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Projected Hartree-Fock Spectra of 2s-id-Shell Nuclei
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The Hartree-Fock calculations with a phenomenological internucleon residual interaction are carried out
for the 2s—1d-shell nuclei up to 'Al. The low-lying excited states of these nuclei are obtained by projecting
out good angular-momentum states from the deformed Hartree-Fock states. The energy spectra thus ob-
tained are in good agreement with the experimental results. From the study of the odd-odd nuclei, it is
found that the employed residual interaction correctly reproduces the ground-state spins of these nuclei.
The binding energies calculated from the projected ground-state energies and a naive model are in very good
agreement with the experimental binding energies.

1. INTRODUCTION

'HE complexity of shell-model calculations for
more than three nucleons prohibits any such

calculations for many-nucleon systems. For nuclei in
the 2s—1d shell, the shell-model calculations have been
carried out in the case of at the most four particles
outside the "0 core. ' Since the exact shell-model cal-
culations for many-nucleon systems are prohibitive,
attempts have been made to do the next best thing.
Redlich' showed for the erst time that the results of
shell-model calculations can be reproduced by projecting
the good angular-momentum states from an intrinsic
determinantal state. These observations of Redlich in

~ Present address: Tata Institute of Fundamental Research,
Colaba, Bombay, India.

~ T. Inone, T. Sebe, H. Hagiwara, and A. Arima, Nucl. Phys.
S9, 1 (1964); T. Kngeland and A. Kallio, ibid S9, 211 (1964). .' M. Redlich, Phys. Rev. 110, 468 (1958).

the 2s—1d shell were confirmed by Kurath and Picman, '
who showed that for nuclei in the 1p shell as well, the
projection method is a good approximation to the
configuration-mixing calculations. This success of the
projection method in obtaining shell-model wave
functions implies that there is an underlying independ-
ent-particle behavior in these wave functions. The
natural tool to study this independent-particle behavior
is the Hartree-Fock (HF) method. The recent calcula-
tions of Bassichis, Giraud, and Ripka clearly demon-
strate that one can derive the energy spectra of nuclei
in the 2s—1d shell by projecting out good angular-
momentum states from an intrinsic (HF) state com-
posed of the deformed single-particle orbitals.

Kith this success of the projection prescription, we

' D. Kurath and L. Picman, Nucl. Phys. 10, 313 (1959).
4%'. H. Bassichis, B. Giraud, and G. Ripka, Phys. Rev. Letters

13, 52 (1965).
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felt it essential to study the general features of the
projected nuclear spectra. This was done in an earlier
paper. 5 It is clear that even the projection method
becomes complicated for many-nucleon systems. It
is, however, essential to carry out such calculations in
view of the vast number of experimental data collected
on the 2s—Id-shell nuclei. The main motivation in this
paper is to apply the mathematical technique developed
in Ref. 5 to complicated systems and see whether one
can find agreement with experimental 6ndings. We have
studied three cases each of even-even, odd-odd, and
odd-A nuclei in the 2s—id shell. The CGcct of band
mixing in the case of two close-lying bands of ~~hl is
also investigated in a certain appI'oxlIQatlon.

kinetic-energy term, the harmonic-oscillator potential,
and a spin-orbit interaction term; the one-body HF
potential i' in Eq. (1) is given by

y(m) P(r) p
)y(n) pg)pp—+p s qy(~) ne-)pm) (3)

P, 8

where the superscript p (e) refers to proton (neutron),
p is the density matrix, and e is the two-body interaction.

The restriction to axial symmetry in our calculations
is not a serious matter, since in the projection method
the effects of the "nonaxial" terms will be directly
incorporated. This can be seen from the matrix elements
of the two-body interaction appearing in the formulas
of Sec. 23.

2. MATHEMATICAL FORMULATION

A. The HF Method

To start with, we note that in the shell-model wave
functions, the radial dependence is 6xed by a given
harmonic-oscillator potential; only admixtures of
various orbita]. s and spin con6gurations are considered.
Similarly, ln the self-consistent HF nlcthod cirlploycd
here in the calculations of deformed orbitals, we have
fixed the radial part of the wave functions by the
harmonic-oscillator wave function; the self-consistency
is imposed only on the orbital part of the wave function.
The se]f-consistency consideration of the radial motion
may be important for the nuclear binding-energy
problem, but it is not crucial for calculating the low-

energy excited states of nuclei. Further, in the HF
variational calculation, we restrict ourselves to the
axially symmetric deformation, meaning thereby that
the deformed single-particle HF orbital has a good m

quantum number, where m refers to the projection of
the angular momentum on the symmetry axis. Thus the
problem is to solve the eigenvalue equation

(qxIHI' &I q )= p'+-,') sineded &(g)e (e), (sa)

&q'zI px I «)=pa =(++2}

yd '(e)I' {e), (5b)

hx{g) =&qxI&~ '""Iqx), (6a)

(6b)

B. Projected Energy Spectrum

The deformed intrinsic state of the system is the
axially symmetric determinantal HF state

I qx) char-
acterized by the band quantum number E. This
intrinsic state is composed of a superposition of states
with good angular momenta J. The energies EE.~ of
these states are extracted from

I «) by angular-
momentum projection:

Ex'=&qxI &I'x'I «&/&«I I'x'I q x),
where

(T+I')q;= E;q; and H is the Hamiltonian of the system.
For completeness we quote the results of Ref. 5:self-consistently, to obtain the energy E, and the

corresponding orbital p; given by

I q')=2 c-;r,"Ij~'r').

The single-particle operator T in Eq. (1) consists of the where

~x(e)=D (o-()D'(o.~), (&)

hx (g) = (T~+ V~ ~)D~(a p)

+ (TN+ pÃ x)DP{g e)+—pP x(g)—
N

T = g p (g,m, ITIj.m, ) g (—)'+c„,'c,'d„.„,'.(g) D,. „~-~(g.p)
gage k=1

(j,m;, j),mpIr I j,nz„,jism), )
jsJk ja~a2b~b

N

X g ( )~+i+&+(Ci'Ci())ia(g), .( „i,~C,i', js(g) .D,„.))q-2(o )
j&L

~ C. S. Karkc and M. R. Gunye, Phys. Rcv. 155, 1084 (195"1).
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V~ "= Q P Q P (j,m;, jgmptv~j, m„jt,mt, )
i~1 &~1 jsjle jgmrzjymy

P
X Q Q ( )&—+i+&+&pi~(, iud, ju(, g). Q AC md, sr(g)D~ P &(g e)D. P &(—g ))

j 1 1=1

T~ and V~ ~ in Kq. (8) are given by expressions similar
to those for T~ and V~ ~ with replacement of E by P.
Other symbols appearing above are defined in Ref. 5.

The energy E~~ obtained this way has the variational
character that it gives the upper bound to the actual
energy of the state with the angular momentum J.

Exx J= (7+2)' dgsin8d~z~(g) dg'sing'd~z. ~(g')
&0 a 0

Xhxz (g 18')/(px pz. )—"' (11a)

Pzz ~ (J+-',)' dg s=ing d~z~ (8) dg' sing' d~x. ~(g')
.: 0

XPxx (8—8')/(pz pz')'" (11b)

where Pz~ and Pz. ~ are given by Kq. (Sb) and

~KK'(8 —8') =(q z~ He '&' '&
~ q x ); (12a)

Pxz'(8 8 ) (&px~ e "~""~q z'). (12b)

Minimizing E~ with respect to u and b in Kq. (10), one
gets the corrected energy E~ as

E'= (2 (Ex~+Ex') ~+$,'(&z' —Ex ')'-—
+(Ezx')'+& j"')/e, (13)

where

pKK' EKK'

(pzz' ) (Ez +Ex~ )pxz~ EKKI,' (14)
C=1—(pzx')'

C. Band Mixing

If the HF energies E~HF and EI~ H~ corresponding to
the bands E and E' are close, then it is quite likely
that the projected energies E~ and E~ ~ will also be
close. In this case, the projected energies must be
corrected for band mixing. The wave function %~~ for
the state J will then be approximated by a linear
combination of the two wave functions q~~~ and
gmz'

+~'= ~q ~z'+ &q ~z',
where

q~z'= P~z'«/HP~K'«I P~z'«)1 "
and where a similar relationship holds for y~~ ~. The
energy E~ is then given by

E'= (o'Ez'+f'Ez'+2nf Exx')
X (a'+b'+2abpzz. ~), (10)

where Ez~ and Ex ~ are given by Kq. (4) and

Thus one has to compute Exx ~ and pxx ~ in order to
get the corrected energies of the two states with angular
momentum J. We will carry out this band-mixing
calculation in the case of "Al, where the E=—,

' and
E'=-', bands lie very close.

3. APPLICATIONS

The projection method has been applied to calculate
the low-lying energy levels of nine nuclei in the 2s—Id
shell. The effective interaction used in the calculation
is of the form

v(i, j)= v; v, (a+f n, n~)v, e "'& /(r-, ~/I. ), (15)

with p, =1.37 F. The radial wave functions used in the
calculation of matrix elements are those of harmonic
oscillator with size parameter (A/M&u)"'=1. 65 F. The
calculations are done by taking @=0.10 and b=0.233
and also by taking @=0.056 and b=0.233 in Kq. (15).
The results for both these sets are found to be almost
the same for all the nuclei studied, and hence we have
chosen to show the results obtained with Rosenfeld
mixture (a=0.10 and b=0.233). In the case of "Al,
however, there is some significant difference between
the results obtained with two sets; therefore, we will
present both results. The strength parameter v0 in
Kq. (15) is taken to be 45 MeV; the single-particle
energies are fixed by the strength n of the spin-orbit
force, which is taken to be —2.48 MeV. These param-
eters are in the same range as those employed by
Kelson and Levinson. '

We have also carried out some calculations using
the following interaction:

v(i,j)= ,"v(0v. 1+0.233m; e;)

X& Z V~(i) (—)~V-~(j), (16)

where q~= (16 v/)5'~'r'Y~ xfand X is the strength of
the quadrupole interaction.

A. Even-Even Nuclei

We have considered three nuclei, "Ne, "Mg, and
"Ne, with even numbers of protons and neutrons.
Figure 1(a) shows the results of calculation for "Ne
with varying ~0 and keeping n fixed; the results obtained
by varying n and keeping vo fixed are shown in Fig. 1(b).
The experimental energy spectrum of 'Ne is shown
in Fig. 1(c).It is seen that the effect of variation of n on

6I. Kelson and C. Levinson, Phys. Rev. 134, 3269 (1964);
J. Bar-Touv and I. Kelson, ibid. 138, 81035 (1965).
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9.0

7.0

energy spectrum of '-'Mg obtained by employing the
single-particle energies from "0 is shown in Fig. 2(b).
It is clear that the '~O single-particle energy spectrum
gives poor results for '4Mg. The calculated and exper-
imental energy spectra of "Ne are shown in Figs. 3 (a)
and 3 (b), respectively.

B. The Odd-Odd Nuclei

Thc ca]culRtlons I'cpol tcd ln this section al c done
with a view to testing the reliability of the Rosenfeld
mixture (with Yukawa radial dependence) in explaining
the observed spins of odd-odd nuclei. If the 1ast odd

3.0

2.0
4.0-

Lo

0 t

45
I 0 1 I I 0

50 55 "2.80 "2.48 "2.I6

3.0-

2,0-

FIG. 3. Energy levels of
"Ne: (a) calculated energy
spectrum with no=45 MeV
a»d ~= —2.48 Mev; (b)
experimental spectrum.

FIG. 1. Energy levels of 2oÃe: (a) calculated energy spectrum
for 0, = —2.48 MeV and vo varied between 45 and 55 MeV; (b}
calculated energy spectrum with no=50 MeV and n varied from—2.16 to —2.80 MeV; (c) experimental spectrum. The energy
scale is in MeV in this and following diagrams. The numbers on
the right in each case give the spins of the levels.

l.0-

the energy levels is not very significant, whereas that
of variation of eo is quite significant; in particular, we
note that the separation of higher angular-momentum

I.O-

proton is in the deformed HF orbital m„and the last
odd neutron is in the deformed HF orbital m„, the two
possible states of the odd-odd nucleus would correspond
to the band quantum numbers E=m~+ns and
6'=

t
m„—m„t. The well-known rule which provides a

choice between the E and E' states is due to Gallagher
and Moszkowski. In thc CRsc of 1RIgc dcformatlons,
they predict that, of the two possibilities, the one which

keeps the intrinsic spins parallel will be favored. This
could arise from an A.eq cr2 force with A, &0. It is also
known' that an isospin-dependent term B,~g ~2 with
Bg+0 cRn Rlso plcdlct, thc collect ground-state bRnd
of the odd-odd nuclei in 2s-1d shell. The relative import-
ance of the spin-dependent and isospin-dependent

l 0
50

I'10. 2. Energy levels of "Mg: (a) calculated energy spectrum
for o, = —2.48 MeV and no varied between 40 and 50 MeV; (b)
calculated energy spectrum with eo ——45 MeV and single-particle
energy taken from ~'0 (c) experimental spectrum.

states from the ground state increases appreciably with
increasing eo. Similar variation is found in the case of
"Mg as well. It should be mentioned that the levels do
not cross; only the relative separation is RGcctcd by
changing vo or o.. The results of calculation for 24Mg are
shown in Fig. 2(a); the corresponding experimental

energy spectrum is shown in Fig. 2(c). The calculated

30-

5
2r~$
I

——5

I'IG. 4. Energy levels of ~OI':

(a) calculated energy spec-
trum with so=45 MeV and
n = —2.47 MeV; (b) exper-
imental spectrum,

0 b

'C. J. Gallagher and S. A. Moszkowski, Phys. Rev. 111,
1282 (1958}.' M. R. Gunye and S.Das Gupta, Nucl. Phys. 89, 443 (j.966).
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Fxe. 5. Energy levels of "Na:
(a) calculated energy spec-
trum with F0=45 MeV and
0.= —2.48 MeV; (b) exper-
imental spectrum.

6.0-

5.0—

4.0—

30-

2.0-

I.O-

"F "Na, and '4Na are shown in Figs. 4(a), 5(a), and
6(a), respectively; the corresponding experimental
energy spectra are shown in Figs. 4(b), 5(b), and 6(b),
respectively.

C. The Odd-A Nuclei

Ke have considered three odd-A nuclei: "Xe, "Na,
and "Al. The experimental information about the first
two nuclei is scarce in regard to the spins of the excited
states. In the case of "Al, however, the experimental
information is abundant and the spins of all the low-

lying excited states are known. The calculated spectra
of "Ne and "Na are shown in Figs. 7(a) and 8(a),

5.0-

terms is not well known. The Rosenfeld mixture has
both the spin- and isospin-dependent terms, and it was
felt worthwhile to investigate whether it would

reproduce the experimental result.
Generally, the HF energies E~ and E~

corresponding to the two bands E=m~+m„and X'
=

i m~ —m
i

are quite close. Even though E&HF

&Ez'HF, it is not obvious that the band quantum
number of the ground state is E. It would be so only if
the projected energy Ez~=~ is lower than the projected
energy EE. ~'=~'. The problem we want to solve is
twofold: whether the employed two-body interaction

FxG. 7. Energy levels of
"Ne: (a) calculated energy
spectrum with F0=45 MeV
and n= —2.48 MeV; (b)
experimental spectrum.

4.0-

3.0-

2.0-

I.O-
7
2

5
2

(-)9
2

-(- )
7
2

5
2

2

respectively; the corresponding experimental resu]ts
are shown in Figs. 7(b) and 8(b), respectively. The
agreement between the calculated and the experimental
spectra in the case of "Ne is fair; in the case of "Na,
however, the agreement is poor. Experimentally, no
level is yet seen between 0.438 MeV (J=-,') and 2.08
MeV, whereas the projected J=-,' and J=~9 levels are
at 1.06 and 1.58 MeV, respectively. On increasing the
strength eo from 45 to 50 MeV, the projected energies
come a little higher, but the experimental spectrum is
not completely explained. It is possible that the
observed levels at 2.08 and 2.70 MeV have spins —,

' and
11/2, and the level with spin —,

' is probably below 2.08
MeV and not yet seen.

The projected energy spectra from E= ~ and E'=-',
bands of "Al are shown in Fig. 9(a). Since the two bands

5.0 ~

40

50-FIG. 6. Energy levels of "Na:
(a) calculated energy spec-
trum with F0=45 MeV and
n = —2.48 MeV; (b) exper-
imental spectrum.

--6
4

2.0-

l.O-

0.0-

4.0 .

3.0-
FIG. 8. Energy levels of

"Na: (a) calculated energy
spectrum with F0=45 MeV
and ~= —2.48 MeV; (b)
experimental spectrum.

—
(—)
7
22.0- 3

2
7

5

Q

IO
5
2

2
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gives the observed spin for the ground state and also the
experimental energy separation (Ez~ x Elr ~' ')—
between the two states.

We have considered three odd-odd nuclei: ' F, "Na,
and '4Na. The 9th, 11th, and 13th neutrons (or protons)
go into

i mi = —',, —,', and —,
' states, respectively. This gives

two possibilities: %=2 and JC'=1 for "F; %=3 and
E'=0 for "Na; and X=4 and E'=1 for "Na. In all
three cases, we And, for the same parameters: no= 45 MeV
and n = —2.48 MeV, that E~HF(E~ HF and also E~~ ~
&E~ ~' ~', in agreement with experiment. The separa-
tion E~~ ~—E~ ~' ~' is also in fairly good agreement.
Moreover, the slight variation in vo and 0, does not
change the general trend. The projected spectra for
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9/2

—9/2
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Pro. 9. Energy levels of
"Al: {a) calculated energy
spectrum with v0=45 MeV
and 0.= —2.48 MeV; (b)
the resultant spectrum after
band mixing; {c) experi-
mental spectrum; (d) the
resultant spectrum after
band mixing; (e) calculated
energy spectrum with vo
=42.5 MeV and a= —2.48
MeV I in this case a=0.056
and b= 0 233 in. Eq. (15lJ.

and the projected energies are quite close, the interaction
between the projected states with the same angular
momentum must be taken into account. The calcula-
tions for "Al are, however, very lengthy, even consider-
ing the projection from an individual band, since one
has to deal with 9 particles outside the "0 core.
In particular, the exact band-mixing calculations
described in Sec. 2C are quite involved, and hence the
following approximations are sought.

The overlap integral p« ~ in Eq. (10) is neglected.
Further, the interband energy term Fzz. ~ in Eq. (10)
is simplified by expanding the matrix element h~~
X (8—8') in powers of (8—8') and neglecting the terms of
powers greater than 4:

h«(8 8')={~zlH-~ '" '""I~z-)-
( )n

(8 8')'"(q zI HJ—'"I «.), (17)
+=i (2~)!

since E and E' differ by 2 in the case of the two bands
of "Al under consideration, and consequently

(«IHJ„"I«)=0 for odd n,

(vzlHI «.)=0.
It is veriiied that the most important term in Eq. (17) is
that with e= 1; the m= 2 term is also quite substantial,
but the higher terms can be neglected, as their contribu-
tion is small. Hence we have

I .(8—8')= —-', (8—8')'(i IHJ„ I ~ .)
+(1/24) (8 8')'(«

I
HI—' I «)

This simplifies Eq. (11) to the form

&zz'= (~+I)'L~if2(~)+»4(~) j/(Pz'Pz')"'
where

1r

fq(J) = —— sin8d8d~z~(8) sin8'd8'
2 0 0

X (8-8')'Az'(8')

sin8d8d~z~ (8) sin8'd8'

X (8—8')'d .~(8') .

Since EE~ ~ is independent of M, we have chosen a
value of.M for which f2(J)/f4(J) is fairly constant for
J= ~5, —,

' states, and then we can write

zz'z= (@+1)2/f2(+)/(PzJPz'J)1l2 (1g)

We fixed X from the two 2 states in '5A1 and then
calculated the energies of other states by using this value
of X. The resultant spectrum after taking into account
the band, mixing between the E=—,

' and E'=-,'bands is
shown in Fig. 9(b). The experimental spectrum is shown
in Fig. 9(c).The agreement between the calculated and
the experimental spectrum is fair in the sense that the
trend is correctly reproduced. For detailed agreement,
it is essential to carry out the exact band-mixing
calculations. Ke have also shown the energy spectra
calculated by employing a=0.056 and b=0.233 in
Eq. (15) for comparison. Fig. 9(e) shows the spectra
projected from E=-,'and E'=-,'bands; the spectrum
obtained by taking band mixing into account is shown
in Fig. 9(d).

D. Calculations with the Quadrupole Force

We have used the modified quadrupole interaction in
Eq. (16) to calculate the projected HF spectra of "F,
"F,and "Ne. The single-particle energies are taken from
"0spectrum; the strength X was varied. The results for
X=0.10 (in units of 3I2u&'/MeV) are shown. Figures
10(a), 10(c), and 10(e) show the projected spectra of
'ONe, "F and. "F, respectively; the corresponding
experimental results are shown in Figs. 10(b), 10(d),
and 10(f), respectively. A qualitative agreement
certainly exists. However, the states with higher angular
momentum come too high, showing thereby that this
interaction is inferior to that used earlier.

E. Binding Energies

In calculating the binding energies 8 of the 2s—1d-
shell nuclei, we assume that the core (i.e., "0) is inert.
The binding energy of the outer nucleons is equal to
the projected ground-state energy Eg plus the contribu-
tion from the external nucleon-core interaction. In
order to calculate the latter, we assume that the
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l2.0-

FIG. 10. Results of calculations
with residual interaction in Eq.
(16) with X=0.10 (in units of
M2co4/MeV). The single-particle
energies are taken from the "0
spectrum. (a) The calculated
energy spectrum of 20Ne. (b)
Experimental spectrum of "Ne.
(c) Calculated spectrum of "F.
(d) Experimental spectrum of »F.
(e) Calculated spectrum of 'OF. (f)
Experimental spectrum of ' F.
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TABLE I. The experimental binding energy 8 is given in the
second column. The calculated 8 with (i) no=45 MeV, a=0.10,
b=0.233 and (ii) no=42. 5 MeV, @=0,056, 5=0.233 in Eq. (15)
are shown in the third and fourth columns, respectively. The J3
of the "0 core is excluded in the tabulated values. The projected
ground-state energies (Zo) corresponding to the cases (i) and (ii)
are shown in the fifth and sixth columns, respectively.

Exp er- Cal-
imental culated

J3 3 (i)
Nucleus (MeV) (MeV)

26.78 26.78
33.27 36.40
40.02 41.79
5039 48.98
46.77 50.33
59.18 58.88
66.14 65.74
70.88 72.12
73.18 79.71

20F
"Ne
»Ne
2'Ne
22Na
2'Na
"Na
24Mg
25Al

Cal-
culated
J3 (ii)
(MeV)

26.78
35.02
40.56
48.02
48.65
57.19
64.23
69.47
77.09

Eg (i)
(MeV)

19.37
28.99
32.53
37.87
39.22
45.92
50.93
57.31
63.05

Eg (ii)
(MeV)

18.14
26.38
29.76
35.06
35.69
42.07
46.95
52.19
57.65

nucleon-core contribution to the binding energy is
constant X per particle. With this, we have for the 8
of a nucleus ("0+I),where e is the number of outer
nucleons:

B("0+m)=B("0) Eg(n)+Re—. (19)

We fix X by fitting the I3 of 'PF. With this value of X, the
calculated results are shown in Table I. The agreement
is much better than expected.

4. CONCLUSIONS

It is found that the phenomenological nucleon-
nucleon potential such as the Rosenfeld mixture with
Yukawa radial dependence explains the low-lying
energy levels of nuclei in the 2s—id shell fairly well. For
the Axed strength ep of the internucleon potential and
the fixed single-particle energy spectrum, the calculated
low-lying excited states of the nuclei considered in this
paper are in good agreement with the, experimental
results. The single-particle energies as taken from the '~O

spectrum do not give good results for a large number of
nucleons outside the "0 core. For detailed agreement
between the calculated and the experimental results,
the nucleon-number (A) dependence of vs and the
single-particle energies is needed. No attempt is made
to investigate it. The binding energies of the nuclei
calculated with the crude model are in very good
agreement with the experimental binding energies.
The quadrupole force, though it qualitatively explains
the low-lying excited states, has the bad feature that
the large-angular-momentum states lie very much
higher than the experimental results. From the study
of odd-odd nuclei, it is found that the Rosenfeld mixture
has the correct character to reproduce their ground-
state spins. In general, it is clear from these calculations
that the projected HF spectra do resemble closely the
experimental energy spectra.


