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A general formulation of multiconfigurational self-consistent-Geld theory is given. The fundamental
condition to be satisfied by the M occupied orbitals p„of an N(&M)-body system, in order that the total
energy of one state be extremaiised, is exPressed in terms o& the &undamental invariant 9=2„& ~p„)g„(.
The condition placed on y is of the same form as the condition on the fundamental invariant of the Hartree
Fock theory. Setting M =P, we derive the unrestricted Hartree-Fock equations from the condjtjon on y,
For M &N there are three freedoms one may take with the fundamental condition on y. Explojtjng any or
all of these freedoms yields alternative forms of the fundamental condition. This enables us to derive an
effective one-body Hamiltonian which is the sum of a Hartree-type Hamiltonian and a correlation and
exchange operator. For Gnite M &N, the one-body Hamiltonian contains a nonlocal exchange and correlation
operator. This operator is defined in terms of the one- and two-body density matrices. The connectjon be
tween the orbitals of this theory and those of the Hartree-Fock theory is explored. The theory as outlined
here is applicable to any system of N identical particles, but our discussion is oriented towards electronic
systems. The theory contains most self-consistent-Geld theories as special cases, and gives a basis for the
self-consistent-Geld formulation of others.

1. INTRODUCTION

HE physically accurate approximation of the wave
functions of E-body systems in a manner which

is mathematically well decreed and numerically trac-
table, and which at the same time lends itself to physical
interpretation, has been an important problem for
many years. One promising method is multiconhgu-
rational self-consistent-heM theory, as has been recog-
nized by an increasing number of authors. It is this
theory which is formulated and investigated here. The
formulation we give bears a close resemblance to the
Hartree-Fock self-consistent-field theory (single con-
figuration), and in fact contains it and various approxi-
mations to multiconhgurational self-consistent-held
theory, as special cases.

MulticonGgurational (MC) self-consistent-Geld
(SCF) theory approximates the wave function of a
system of E identical particles by a linear combination
of E-body functions, which are products of E orbitals.
The X orbitals in each product are selected from a set,

of M»&Sorbitals. If M is finite, the energy of one state
of the system may be extremalized with respect to the
orbitals and the linear coeKcients of the orbital prod-
ucts. This leads to an SCF equation for the orbitals
and the linear coe@cients. (If the orbitals form a
complete set, only the linear coeKcients need be varied
to extremalize the energy. ) Having determined a set
of M orbitals in this way, the linear coeS.cients of the
orbital products can be chosen also to yield upper
bounds to the energies of other states of the system,
as is well known. ' Of course the approximate eigenvalues
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for these other states may not be as accurate as for the
state with respect to which the orbitals were optimized.

The first general discussion of MC-SCF theory seems
to be that of Frenkel. ' He presented a second-quantized
formulation of the theory. Later several other authors
formulated the general theory without using second
quantization. ' ' Practical applications have been lim-
ited to two- to four-electron systems, apparently
because of the inconvenient form of the equations.
Still other authors have suggested or investigated
versions of MC-SCF theory that have restrictions
built into them, in order to simplify the application of
the theory. ~' As with the general theory, applications
of the restricted MC-SCF theories have been few in
number. (There are a number of non-SCF calculations. )
Since 1.955 a number of authors have investigated
MC-SCF theory from a variety of points of view,
particularly with the object of putting it into a practical
form. Reference to this later work will be made when
lt ls most I'elevmit to ouI' dlscusslon.

The interest in MC-SCF can be traced to several
factors. An orbital theory of an E-body system oGers
a picture of that system, particularly when only a
relatively small number of E-body orbital products
have been linearly combined to form the wave function.
Such wave functions at least hold the promise of
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yielding a simple interpretation of elementary processes
such as ionization. Furthermore a MC-SCF theory
can introduce some of the important particle corre-
lations which are omitted in the Hartree-Fock theory.
For example for most molecules a MC-SCF theory
for the electronic wave function is necessary to obtain
the correct dissociation products. " " In atoms, MC-
SCF theory can introduce important angular corre-
lations ' ""In practice a MC-SCF theory can be
expected to yield much more accurate energies and
charge distributions, as evidenced by the computations
which have been carried out. v " "

The approach to MC-SCF theory that we have

adopted has certain advantages over the previous
general formulations. In particular our formulation
emphasizes and takes advantage of the independence
of the variationaI. condition on the orbitals and the
variational condition on the coefficients of the orbital
products. (This independence was noted by Frenkel. ')
The condition which the orbitals used in the MC-SCF
theory must satisfy in order to extremalize the energy
has the same form as the corresponding condition of
the Hartree-Fock theory. This implies that localized
orbital and pseudopotential methods" " can be used
in this generalized SCF theory. Also it opens the
possibility of looking for orbitals in the MC-SCF
approximation w¹ch are transferable from one system
to another "'0 The generality of our formulation is
such that it applies equally well to the orbitals of any
restricted MC-SCF approximation, ''" '4 i.e., to the
orbitals of an approximation which uses in the wave

function only a misery chosen few of the S-electron
determinants which might be constructed from M&E
orbitals, or which does not vary independently the

codFicients of those determinants. In a restricted MC-

SCF theory, however, the condition we give serves to
define only the occupied and unoccupied subspaces,

but not the individual occupied orbitals. The occupied

orbitals must satisfy further conditions which arise

from the requirement that the energy be extremalized

with respect to the mixing together of occupied orbitals.
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'~ %.H. Adams, Phys. Rev. 127, 1650 (1962).
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These further conditions will be taken up in later papers
dealing with specific restricted MC-SCF theories.

In the next section we derive the fundamental con-
dition which determines the 3f orbitals of an MC-SCF
wave function so that the energy of a state of an E-
particle system is extremalized. (The theory is apph-
cable to any system of S identical particles which
interact via potentials which have no hard core.
However we develop the theory herein with the object
of applying it to electronic systems. ) We present
arguments to show that the fundamental condition on
the orbitals, applies also to the restricted MC-SCF
theories. In order to make the argument of Sec. 2 more
obvious, we derive in Sec. 3 from the condition found
in Sec. 2 the Hartree-Fock SCF theory for fermions.
Section 4 shows how a condition equivalent to that of
Sec. 2 may be derived by taking certain liberties with
the original equations. In conjunction with this we
relate the total energy to the orbital eigenvalues.
Section 5 indicates how the or'bltals of oui theor'y may
be rela. ted to those of the Hartree-Fock theory. The
article closes with a discussion of some of the problems
which remain to be solved.

2. THE FUNDAMENTAL CONDITION
ON THE ORMTALS

The fundamental condition which the M occupied
orbitals of a MC-SCF wa, ve function for an E-electron
system must satisfy in order to extremalize the energy
can be derived in a straightforward fashion. This
derivation has the advantage of emphasizing that the
variation of the orbitals and the variation of the
determinant coefficients are independent in the first
order. This point has been made several times in the
past' ' in connection with the general MC-SCF theory,
but not in connection with some of the restricted
theories. s 9 " '4 Furthermore the generality of the
formulation we give promises to aid us later in the
understanding and apphcation of MC-SCF theory.

The method we adopt in our derivation is to construct
a projection operator 0 that wil. l reproduce any E-body
wave function 4' which can be constructed from a set
of 3E ()~Ã) orthonormal spin orbitals f„,by forming a
weighted sum of antisymmetrized products (Slater
determinants) of E spin orbitals each. We require that
the orbitals and + be chosen to extremahze (4'~ H~%')/
(+~%'), where H is the E-body Hamiltonian. There are
alternatives to this choice,"but they do not seem to be
practical alternatives. Furthermore our choice is fa-
vored by both the Kckart criterion" and the "separation
theorem. "' Specifying 0' in this manner for a fixed set

"Alternative choices have been discussed extensively by %.
Kutzelnigg and V, H. Smith, Quantum Chemistry Group,
Uppsala, Sweden, Reports No. 130 and 138, 1964 (unpublished}."C. Kckart, Phys. Rev. 36, 877 (1930};H. Shull and P.-o.
Lowdin, ibid. 110, 1466 (1958); 3. A. Lengyel, J. Math. Anal.
Appl. 5, 451 (1962).
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of spin orbitals yields the equation

OHOO= ~.
The desired projection operator 0, as may be readily
verified, is

(2.1

There are as many different eigenfunctions of OHO
as there are diRerent Slater determinants of the M
orbitals. Equation (2.1) suggests how to include vari-
ations of the P„'s.

When the P„'s are varied, 0 will change, and also
the eRective Hamiltonian OHO. A first-order change in
the P„ then gives a first-order change in OHO. Ac-
cordingly the best set of spin orbitals are those which
make the hrst-order correction to E vanish. We define

sc= OHO+ (1—O)H(1 —0) . (2.2a)

EOi —(y I
gP (ii

I g& =0 (2.3)

It is from this expression that we obtain our funda-
mental condition on the orbitals, i.e., the condition for
the orbitals to extremalize E.

The projection operator 0 is constructed straight-
forwardly from the fuiidatnental irsiiariaeP' of MC-SCF
theory. The fundamental invariant in the coordinate
(space and spin for one electron) representation, as-
suming the P„are orthonormalized, is

(2 4)

When j=i we shall write simply Io,, it being under-
stood to represent y

'. The fundamental invariant is a
projection operator, i.e.,

or, in the shorthand we use (transformation theory
conventions),

pi/i= pi.

The addition of (1—0)H(1—0) to OHO is arbitrary,
but attractive since it makes BC differ less from H. (Its
presence is essential to the derivation of the theorem
on perturbation corrections cited in Sec. 6 and to the
investigation of a problem we shall consider in a later
paper. ) It has no effect on the wave function 4' whose

energy is extremalized, since (1—0)4=0.
(2.2b)

I.et X"' be the first-order correction to X due to the
variation of the P„s. The condition on the orbitals is
simply

(2.5)

(It is not necessary to make 0 symmetric or anti-
symmetric under the interchange of pairs of coordinates
as long as the wave function 0' is made to have the
correct permutational symmetry. ) Since (x;Ig, Ix,'& is
invariant under nonsingular, linear transformations of
the P„, so is O.

The allowed first variation of 0 must be derivable
from the first variation of the fundamental invariant,
if the variations are to be consistent with a wave
function constructed as a sum of Slater determinants.
The variation of the fundamental invariant such that
its idempotency is maintained can be carried out in
the same manner as in the Hartree-Fock theory. "Let
(x, I

4,
I
x ) be any function of x, and x .

Define
u'= (1 e') &'ti'. (2 6)

The first variation of p, is (X is the small number which
defines the order of the variation)

bp;=Ay, "i=X(u~+u, t) . (2.7)

The first variation 80 of 0 should be of the first order
in', so that

i=1 jQi
(2.S)

For our purposes it will be useful to have 80 expressed
in terms of 4;.

bo=l~ 2 {(I—9')&*O+O&"(I—0')) (2 9)

Using this expression for 80, we can construct K"'
and 8&".

From Eqs. (2.2) it follows that

Xui =OHbO+bOHO (1—0)Hbo-
—bOH(l —0). (2.10)

Since (1—O)%'=0, the expression for E"i is just

E&'i=(%'IOHbO+bOHOI @). (2.11)

We assume that H can be written as a sum of one-
electron operators h; which operate only on the ith
coordinate, and two-electron operators v;;=v;„which
operate only on the ith and jth electron coordinates.

If the f„'s are not orthogonal, they must be linearly
independent, so that one can construct gi from them. '8

N N
H= P h, +-', P P v,;. (2.12)

This is an obvious extension of the viewpoint and nomen-
clature used by P.-o. I.owdin in Ref. 9(b).

"This is the same as constructing the fundamental invariant
of the Hartree-I'ock theory from a nonorthogonal set of orbitals.
See VV. H. Adams, J. Chem. Phys. 34, 89 (1961).

Combining Eqs. (2.9), (2.11), and (2.12), and noting

"R. McWeeny, Rev. Mod. Phys. 32, 335 (1960),Eqs. (74) and
(751
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that (I—y;)4=0 and 0%=%, we can write

+Q Q p'g Lv' (I—y')4'

+&' (I—e')vv7ee I+) (2.13)

We can make E"& look simpler by writing it in terms
of reduced density matrices. 4 We normalize the one-
electron density matrix y;=y," to S (the subscript
and superscript refer to the ith coordinate), the two-
electron density matrix I',;=F, "' to X(1V—1).2' (The
subscripts and superscripts refer to the ith and jth
coordinates. ) To indicate that the trace over all indices
is formed, we write Tr in front of the equation for F").
~' '=» (e.9.(I-e.)~.+~ t(I-e)h.le.v

+plp2Lv12(I g1) +1
++1 (I pl)v12]p1$2I 12) ~ (2 14)

The first variation E('& must vanish for arbitrary 4»
if the M spin orbitals f„extremalize the energy. Note
that piyy=yg and Iogl g2=ygI gg

——j. gg. Let Tr2 indicate
that the trace is formed only over index 2. The funda-
mental condition is

(I pl)[ill (1+Tr2(v12I 12)]pi=0. (2.15)

It is a condition on pj. Supplemented by the require-
ment that p~ have trace 3f, and that it be Hermitian
and idempotent, Eq. (2.15) determines pi."" The
equation has the same form as the fundamental con-
dition of the Hartree-Fock theory. " In both cases Io»

is uniquely determined by the fundamental conditions.
The M occupied orbitals are not uniquely determined
without introducing some further condition.

The condition given by Eq. (2.15) applies when the
coeKcients of the determinantal functions in the MC
wave function are Axed and when they are varied,
when all determinants that can be constructed from
the M occupied orbitals have been used in the wave
function, and when only some of the possible deter-
minants have been used. If the coe%cients of the
determinants are varied, e.g., when they are solutions
of the secular equation for the E-electron problem, the
orbitals determined by Eq. (2.15) with the initial choice
of coe%cients determine a new set of coe%cients. The
new orbitals and coefficients determine new density
matrices which in turn determine a new set of orbitals,
and so on, until self-consistency is achieved. When
all possible S-electron determinant functions con-
structable from the M occupied orbitals are used in
the MC wave function and when self-consistency is
achieved between the orbitals and determinant co-

eKcients, then E, p&, and 1» will be determined by

~ P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).
O' W.'.H. Adams, Phys. Rev. 12i, 1650 (1962), Eq. (16).

p& in a certain sense. They will be determined by If) j. so
long as it is understood that for any choices of the M
orbitals yieMing the same Io&, a corresponding set of
determinant coeKcients exists which will give the
same E, yq, and F~~. That this must be the case is
obvious from the definition of K and Eq. (2.2b). If
only a selected set of the determinants constructable
from the M orbitals is used in the wave function, then
E, y~, and F~2 will depend upon the orbitals, not just
on. pi. In this case Eq. (2.15) and the conditions on yi
must be supplemented by a condition which will make
the energy stationary with respect to variations which
mix the occupied orbitals. That Eq. (2.15) places a
condition on the orbitals of any MC theory is a con-
sequence of the linear independency of the three first-
order variations, namely, the variation which mixes
con6gurations, the variation which mixes occupied
orbitals among themselves, and the variation which
mixes occupied orbitals with virtual orbitals. Equation
(2.15) arises from the third variation. It is straight-
forward to show that Eq. (2.15) is equivalent to the
equations found by Lowdin' and McWeeny. ' In other
cases the relationship between our Eq. (2.15) and those
derived by other authors can be difficult to show. This
is the case, for example„ in relating Gilbert's recent
theory" to ours. Nevertheless, since Gilbert's MC wave
function can be reproduced by an operator 0, and since
Gilbert minimizes the energy with respect to the
orbitals, it is apparent that his orbitals must satisfy
Eq. (2.15), and that from Eq. (2.15) we should be able
to derive an equation related to his Eqs. (8) and (9).
Although the relating of the two equations is not a
straightforward exercise, we do not feel that it is an
exercise worth including in this paper.

"(i=gi) (3.1)

(3.2)

A simplification in the appearance of Eq. (2.15) can

be effected if we assume that

(x;x;Iv,;Is,'x )=~,,s(~;—x,')~(z;—~ )

3. U5RESTMCTED HARTREE-POCK THEORY

The familiar unrestricted and closed-shell Hartree-
Foclr. theories can be derived from Eq. (2.15). This is a
useful exercise for two reasons. Firstly, it connects the
considerations of the preceding section with more
familiar equations. Secondly, it emphasizes the basic
condition of the Hartree-Pock theory, putting us in a
better position to link the Hartree-Pock theory with
the equations we advance in the next section. Our
derivation is for fermions.

In. the unrestricted Hartree-Fock (HF) theory
M=X, and p; is the one-electron (Fock-Dirac) density
matrix. The one- and two-electron density matrices are,
respectively,
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(where vg is a function of x; and x;) and define

(x, ~S, ~x,') =S(x;—x,') (3.3)

(x;iA, ix )=~;;.(x;iy;ix ). (3.4)

Substituting these operators in Eq. (2.15) we have

(I pl)[h1gl+~1p1 Alp1]pl

or, factoring out y~ and dining
FP~=hg+Bg —Ag

(the one-electron Hamiltonian of the HF theory)

(3 5)

and
~~6(x~) =4'(») (3 7)

F "'4.(x ) =& "'ea4(x ) = e & "'e 4.(x ) (3 g)

In words, F& applied to f„(x&) yields a linear com-
bination of the orbitals P~, $2, , P~. We can choose
the orbitals to be eigenfunctions of F~ since F~" is
Hermitian, and since (x,

~
g;~x, ') and the single deter-

minant wave function are invariant under unitary
transformations of the orbitals.

Fi"'k.(») =""V.(x~) . (3.9)

Thus we arrive at the eigenvalue equation of the
unrestricted HF theory. The equation of the restricted
theory for closed-shell systems may be derived from it,
of course.

4. HARTREE THEORY WITH EXCHANGE
AND CORRELATION

We have shown that the fundamental condition [Eq.
(2.15)j on the M orbitals to be used in constructing an
MC-SCF wave function has the form (I—y~)tl'~p~

——0,
where P~=h~y~+Tr2(v»I'»). This condition involves
y& and 1—

g& in the same way that the fundamental
condition of the HF theory [Eq. (3.6)j involves the
corresponding pq and I—pq. However, @s differs from
the HF Hamiltonian in several ways. The question is
then how significant are the differences. Or, to put it
another way, can we replace the condition given by
Eq. (2.15) by a mathematically equivalent condition
involving an operator which differs less from the HF
Hamiltonian? The answer is yes. There are three
liberties that may be taken with Eq. (2.15). Two of
these liberties will be taken in this section. The third,
a liberty one may also take in the HF theory"'~ is
explored in Sec. 5.

(I—y&)FP yg ——0. (3.6)

This is the fundamental condition of the unrestricted
HF theory. "" It also applies to the closed-shell,
restricted HF theory.

The canonical HF equations may be derived from
Eq. (3.6) by observing that

That it is possible to modify Eq. (2.15) without
altering its mathematical content is important to know,
whether or not one has reason for wanting to modify
the equation. We feel that there are reasons for modi-
fying the equation. For one thing the operator @q has
nonzero eigenvalues only for the M occupied orbitals.
We feel that this may prevent our inventing a physical
interpretation for the orbitals and their eigenvalues.
The explanation for this property of g& is that its
eigenvalues must correspond to energies multiplied by
occupation numbers. (This is exactly the case if v~2
vanishes. ) A practical reason for modifying @» so that
it will diBer less from the HF Hamiltonian is that in
this way the E occupied HF orbitals will be better
approximations to S of the M occupied orbitals of
MC-SCF theory. Furthermore the observed diGerences
between the occupied HF orbitals and the Ã corre-
sponding MC-SCF orbitals will then be due only to
essential differences in the effective Hamiltonians. This
should be an advantage in trying to understand MC-
SCF theory. A second practical reason for modifying
Pq is to get an operator which depends less strongly
on the orbitals and the coeKcients of the determinants,
so that small changes in the orbitals and the coefficients
will yield still smaller changes in the next iteration of
the SCF calculation.

The two liberties that we take with Eq. (2.15) in this
section will replace @& by an operator which more
closely resembles the HF Hamiltonian. One liberty we
take is to multiply Eq. (2.15) from the right by an
operator which commutes with g&. The second liberty
involves breaking j. » into two physically meaningful
parts. In this way the resulting effective Hamiltonian
is made to contain a Coulombic operator which is a
functional of the one-body density matrix.

The operators P& and F~"F differ in each term. In
particular gz contains h&yz while FP contains only
h&. However y& and y& commute, so that y& may be
factored out of the term in Eq. (2.15). Alternatively
we can dehne an "inverse" to y~ in the sense that

(vi) 'v~=vi(v~) '=e~.

The operator (y~) ' commutes with y, . (It will exist
if the natural spin orbitals span the same space as the
M orbitals P„.32 If they do not, then. some of the iP„
may be eliminated without changing the wave func-
tion. ) Multiplying Eq. (2.15) from the right by (yz) '
will have the same effect on the h~y~ term as factoring
out y&. Multiplying Tr&(v»F») from the right by
(y&) will yield a non-Hermitian operator which is
just as complicated as the original operator. However,
we can take a liberty with F~~ that will make at least
part of Tr&(v»F»)(y&) ' have an obvious physical
meaning.

The liberty we wish to take with F» is to explicitly

"This statement is based on the results of Ref. 4, in particular
zq. (63).
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divide it into an uncorrelated and a correlated part. If
there were no correlations between the electrons, the
two-electron density matrix would be y~y2. If we
subtract y~y2 from F~~, we are left with a term which by
definition contains all of the correlations between the
electrons. I.et us de6ne

expect Gi+Git to have a very pronounced effect on the
3f orbitals.

It is very simple to put Eq, {4.7) into the more
familiar eigenvalue form by arguments analogous to
those used in deriving the HF equation in Sec. 3.
Equation (4.6) means that

g12 ~12 "f1/2 ~ (4.2) M
F4'p= 2 4'~&vp ~

We could have also subtracted from j."~2 an exchange
term of the form y~'y2'. While this form is correct for
the exchange part of I g2 in the unrestricted HF case,
in the restricted HF case it is correct only when we are
dealing with single determinant wave functions. For
this reason we feel that at this point it is best not to
separate the correlation operator gi2 into a statistical
and a dynamical part. Upon substitution for F» we
have

Tri(v12+12)(pl) Tr2[v12pl/2+v12gl2(pl) j ~ (4 3)

Obviously the decomposition of F~2 we have chosen is
arbitrary, although it has a certain intuitive appeal.

The two liberties described above, which are to be
taken with Eq. (2.15), yield

(&—pi) [hindi+ Tr2(vi2y2) pi
+»2(vnk2(Vi) ')jei=0 (44)

We can factor p~ out of the 6rst two terms of the sum
since (pi)'= pi. The third term cannot be further sim-

plihed at this stage of our analysis, so we give to it a
symbol, or rather to its product with I—pi.

Gi=(I—ei) Tri[v»C»hi) 'j (45)

Whether or not the factor of 1—
g~ is included in G~,

is a matter of taste at this time. (If it is left out, the
expression given below for the total energy will have
to be modified. ) With Gi defined as in Eq. (4.5), the
matrix element of Gi between any occupied orbitals
will be zero. We define the Hermitian operator

Fi ——h, +Tr&(»2y2)+ Gi+Git. (4.6)

The equation
(4.7)

is equivalent to Eq. (4.4) since (I—yi)Gi~yi ——0. The
operator Fi is the eRective one-electron. Hamiltonian
we set out to find. The nonlocal operator Gi+Git
brings in the effects of both the statistical (exchange)
and the dynamical correlations.

The operator Fi is quite similar to Fin~ [Eq. (3.5)j.
The same one-electron operator h~ appears in both.
The electronic Coulomb potential operator occurs in

both. (The electronic density found with yi and with

the Fock-Dirac density matrix are not the same, of
course. ) The big difference between Fi and Fi" lies

in the nonlocal potentials. The nonlocal exchange
potential of the HF operator is replaced by a nonlocal

exchange and correlation potential Gi+Git. One should

If we construct the E-electron wave function + from
all of the possible Slater determinants which can be
constructed from the M spin orbitals, 4' is not affected
by our choice of the f„.It is the solution to K%'=Zip,
where X is given by Eq. (2.2). The operator K is
invariant under replacement of the f„by a set of
orbitals

M
x„=Q P„C„„, (i =1, 2, , M)

if the matrix of C„„'s is nonsingular, " since each p; is
invariant under this transformation. '8 The matrix of
z„„sis Hermitian so we can diagonalize it by a unitary
transformation. Thus lt ls alw'ays possible to find a set,

of orbitals such that

(4 g)

For M —+ ~ this equation is well defined, although
Eq. {4.7) then loses its meaning. [We assume that in
the limit M —+ ~ the f„ form a complete set. In this
limit (I—pi)=0. Since Gi ——0 then, Fi reduces to a
Hartree effective Hamiltonian. j There is of course no

optimum choice of P„'s if one uses a complete set of
them.

If one were using a restricted MC-SCF theory, there
would be a best choice for each P„.In this case Eq. (4.7)
cannot be reduced to an eigenvalue problem without
further manipulation. One has to take into considera-
tion the restrictions placed on the variations of the
orbitals by the restricted MC-SCF theory used. In
other words one has a problem like that of open-shell
HF theory. '4 However, one might still solve Eq. (4.8),
then mix the M spin orbitals to get the orbitals that
extremalize the energy in the restricted MC-SCF
theory. In this way each iteration of the SCF calcu-
lation is broken into two steps.

To complete the discussion of this section we derive
two equivalent energy expressions which involve the
e„. Note that

=»(hindi)+»(vi2+1 f2) ~ (4 10)

3~ P.-o. LOwdin, Advan. Phys. 5, 1 (1956), see pp. 46—49.
"This has been recognized in connection with the antisym-

metrized product of strongly orthogonal geminals approximation.
S. Huzinaga, IBM Research Paper RJ-292, 1964 (unpublished).
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One may regard Q„~ yi ~P„) as an occupation number.
The total energy is

&=Tr(hindi)+, Tr (vi2rig) . (4.11)

Combining Eqs. (4.2), (4.9), (4.10), and (4.11) we have

~= & ~.g. lrilu. )+k Tr»2(g» —Vn 2) (412)

This formula bears a striking resemblance to one of
the HF energy expressions. Adding Eqs. (4.11) and
(4.12), then dividing by 2, yields a third expression for
E.

E=-,'[Q e„g„~yi ~ P„)+Tr (hindi)+Tr (viggi2) ). (4.13)

This expression also is quite similar to a HF energy
expression. In addition, it differs from an expression
given by McWeeny' only in the appearance of
Tr (v12g12) ~

We have derived in this section an effective one-
electron Hamiltonian I"i which differs in functional
form from the Hartree Hamiltonian through the
appearance of the operator Gi+Git. This latter oper-
ator introduces statistical correlation (exchange) and
dynamical correlation into the effective Hamiltonian
in the same way. This may be desirable. "The statistics
of the system enters the orbital equation (4.9) through
the one- and two-body density matrices, which define
Gi.

S. RELATION TO HARTREE-FOCK THEORY

We showed in Sec. 3 that when &=X, the HF theory
results. In Sec. 4 we showed how a theory closely re-
sembling the HF theory could be constructed for 3f&E.
There is no reason to expect that the orbitals of these
two theories will be very similar. However, one might
expect that the orbitals of Sec. 4 could be mixed in
such a way as to find S new orbitals which are very
close to being HF orbitals. One would expect this
because it has been found that the first E natural spin
orbitals are quite similar to the Ã occupied HF orbitals
in He," Be," and H2." (They cannot be identical
unless yi and FinF commute. ) Because of the form of
Eq. (4.7), we should be able to replace Fi by an operator
whose first E eigenfunctions are the best possible
approximation to the E HF orbitals in a certain
energetic sense. It can be done quite simply by a method
which we have explored previously in some detail.

We can define the orbitals &p„which approximate to
the HF orbitals in the following way. We want the p„

'~ P.-O. Lowdin, Rev. Mod. Phys. 34, 80 (1962).
~6 H. Shull and P. 0. Lowdin, J. Chem. Phys. 30, 617 (1959);

E. R. Davidson, ibid. 39, 875 (1963)."G. P. Barnett, J. Linderberg, and H. Shull, J. Chem. Phys.
43, S80 (1965)."E.R. Davidson and L. L. Jones, J. Chem. Phys. 37, 2966
(1962l.

to be linear combinations of the P„, the eigenfunctions
of Fi. If we already know the f„, then R is fixed. If we
approximate the eigenfunction of X in question by a
single Slater determinant of X orbitals and require that
it extremalize the expectation value of X, then a HF-
type equation will determine the orbitals. In this sense,
these orbitals will be the best approximations to the
HF orbitals that can be constructed from the M orbitals
of the MC-SCF theory. They are the p„. They are the
SCF solutions of

P&&I ~w &Ix ) (5.1)

which is just the HF equation in the finite basis set
representation of the M orbitals P„.

Using the definition for the p„ it follows that they
satisfy another eigenvalue equation also. This equation
may be solved for rp„whe nthe P„'s are not known. "We
define

and

(xi~ yP~~xi')= P q„(xi)y„(x,')*
p=1

Vi ——F,—F,"v.

(5.2)

(5.3)

(It should be understood that here FPF is a functional
of the &p„, not the true HF orbitals. ) With Fi defined
as in Sec. 4, and Fi"~ as in Sec. 3, then

Vl Tr2v12(/2 f2 )+Al+Gi+Gi
The q„are SCF solutions of

(Fi"'+Vi—eiViei) ~.=""'~' (5 4)

The eigenvalues of Eqs. (5.1) and (5.4) are identical.
Equation (5.4) should be solved to self-consistency for
M orbitals, which will yield the same y& as the P„.There
will be E q„which will approximate the S occupied
HF orbitals.

The advantage of writing down Eq. (5.4) is that we
may inspect the operators to see what causes the p„
to differ from the HF orbitals, and the P„ from the p„.
First we remark that p&V&p& partially cancels the effect
of Vi.""If Vi —yiVgi vanished, the y„and P„would
be identical with each other, and with the HF orbitals.
In V~ the Coulomb potential due to the charge dis-
tribution y2 —y2" appears. We expect this potential
to be quite small since the HF approximation yields
relatively accurate charge densities, "' and since

is a charge distribution of zero net charge.
The exchange operator A& should be cancelled in part by
G&+Gjt. If we had chosen to define I"I differently and
had introduced an exchange operator constructed from
y2 as Ai is constructed from y2, then Vi would have
contained an exchange potential due to y2 —y2H . As
in the case of the Coulomb potential, we would expect
this exchange potential to have a relatively small effect
in causing the f„and y, to differ. Thus our failure to

"L.Brillouin, Actualites Sci. Ind. , No. 159 (1934).
4' C. Moiler and M. S. Plesset, Phys. Rev. 46, 618 (1934).
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include an exchange term in Fi similar to that in FiH~
will cause the iP„and p„ to differ more than they might
have. However we do not feel that this is a su%ciently
good reason at this point to include such an exchange
term. Furthermore, to choose that form of exchange
potential would make the theory less general, in that
it would be linked in a special way to closed-shell and
unrestricted HF theory. The f„and p„will not diRer
due to the correlation potential Gi+Git, because as
Gi is defined, yiGiyi ——0, i.e., it is not partially
cancelled. It is Gi+Git that will cause the y„ to differ
from the HF orbitals. We can expect its effect to be most
pronounced in the case of the 3f—E q „which are not
occupied in the HF wave function. (This is certainly
the case with the 2p orbitals used by Watson in his
Be calculation. ")

Equation (5.4) may be solved instead of Eq. (4.8)
in determining the orbitals from which g» is constructed.
There appears to be no stronger reason than Brillouin's
theorem" for preferring to solve Eq. (5.4) rather than
Eq. (4.8). Brillouin's theorem holds within the spa, ce of
the M occupied orbitals.

|.DISCUSSION

The emphasis in this article has been on formulating
for a system of S identical particles, an MC-SCF
theory which resembles in form the HP theory. Success
in doing this raises questions which we have ignored.
An obvious question is what theorems of the HF theory
are valid in ours. In this section we shall ask this
question, and others, and offer preliminary answers.
In some cases a definitive answer will be possible only
after numerical studies have been made.

One important theorem from the HF theory is
Brillouin's, ""which says that the first-order correction
to the HF wave function contains no determinants
which are singly excited relative to the ground state.
It has important implications for the calculation of
expectation values, ' and for the improvement of the
HF wave function and energies. 4' In MC-SCF theory
we might hope to have a Brillouin's theorem with
regard to "singly excited" determinants, i.e., those
containing E—j of the M occupied orbitals and one
orbital from the complementary space. I.et us try to
follow Brillouin and Moiler and Plesset, and use as
the unperturbed Hamiltonian

Ho ——Q F;.
i=»

Unfortunately the MC-SCF wave function is not in
general an eigenfunction of this Hp. Any single deter-
minant of E eigenorbitals of F» is an eigenfunction of
IIp, but the MC-SCF wave function is a linear com-
bination of such determinants. Unless these deter-
minants are degenerate eigenfunctions of Hp, we can

R. K. Nesbet, Advan. Chem, Phys. 9, 321 {196S).

not use Ho as the zeroth-order Hamiltonian of our
MC-SCF wave function. For these cases in which Ho
is a valid zeroth-order Hamiltonian, we have to show
that the matrix elements of the perturbing potential
V=H —Ho between the MC-SCF wave function and
singly excited determinants vanish. This appears to
be possible only for a zeroth-order wave function which
is a single determinant. We conclude that Brillouin's
theorem does not generalize to MC-SCF theory.

Although Brillouin s theorem is not valid in MC-SCF
theory, there is an interesting theorem concerning the
perturbation correction to the MC-SCF wave function
and energy. We define the zeroth-order Hamiltonian
to be K Lsee Eq. (2.2)] and the perturbation to be

V= OH(1 —0)+(I—0)HO.

I et E~"~ be the eth-order correction to the energy, and
C&"&, to the wave function, in the Schrodinger per-
turbation theory applied to K+V. Require that each
0'"' be orthogonal to the MC-SCF function 4~".Then
the following may be proven.

1. E&"&=0 for n an odd integer.
2. Ok&"& =0 for n an odd integer.
3. 04&"&=0 &"& for e an even integer.

This implies that a whole set of singly, doubly, and even
X-tuply excited determinants do not contribute to %~".
These results are of course a direct consequence of our
choice of R as the zeroth-order. Hamiltonian. (A full
discussion of this choice and its consequences is given
in a separate article. 4') This appears to be the closest
thing to Brillouin's theorem that we can prove for
MC-SCF functions.

Another theorem of great importance in HF theory
is that due to Koopmans. 4' By relating the orbital
eigenvalues e„H~ to ionization potentials, Koopman's
theorem allows us to confuse orbitals and particles.
This yields of course a physical interpretation. In MC-
SCF theory there does not seem to be the possibility
of generally correlating single-particle levels with the
energy levels of the system as a whole. This is a problem
in the restricted MC-SCF theories, too. However, from
the results of many-body theory one is led to hope that
there is a choice of F» which will yield orbital eigenvalues
corresponding to energy levels. We are currently
studying numerically such a possible choice of F» for
electronic systems. We will present the argument for
this choice of F» after the preliminary numerical studies
have been completed. If our choice is correct, the
theorem will not be as general as Koopman's, but it
may have just as far reaching consequences for the
physical understanding of the MC-SCF theory. In
addition it should have important implications for band
theory and for the assumption of Z-II separability.

4~%'. H. Adams, J. Chem. Phys. 45, 3422 {1966).
'3 T. Koopmans, Physics I, 104 {1933).
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An important property of the HF wave function for
fermions is that for closed-shell systems, and in the
unrestricted HF theory, any set of S orbitals may be
used in constructing the wave function so long as they
yield the same y&. This property was first noted by
Fock.~ It has led to the introduction of equivalent
orbitals4' and other localized orbitals. 46 The MC-SCF
theory is based on a Hamiltonian K, which depends on

g;, but not on the particular set of M orbitals used in
constructing p;. When all possible E-body wave func-
tions which can be constructed from the M orbitals
are used in forming the wave function, and the linear
coefficients are chosen to minimize the energy, the wave
function is independent of the choice of the M orbitals.
Accordingly we can introduce localized orbitals into
the MC-SCF theory. Of course the eigenfunctions of
F& should not be localized anymore than HF orbitals
are. The situation is different for restricted MC-SCF
theories.

For restricted MC-SCF wave functions, such as
those constructed from strongly orthogonal geminals, '
or from alternant molecular orbitals, there is a best
choice of the M orbitals. We have'remarked on this
in Sec. 4. The restricted MC-SCF theories are of great
practical significance, since they are the only ones that
we can hope to apply to large systems. (For example
the alternant-molecular-orbital method has been ap-
plied to metallic hydrogen. 47 It was not an SCF calcu-
lation, of course. ) We expect that the best orbitals to
use in a restricted MC-SCF calculation will be more
localized than the eigenfunctions of Fi. Localization in
this case is a means of introducing some correlation
between the particles. The relationship of this locali-
zation to the various localization conditions introduced
in the HF theory is just beginning to be explored. "

We wish to emphasize that the fundamental condition
of MC-SCF theory, the condition on p; which we have
derived, applies to the restricted MC-SCF theories, too.
It suggests a resolution of restricted MC-SCF com-
putations into two parts. First, one should compute the
eigenfunctions of F~. Then one should transform the M
occupied eigenfunctions of Fi so that they will minimize
the total energy of the system in the restricted MC-SCF
approximation, This procedure recalls that used in
Lowdin's alternant-molecular-orbital approximation.

44 V. Fock, Z. Physik 61, 126 (1930).
4' J. K. Lennard-Jones, Proc. Roy. Soc. (London) A198, 1

{1949)) A198, 14 (1949).
4' See Refs. 16, 18, and 19, and the references contained therein."J. I . Calais, Arkiv Fysik 29, 255 (1965).
4' W. Kutzelnigg, Theoret. Chim. Acta 3, 241 (1965).

The restricted MC-SCF theories will be examined in
some detail in succeeding articles.

In addition to questions concerning the similarities
between HF theory and MC-SCF theory, one may
wonder about the bearing of MC-SCF theory on more
accurate theories and concepts. At this time we can
comment on the relationship between natural spin
orbitals4 and the eigenfunctions of F~. Also it seems to
be appropriate to indicate that Lowdin's exact SCF
theory'9 lies outside of the class of orbital theories that
we have considered here.

The concept of natural spin orbitals (NSO) arises in
connection with the one-body density matrix y&. The
NSO expansion of y& converges more rapidly than any
other expansion of y&. The one-body density matrix of
MC-SCF theory may be analyzed for NSO's, but there
will be only M of them, and they will be approximations
to the NSO's one could calculate from the exact y~. In
contrast to NSO's, the eigenfunctions of Fi are natural
in another sense. They optimize the convergence in the
energy, not in y&. In order to have the approximate
NSO's and the eigenfunctions of F~ identical, of course,
one must show that Fi and yi commute. Since there are
freedoms one may take in the definition of Fi, it may be
possible to define an Fi which will commute with yi.

Lowdin's exact SCF theory is not a special case of
the MC-SCF theory considered here. Although it is
an orbital, single configuration theory, it is defined in
a very special way. The definition is chosen to ensure
that the expectation value of any one-particle operator,
e.g. , gh, can be calculated exactly with the exact
SCF-theory single-determinant wave function. Because
the effective field used in Lowdin's theory is defined, in
terms of the reaction operator, we expect it to be quite
different in character from the effective field we derived
in Sec. 4.

In this article we believe we have succeeded in
showing how to put the fundamental condition on the
orbitals of MC-SCF theory into a general, useful, and
reasonably transparent form. We expect that this will
facilitate the investigation of other aspects of MC-SCF
theory. We believe also that MC-SCF theory will be
of great value in atomic and molecular investigations.
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