4~h'/m)g(q)F(q), q(hr, , (2.7a)

the extrapolation to q&kL, is made by taking

U. (q) = —(A4irh'/m)g (hr)F (q), q) hr. . (2.7b)

Association of the spin-orbit force with the S-X
amplitudes is not so straightforward because h is of
the form
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scattering k —+ k' in the E-X c.m. system; q= kl„where
the extrapolation begins, corresponds to backward
scattering in the E-E system, so that sin8 and h
vanish. Following Riesenfeld and Watson, ' we relate
the spin-dependent parts of (2.4) and (2.6) for small
angle scattering where the E-Ã energy shell difference
is small. Using (2.8), we have

i V, (q)k'8e ti= (4A~h'/m)h(k', k)8e tl, (2.9)

where 8 is the scattering angle in the E-X center of
mass system. Since for 0, 8 both small,

8=
t 2A/(1+A)]e,

we may write
ised'A'

V.(q)=- h(q)F(q), q(kr, . (2.10a)
mk'(1+A)

This is exact at small angles and is to be regarded as a
reasonable extension to larger angles where the h
appropriate for Eq. (2.4) is not exactly known since we
are off the E cV energy -shell. In analogy with (2.7), we
extrapolate to still larger momentum transfer by taking

i8m.A'k'
V.(q) = — h(k, )F(q), q&k, (2.10b)

mk'(1+A)

Equations (2.7b) and (2.10b) give the final form of
extrapolating the potential to large q used in this work.
However, we have also used other extrapolations. The
first consisted simply of setting V(q) equal to zero for
q&kl, ,

' the second involved treating h as a function of

q only while taking the central potential as given by
(2.7a) and (2.7b). The scattering observables were not
greatly affected at angles less than 40' by the method of
extrapolation used. Tests were also made with square
wells using the extreme "ex,trapolation": V, = V, =0 for
q) kg, again no major small-angle changes were
observed.

Form Factor

We use the form factor derived from the modi6ed
Gaussian density distribution used by Fregeau" to fit
electron-carbon scattering data. This distribution has
the form

t (r) = t oL&+~(r/o)'3~ '""*,
with a=1.635 F and @=43 for carbon. The resultant
form factor is

F (q) = L1—(Ã)'/93e '""".
Charged Particles

The potential (2.4) is interpreted to be the potential
between a neutron and the nucleus. For protons, we
add to this potential an extended charge Coulomb

' W. 3. Riesenfeld and K. M. Watson, Phys. Rev. 102, 1157
(1956).

'0 J. H. Fregeau, Phys. Rev. 104, 225 l1956l.

potential with a charge distribution identical to the
nuclear distribution. This potential in momentum
space is

Vcoui(q) =4sZe'F(q)/q'. (2.11)

This procedure assures that for a target nucleus with
equal numbers of protons and neutrons, the potential
for an incident proton and neutron differ only by the
usual, additive, Coulomb potential. Inclusion of the
Coulomb contribution to the E-E amplitudes as done
in Ref. 5 leads to a mixing of the Coulomb and nuclear
potentials, as well as a complex Coulomb potential.
Since the Coulomb potential does not satisfy the condi-
tion that the range of the force be less than the mean
spacing of the target nucleons, the impulse approxima-
tion cannot be applied to the complete S-S amplitude.
In the work of Kerman et al. ,

" the scattering equation
is solved using the potential (2.4) multiplied by
(A —1)/A. If one does this, however, it is unclear how
the Coulomb potential is to be included. Johansson
et al. I2 accomplish this by adding to the potential of
KMT the Coulomb potential of (2.11) also multiplied
by (A —1)/A. This procedure retains the proper rela-
tive magnitude of the nuclear and Coulomb potentials,
but it is difFicult to see any further grounds for this
procedure. For this reason, we have followed the method
of Watson.

» A. K. Kerman, H. McManus, and R. M. Thaler, Ann. Phys.
(N. Y.) 8, 551 (1959), hereafter referred to as KMT.

» A. Johansson, U. Svanberg, and P. E. Hodgson, Arkiv Fysik
19, 541 (1961).

13 See, for example, E. Segre, 1Vuclei arsd Particles (W. A. Benja-
min, Inc. , New York, 1964), p. 472.

Errors from Approximations

The error due to the impulse approximation involves
the difference between the E-E scattering matrix
with one of the nucleons bound in the nucleus (t), and
with both nucleons free (ts). It is shown in Ref. 11
that if

t= ts+Dt,
then

at/t-(z)/z,
where (IC) is the average kinetic energy of a nuclear
particle, and F is the incident energy. Since (It) 18
MeV, " this correction ranges between 12% and 6%
for E of 150 and 300 MeV, respectively.

The double-scattering correction involves excitation
of the nucleus by the collision of the incident particle
with one of the target nucleons followed by de-excitation
of the nucleus in the collision with a second target
nucleon. This correction requires knowledge of the two-
body correlation function of the target nucleons and
leads to a correction to the central potential of the
order"

AV, (r=0)-i V,'kR, /2F. ,
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where 8, is the correlation length, which we take to be
0.5 F. At 150 MeV, the real and imaginary parts of

V, are roughly the same and the correction increases
the real part by 25%. At 300 MeV, V, is almost
entirely imaginary and the correction is also imaginary
and about 7% of V, .

Combining the errors from both approximations, the
error in the potential could be as much as 37% at
150 MeV or 13%at 300 MeV. The corresponding error
in the cross section would be 90% at 150 MeV and 28%
at 300 MeV. The error in the polarization would be
roughly half that of the cross section. These estimates
ca,n be obtained by using the Born approximation and
the fact that the corrections are primarily to the central
potential.

III. THE SCATTERING EQUATION

Ke use the potential described in Sec. II to solve the
scattering equation,

(k
I

T
I
k )=o(k

I
U

I
ko)

Using (3.2), the spin. -space matrix elements of U are
given by

(+, k'
I Ul k, +)=4~ P Ei(k' k)

X[(1+1)U+(k', k)+1U (k', k)],

(—k'I Ul k +)= —4~v~ P r, '(k' k)

X [Ug+(k', k) —U(
—(k', k) j, (3.5a)

(—I Ul —)= (+ I Ul+&,

(+IUI-)=- -" (-IUI+&

where
I
+&—= lm, = &2). The partial-wave expansions

for (T) are obtained from (3.5a) by replacing U by T
everywhere. If U(r) is of the form

U(r) = U, (r)+U„(r)o l,

then the U&(+) are defined by

(27r)'

(k'I Ul K)(KI Tl k,)dK U&'+'(k', k) =
(3.1)

E —$0 —Z6

j&(k'r) j((kr)

where ko, k' are, respectively, the initial and final rela-
tive wave vectors in the E Xc.m. system, -U= 2+V/k',
p being the reduced mass in the S-X system, and T is
the E-X scattering matrix. For the scattering of spin--',

nucleons by spin-zero nuclei, T and U are 2&(2 matrices
in spin space. T,~*~(k',k) =

In order to find the partial-wave decomposition of
(3.1), we expand. the incident plane wave with spin
component m, parallel to k as

lk, m, )=4x p i j((kr)Vp"(k)Q C), r)2,

X«U. ( )+ U. (r) r~dr, (3.5b)

j,(k'r)tk, &='~' "(kr)

t
X U. (r)+ U. (r) r'dr (3.5c).—/ —1

2 fn

where the sum over j contains two terms for j=
I

1—2 I

and t+-2, j&(x) is the regular spherical Bessel function,
Y~ (Il) is the usual spherical harmonic, C~,q~2, '~~ is
the Clebsch-Gordan coefficient, 'JJ~ ~~~'» (r) is the eigen-
function of t2, 0-', j', and j„where j is the total angular
momentum in units of IE

The expansion for Ilk(k, m, )), the state evolving from

I k,m, ) under the potential V, is, similarly,

I4 (k,m.))=4~ 2 ~'Vi"'(k)Z «, i(2,~,~,' "~&~'(kr)

X'JJt, r~2" '(r) (3 3)

The operator T is defined as usual by

(m„',k'I Tlk, m, )—= (m, ',k'I Ulg(k, m, )&. (3.4)

2 " U(&~&(k',E)T('+'(E, ko)E'dE

K k z6
(3.6)

Numerical Calculations

The numerical solution of the scattering problem
consists of extracting the expansion coefficients from
Eq. (3.5) and using these to solve the scattering
equation (3.6).

The expansion coeflicients in (3.5) are obtained by
means of the orthogonality of the Legendre polynomials
on the interval —1 to 1. The integrations involved are
performed numerically by 24-point Gaussian quadra-
ture. This procedure has been tested using a square-
well potential, which is highly oscillatory in momentum

If we now combine the partial-wave decompositions
(3.5) with the scattering equation (3.1), we obtain the
uncoupled integral equations

T(&+& (k', kp) = U)'"'(k', kp)
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space. The expansion coeKcients in this case were given
to no less than six-place accuracy. The U~'+& were ob-
tained for k, k' pairs chosen for the numerical solution
of equations (3.6).

The integral equation (3.6) for Ti'~' is solved by repre-
senting the principal part of the integral over E as a
sum by an I-point numerical quadrature. The real and
imaginary parts of Eq. (3.6) then form a set of 2 (v+1)
coupled linear equations; the Tii+'(k, kp) are then ob-
tained by matrix inversion. We retain the real and
imaginary parts of

T('+& (kp, kp) = —(e"'&+ 1)—/2ik p )

where 6&+ is the complex S-K phase shift for j=t+~.
We have found that the greatest accuracy is obtained

by performing a Gaussian quadrature separately in
each of the two intervals above and below the singularity
at kp. As might be expected, accuracy is improved by
increasing the number of quadrature points in the evalu-
ation of the principal part integral. However, because
of the limitations of computer size (an IBM 7074), we
were able to use only ten-point quadrature in each half
of the integral.

In testing the numerical procedure, we have used a
square well of depth and range comparable to the
nuclear potential. On this basis, we believe that the
phase shifts which we calculate are accurate to four
places, which should be ample since variation in the
third place is barely noticeable in plotting the scattering
observables.

it can be seen that

V(q=0) a', (3 9)

where x is the cosine of the scattering angle, so that

i z, (~)d~
Vi(kp, kp) =Ci/ko',

kp' . g 1—x

where C~ depends on the details of the quadrature
procedure. Therefore, using this result in (3.5), we see
that the numerical quadrature imposes

V(g=0) 1/ko'.

Comparing (9) and (10) we see that

a 1/kp.

(3.10)

(3.11)

We now consider the simplest way in which the range
of the Coulomb potential can be made hnite, namely, a
Gordon-sphere cutoR in which

V(r) =Ze'/r, r&a
=0, r&a.

(3.12)

where a is an appropriate range parameter. On the
other hand, examining the numerical integration leading
to the expansion coeKcients of (3.5), we see that for the
Coulomb potential,

1 1
V(C)-—=

q' 2kp'(1 —x)

Treatment of the Coulomb Potential

The form of the scattering equation (3.1) is strictly
valid only for a short-range potential and not for the
long-range Coulomb potential. However, it is found that
when the numerical-solution procedure described above
is carried out for a point-charge potential, the phase
shifts obtained diRer from the usual Coulomb phase
shifts by a constant independent of t. That is,

Assume a is large enough so that the radial wave
function

N~(r) sinLkr —
q ln(2kr) —iohr+a i], r& a (3.13)

sin(kr —io br+ o i'"), r) a.

Matching the radial functions (3.13) at r=a, we find

ai'"= ai r, ln(2k—a),

and using (3.11)
a cclc ~ +a ) (3.7) 0') =0)—Cg, (3 14)

where

a i ——argI'(i+ 1+i'),
q =Ze'/ha,

(3.8)

and e is the relative velocity of the incident and target
particles. It is further found that o. is proportional to g.
This can be roughly understood in the following way.

The Coulomb potential in momentum space is singu-
lar at q= 0. The integrals for determining the expansion
coefficients as in (3.5) do not exist. However, when the
integrals are performed numerically, a finite answer is,
of course, obtained. This is equivalent to V(q=0) being
finite, which in turn implies that V (r) has a finite range.
Now, regardless of how the finite range appears in V (r),

which obviously is of the desired form (3.7) . The numeri-
cal projection of the partial-wave components of the
Coulomb potential is then equivalent to imposing a
finite range on the potential, which in turn enables us
to use the scattering equation (3.1) for the scattering
of charged particles.

Finally, the scattering amplitude is obtained by
solving the scattering equation (3.6), including the
Coulomb part (2.11), in the potential, for all l up to
some l, determined by the range of the nuclear force
and the energy. We took /, =17 for all energies con-
sidered. For higher /, the nuclear part of the phase shift
is negligible and the Coulomb part of the phase shift is
adequately given by the point-charge phase shift. The



non-spin"A1p amplitude Is then given by

00

+ p (2)+g) (&2irr~osIo t)p (0)
2iko &-E~*+&

)max

L ()+ ])g2~ 8 )++)g2i 5 t (2)+, l}~2ir (mla]
2t~o &=0

where 8q is the phase shift obtained from (3.6) with the
nuclear —plus —extended-charge Coulomb potential 0 p'"
is given by (3.7) and go, „~(8) is the usual point-charge
Coulomb amplitude.

The purpose of this section is to investigate the ac-
curacy of the various approxiInate solutions to the scat-
tering of protons from carbon by the single-scattering
potential. Although some of the phase-shift sets used in
these early calculations are no longer considered to be
among the best representatives of S-Ã data, we

C
~~0

e 10~-
CA

4tl
N h

0
La

Q
04

Ce
Q

perform the present calculation using these sets in order
to compare with the previously reported approximate
solutions which have used these same phase-shift sets.

310 3feV. Approximate calculations of the scattering
of protons from carbon at 310 MeV have been carried
out by Bethe, ' Cromer, "and Kcrman ef cl."using the
WEB approxlmatlon) Rnd by SRpclstc1n Rnd FcldmRn
using the distorted-wave Born (DWB) approximation.
B, C, and SF performed the calculation using the
Stapp" No. 1 phase-shift set together with the comple-
mentary Gammcl-Thalcl slnglct sct ) Rnd w'c have used
this set in the present calculation in order to compare
with these calculations. The variation of the E-E
amplitudes was ignored in 8 and was included to 6rst
order in q' in C. SF and the present calculation include
this variation to Rll orders in q'. Since inclusion of the
variation of the )7-X amplitudes implies a larger ef-

fective radius of the potential, we would expect the
diffraction pattern of C to be shifted to smaller angles
than that of B.The small-angle cross section of C, how-

ever, is identical to that of B.In Fig. 1, it is seen that the
DWB closs section Rgrccs vc1y well with thc pI'cscnt
calculation at small angles. Furthermore, the DKB
cross section and the present calculation are shifted to
smaller angles than that of B and C, indicating a still
larger CRectlve rad1us than 1n C,

In Fig, 2, it is seen that all the calculated polarizations
agree fairly well, with 8 and the present calculation
virtually identical at small angles. Since the polarization
depends on the phase as well as the magnitude of the
E-X amplitudes, it is understandable that calculations
g1v1ng exactly s1m1lar cross sections could gIve less
precise agreement in the polarization, as in Figs. 1 and 2.

At 310 MCV, we can conclude that all the calculations
are reliable for both cross section and polarization, with
the DAB cross section somewhat better at small angles.
The DWB polarization agrees qualitatively with the
present calculation for a large angular range. In particu-
lar, we note the agreement in the positions of the polari-
zation maxima and minima given by the two calcula-
tions (Fig. 2).

135 3feV. The scattering of protons from carbon at
j.35 MCV was calculated by SF, again using the DWB
approximation. To compare with SF, we have per-
formed the present calculation using the SigneH. -
Marshak" phase-shift set. In Fig. 3, we can see the
qualitative agreement of the calculations. As at 310
McV, the exact cross section falls below the DWB cross
section at large angles, indicating insufhcient absorption
in the latter. In the small-angle range, the DAB
calculation overemphasizes the Coulomb interference.

t

l0

l.ab Scattering Angle {Degrees)

FIG. 1. Calculated p-carbon differential cross section in milli-
barns at 310 MeV. Solid curve is the present calculation, dashed
curve is DAB(SF) and open circles are %KB(8).

~'A. H. Cromer, Phys, Rev. ID, 1607' (1959), hereafter re-
ferred to as C.

"H. P. Stapp, T. J. Vpsilantis, and N. Metropolis, Phys. Rev.
105, 302 (195"l), hereafter referred to as SYM.

'6 See Ref. 2 for details.
~7 P, S. Signell and R. E, Marshak, Phys. Rev. N9, 1229 {1958).
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FIG. 2. Calculated p-carbon
polarization at 3j.0 MeV. Solid
curve is the present calculation,
dashed curve is DUB (SF), crosses
for %KB(C), and open circles for
WKB (B).
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This is undoubtedly due to the different methods of
treating the Coulomb amplitudes used in the two
calculations. This overemphasis of the Coulomb inter-
ference does not occur at 310 MeV in the DWB calcu-
lation because at 310 MeV the nuclear amplitude is

nearly all imaginary, while the Coulomb amplitude is

almost completely real; hence, there will be small

interference.
In Fig. 4, the polarizations agree well to 5', after

which the DWB values lie below the exact by about
20%. There is qualitative agreement, however, to

20'.
In comparing the approximate calculations with the

present solution of the Lippmann-Schwinger equation
at various energies, we conclude that there is little

energy dependence in the relation between them. Fur-
thermore, both the WEB and DWB approximations

give adequate quantitative representations of the
small-angle cross section and polarization. An interesting
point, to be discussed later, is that the DWB gives
qualitative agreement with the experimental polariza-
tion over a large range of angles for the energies used
here.

As described in Sec. I, McDonald and Hull' perform
a calculation very similar to the present one using the
Yale" phase-shift set. Our calculation, with a single-
scattering potential for p-carbon scattering at 142 and
310 MeV using the Yale set, appears to give results
which are identical to the corresponding calculation of

McDonald and Hull (which they label V&'&). Further-
more, the double-scattering correction of McDonald
and Hull changes the observables by amounts which
are mell within the estimates given in Sec. II.
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10~

VIp»
Q
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1' G. Breit, M. H. Hull, Jr., K. E.Lassila, K. D. Pyatt, Jr., and
H. M. Ruppel, Phys. Rev. 128, 826 (1962);M. H. Hull, Jr., K. E.
Lassila, M. H. Ruppel, F. A. McDonald, and G. Breit, ibid. 128,
830 (1962). Sets YLAM and YLAN3M were used.
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FIG. 3. Calculated p-carbon differential cross section in milli-
barns at 142 MeV. Solid curve is present calculation and dashed
curve is DAB (SF).
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FIG. 4. Calculated p-carbon
polarization at 142 MeV. Solid
curve is present calculation and
dashed curve is DWB(SF).
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FIG. 5. Calculated p-carbon differential cross section versus
data, in millibarns at 142 MeV. Solid curve is for Yale set, dashed
curve is for Livermore set and dotted curve is for Signell-Marshak
set. Data marked by circles from DS (Ref. 22), by squares from
TW (Ref. 23); and by triangles from SPC (Ref. 24). For this and
succeeding 6gures, the absence of error bars implies the stated
errors are smaller than the data symbol.

"V'u M. Kazarinov, V. S.Kiselev, and I.N. Silin, Zh, Eksperim.
i Teor. Fiz. 45, 637 (1963) PFnglish transl. : Soviet Phys. —JFTP
18, 437 (1964)].

"M. H. MacGregor and R. A. Amdt, Phys. Rev. 139, B362
(1965)."J,K, Perring, Nucl. Phys. 42, 306 (1963).

7. COMPARISON WITH DATA

p Carboe. -At 142 MeV, we have tested the Yale,"
Dubna, " Livermore, " Harwell" and Signell-Marshal

phase-shift sets. The first four sets are among the most
recent and their similarity has been interpreted as
evidence that the 3l-E scattering matrix has nearly
been determined at this energy. We use the data of
Dickson and Salter, "Taylor and Wood, "and Steinberg,
Palmieri, and Cormacl». "The polarization data" "has
been adjusted downward following the results of Jarvis
and Rose."

At 210 MeV, the Yale and Livermore sets were tested
against the polarization data of Hafner" and the cross
section data of Thwaites"; and at 310 MeV the Yale,
Livermore, and SYM Xo. 1-GT sets were tested against
the data of Chamberlain et al."

Differential Cross Section: 142 MeV We plo. t in Fig. 5
the cross section calculated from the optical potential
obtained from the Yale, Livermore, and Signell-Marshak
phase-shift sets. The plots for the Dubna and Harwell
sets lie between the Vale and Livermore plots at small
angles. As can be seen from Fig. 5, all the calculated
cross sections are high by about 5O% at the Coulomb-
interference region. The plots then fall below the data
as the diffraction minimum is approached. This be-
havior is indicative that multiple-scattering effects are
fairly important at this energy.

Zl0 Mev. We plot in Fig. 6 the cross section calcu-
lated using the Vale and Livermore phase-shift sets.
Again, both plots are somewhat high at small angles,
although much less so than at i42 MeV. The plots then
fall below the data as the diff raction minimum is
approached.

310 MeV. In Fig. 7, we plot the cross section calcu-
lated using the Yale and Livermore sets. The plot for
the SYM No. 1-GT set lies very close to the Yale
plot. As can be seen from Fig. 7, the calculated plots

2' J.M. Dickson and D. C. Salter, Nuovo Cimento 6, 235 (1957).
~ A. E. Taylor and E. Wood, Nucl, Phys. 25, 642 (1961).
~4 D. Steinberg, J.N. Palmieri, and A. M. Corrnack, Nucl. Phys.

56, 46 (1964)."O. N. Jarvis and B.Rose, Phys. Letters 15, 271 (1965).
26 E. M. Hafner, Phys. Rev. 111,297 (1958)."T.T. Thwaites, Ann. Phys. (N. Y,) 12, 56 (1961).
28 0. Chamberlain, K. Segre, R. D. Tripp, C. Wiegand, and T.

Vpsilantis, Phys. Rev. 102, 1659 (1956).
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FIG. 6. Calculated p-carbon diGerential cross section versus
data in millibarns at 210 MeV. Solid curve is for Yale set and
dashed curve is for Livermore set. Triangles for data from
Thwaites (Ref. 27).
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are low by a very small amount at small angles, and
become progressively lower as the diffraction minimum
ls approached.

Figures 5—7 show the qualitative improvement of
the small-angle cross section fits with increasing energy.
This would seem to indicate that the importance of the
corrections to the single-scattering, impulse, and E-E
energy-sheH approximations decreases with increasing
energy.

Polurimtioe. As can be seen from Figs. 8—10, quanti-

FIG. 7. Calculated p-carbon differential cross section versus data,
in millibarns at 310 MeV. Solid curve is for Yale set and dashed
curve is for Livermore set. Circles for data from Chamberlain et al.
(Ref. 28).

tative agreement with the data is restricted to small
angles. As with the cross section, the qualitative agree-
ment of the fits with the data improves with increasing
energy, again indicating decreasing importance of the
corrections with increasing energy. It is interesting to
see in Fig. 8 that the Signell-Marshak polarization lies
closest to the data at 142 MeV.
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FiG. 8. Calculated p-carbon
polarization versus data at 142
MeV. Solid curve is for Vale set,
dashed curve is for Livermore set,
and dotted curve is for Signell-
Marshak set. Data marked by
circles from DS (Ref. 22); and by
triangles from SPC (Ref. 24). Data
are adjusted according to Jarvis
and Rose (Ref. 25).
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FIG. 9. Calculated p-carbon
polarization versus data at 210
MeV. Solid curve is for Vale set
and dashed curve is for Livermore
set. Circles are for data from
Hafner (Ref. 26).
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A further point to be noted is that the calculated
polarizations show pronounced minima at the positions
of the diffraction minima at 210 and 310 MeV, but only
a shallow minimum at 142 RIeV (Figs. 8—10).The DWB
polarization at 142 MeV does show a pronounced dip
at the differential minimum. A calculation by Johansson
et al.I2 at 180 MeV also shows a substantial dip. In
view of the location of these dips at the expected posi-
tions of the diffraction minima, it seems certain that
they are due to nuclear size effects. A possible explana-
tion of the absence of the polarization minima from our
calculation at 142 MeV can be found in the observation

by Kerman ef, at."that the real and imaginary parts of
the spin-orbit force have markedly different effective
radii at this energy, while the real and imaginary parts
of the central potential have nearly the same radii. If
the Ã-X amplitudes show the same gross features as
the potential, the real and imaginary parts of the spin-

Aip amplitude would have zeroes at markedly different

momentum transfers, tending to wash out a sharp
minimum. The existence of a sharp minimum in the
data at this energy and its qualitative reproduction by
the DWB approximation (Fig. 4) is thus a puzzle. It
might be viewed as a result of double scattering. Because
of the diffraction minimum, very few nucleons of either
spin direction are scattered into this region of mo-
mentum transfer by the single-scattering potential. If
double-scattering puts roughly equal amounts of spin-up
and spin-down nucleons into this region, it would di-
minish the relative difference between the two spin-
state populations at this scattering angle and thus
produce a smaller polarization. The fact that the DAB
approximation, which shows too little absorption at
these angles, i.e., scatters extra nucleons into this range
much like multiple scattering, also shows the polariza-
tion dip might be construed as additional evidence for
this view.

Discrimination Among Phase Shift Sets At 142 MeV.,

1.0

,9—

.8—

7

C
0 .6 —.
0
H

~ ~ 5
0
0

CL

3

FIG. 10. Calculated p-carbon
polarization versus data at 310
MeV. Solid curve is for Yale set
and dashed curve is for Livermore
set. Circles are for data from
Chamberlain et at. (Ref. 28l.
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the corrections to the impulse and single-scattering
approximations are expected to be considerable, and
this is rejected in the fits to the cross section and polari-
zation as can be seen in Figs. 5 and 8. Although the Yale
fit lies closest to the data, we believe that a firm choice
cannot be made at this energy until the corrections are
considered. It is interesting, though probably without
significance, that the Signell-Marshak polarization fits
the data better than any of the other sets tested.

At 210 MeV, in Fig. 6, the Livermore small-angle
cross section is in error by 50%, while for the Yale set
the error is ~20%. The error due to the impulse and
single-scattering approximations, estimated in the
manner described in Sec. II, is 40%. The polarization
fits, as seen in Fig. 9, are too close to permit any choice.

At 310 MeV, in Fig. 7, the Livermore small-angle
cross section is in error by 35%. Since this lies outside
the range of the maximum expected error at this energy
(see Sec. II), we believe that the Yale fit is favored at
this energy. It might be thought that the Livermore
polarization is superior, inasmuch as it passes through
the 9' data point, which the Yale fit does not. However,
the difference between the two predictions is comparable
with the uncertainty in the calculation. Moreover,
Batty" has questioned the compatibility of the normali-
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zation of the large- and small-angle data, with the
large-angle data beginning at 9'.

We conclude that this calculation seems to favor
slightly the Yale set at 210 and 310 MeV, and possibly
at 142 MeV as well.

n-Carbon. In order to strengthen the conclusions
drawn from the proton-carbon 6ts at 142 MeV, we have
calculated the neutron-carbon scattering using the Yale,
Livermore and Signell-Marshak phase-shift sets. We
use the data of Hardings' and of Van Zyl, Voss, and
Wilson. "In Fig. 11,it is seen that all the calculated cross
sections agree fairly well with the data, with the Yale
cross section, apparently the best, passing through the
data out to 20'. The small-angle Livermore cross sec-
tion is high by about 20%, well within the uncertainties
of this calculation. In Fig. 12, the Yale and Livermore
polarizations are about 50% below the data and can
both be considered "fits" within the scope of this workr
Again the Signell-Marshak set gives a very good ht to
the polarization data. We thus cannot use the neutron-
carbon fits to make a definitive choice among these
phase shift sets. The neutron-carbon fits, however, do
lend further weight to the Yale set.

VI. CONCLUSION

10 20
Lab scattering Angle (Degrees)

FIG. 12. Calculated I-carbon polarization versus data at 142
MeV. Solid curve is for Vale set, dashed curve is for Livermore set,
and dotted curve is for Signell-Marshak set. Circles are for data
from Harding (Ref. 30).
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10 20
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Fio. 11. Calculated e-carbon differential cross section versus
data in millibarns at 142 MeV. Solid curve is for Yale set, dashed
curve is for Livermore set, and dotted curve is for Signell-Marshak
set. Circles are for data from VV% (Ref. 31);squares are for data
from Harding (Ref. 30).

"C.J. Batty, Nucl. Phys. 23, 562 (1962).

From the comparisons made in Sec. IV, we can say
that the WEB and DWB approximations are fairly
reliable at small angles and the DWB approximation
exhibits the qualitative features of the present calcula-
tion to rather large angles.

The improvement of the fits with increasing energy
seen in Sec. V indicates that the impulse, single-scatter-
ing, and energy-shell approximations become more ac-
curate with increasing energy, as would be expected.

~ R. S. Harding, Phys. Rev. 111, 1164 (1958)."C.P. VanZyl, R. G. P. Voss, and R. Wilson, Phil. Mag. 1,
1003 (1956), hereafter referred to as VVW.
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Furthermore, it seems to be necessary to consider
corrections to these approximations if quantitative
agreement is to be obtained at 142 Mev.

We believe that the present calculation somewhat
favors the Yale phase-shift set at all energies. This
conclusion must remain tentative until the corrections
mentioned are considered in detail. It is, of course,
possible that all of our fits to the data are fortuitous
and that careful examination of the necessary corrections
will show them. to be major. This seems unlikely, how-

ever, in view of the fact that we obtain qualitative
description of the data over large angular ranges as well
as quantitative its at small angles. Given the reasonable-
ness of their approximations, as demonstrated in this
paper, Saperstein and Feldman have shown that such
qualitative fits to the data are rot characteristic of all
E-E phase-shift sets. The use of Ã-X scattering to
differentiate between E-N phase-shift sets, while not
firmly proven, seems highly plausible at the present
time.
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Optical Potential Correlation Correction from
Deuteron-Nucleus Scattering*
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To describe deuteron-nucleus scattering accurately at high energies, one has to correct the approximation
that the potential which acts on the deuteron is the sum of the neutron and proton optical potentials. This
correction is largely due to nuclear correlations and presents a method of determining the correction to the
nucleon optical potential due to correlations. The method is applied to 650-MeV deuteron-carbon scattering.
Good agreement is found between theory and experiment.

INTRODUCTION

1
~~NE hopes that from nuc1eon-nucleus scattering at

high energies one can get information about the
two-body force and nuclear correlations. The nucleon
is scattered in intermediate two-particle states "off its
energy shell" and, with a wavelength of a fraction of a
fermi, the strongly interacting nucleon multiply scat-
tered from many target nucleons provides an excellent
probe for nuclear correlations. '' The off-energy-shell
scattering leads to a nonlocality in the Watson potential.
This nonlocality, which has been shown by Mulligan'
and Reading4 to contribute an important part to the
potential, can be shown to be directly related to the
derivative of the two-body T matrix for "going oB the

* This work is supported in part through funds provided by the
U. S. Atomic Energy Commission under contract AT(30-1)-2098.

f Present address: Department of Physics, University of
Washington, Seattle, Washington.' J. S. Levinger, Phys. Rev. 84, 43 (1951);J. Heidmann, Phys.
Rev. 80, 171 (1951);J. Dabrowski and J. Sawicki, Nucl. Phys. 13,
621 (1959); J. Dabrowski, Proc. Phys. Soc. (London) 71, 658
(1958); G. M. Shklyarevsky, Zh. Eksperim. i Teor. Fiz. 41, 234
(1961);41, 451 (1961) LEnglish transl. : Soviet Phys. —JETP 14,
170 (1961};14, 324 (1961)j; Tokuo Terasawa, Nucl. Phys. 39,
563 (1962); T. I. Kopakishrili and R. I. Jubuti, ibid. 44, 34
(1963); Hidetsugu Ikegami and Takeshi Udagawa, Phys. Rev.
133, B1388 (1964).

~ B. W. Reisenfeld and K. N. Watson, Phys. Rev. 102, 1151
(1956); H. A. Bethe, Ann. Phys. (N. Y.) 3, 190 (1958};A. K.
Kerman, H. McManus, and R. M. Thaler, ibid. 8, 551 (1959).' B. Mulligan, Ann. Phys. (N. Y.) 26, 159 (1964).

4 J. F. Reading, Phys. Letters 20, 518 (1966); J. F. Reading,
following paper, Phys. Rev. 156, 1116 (1967).

energy shell. '" 4 If this extremely important information
can be extracted from the experimental data, we have
the possibility of nucleon-nucleus scattering becoming
an extremely important tool in the study of the two-

body interaction. Unfortunately, the situation is some-
what complicated by the nuclear correlations, which
are expected' to give corrections of the order of //R to
the optical potential, where l is the correlation length
and R is the nuclear radius. In this note is presented an
experimental method for determining the correction to
the optical model due to correlations. While some
information is necessarily obtained about the correlation
function, we should perhaps emphasize that this is not
a method for obtaining that function, such as, for
example, the methods discussed by Srivastava or
Reiner. ' The pair correlation function enters the optical
potential as part of an integrand which is integrated
over all the two-body space. There are contributions
to this function both from short-range correlations due
to the repulsive core, and from long-range correlations
due to the exclusion principle and attractive forces. The
correlation function for a repulsive core oscillates as the
nucleons try to form a crystalline structure, but on the
whole it tends to work with the exclusion principle to
keep the particles apart whilst the attractive forces

' R. Glauber, Lectures in Theoretical Physics (Interscience
Publishers, Inc. , New York, 1958), Vol. 1.' Y. N. Srivastava, Bull. Am. Phys. Soc. 9, 15 (1964};A. Reiner
(private communication) .


