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We calculate double-scattering corrections to the differential cross section for the inelastic scattering of
nucleons from complex nuclei. The Watson formalism of multiple scattering is employed. Numerical com-
putations are performed for the reaction "C(P,P') "C*(2+ state, 4.43 MeV) for the incident proton energies
E,=156, 100, and 90 MeV. Our 2 -state eigenvector is taken from a microscopic random-phase-approxi-
mation model calculation. The computed double-scattering corrections to o (8) are appreciable and negative
at small e (at 156 MeV of the order of —10 —20%i. They are rather sensitive to the details of the final-
state nuclear wave function.

1. INTRODUCTION

"OST calculations of elastic and inelastic scattering
i ~ of nuclear systems at medium and high energies

as in the up-to-date literature are based on the usual or
distortion-modified impulse approximation. This ap-
proximation includes only the leading term of the
Watson series expansion of the actual many-body scat-
tering matrix called the multiple-scattering series. The
leading term is a simple sum of the t matrices describing
the pair interactions of the projectile with the individual
nucleons of the target (free two-body scatterings or, if a
part of the e6ect of the medium of all the remaining
target nucleons is included, we have two-body scatter-
ings with a distortion effect). A rapid convergence of
the Watson series is guaranteed only at quite high
energies. In the case of elastic scattering, the double-
scattering, target-exchange, and binding corrections are
known to contribute importantly to the optical-model
potential 'U, ~~ at energies of the incoming nucleon
Ep&50 MeV. Some corrections to 'U, ~t in this case,
corresponding to the first (double) cluster terms in the
Watson series, have been only very roughly estimated. ' '
(For the case of 'U.,i for complex targets see also general
discussions by Fowler and Watson, ' by Johnston and
Watson, ' by Johnston, ' and, most recently, by McDonald
and Hull. ') Only very few rough calculations of such
scattering corrections have been published on the elastic
and quasielastic scattering from deuterons. "

*Postal address: B. P. No. 1, 91-0rsay, France.
t' Present address: International Center for Theoretical Physics,
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4 R. R. Johnston and K. M. Watson, Nucl. Phys. 28, 583 (1961).
5 R. R. Johnston, Nucl. Phys. 36, 368 (1962).
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(1966).
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From the experimental side there have been several
examples of a situation where the impulse approxima-
tion is insuKcient independently of the details of the
nuclear form factor and for any "reasonable" nucleon-
nucleon free scattering t matrix. One such example
seems to be the polarization of 155-MeV protons in-
elastically scattered from C" leaving the residual
nucleus in its first excited state (2+, T=0, 4.43 MeV),
especially in the region of small scattering angles 8.'

In the following we shall present a calculation of the
double-scattering correction in the sense of the Watson
multiple-scattering series for a complex spherical
nucleus. In spite of several drastic approximations
employed, the final expressions are rather complex
and cumbersome for numerical computations.

2. CALCULATION

Our first and basic approximation is that of neglecting
the initial, intermediate, and final momenta of the
target nucleons involved. This is valid certainly only
for sufficiently high energies (&150 MeV). Ourcor-
rection scattering amplitude b,T corresponds to exciting
the target nucleus from its ground state 0 to the Gnal
state f; the incident nucleon momentum is kp, and the
final one of the same is kp', at the beginning we suppress
in our notation the spins involved, for the sake of
simplicity. With the above we can write:

2m
(kp'i LTikp)= A(A —1)Q dk(-', kp'i tpti'sk)

h' n+p

2m
kp —k — A~„zb ~ tp2 2 p

h'

X drie'p "p„r(rt) 'drse""p p (rs) (1).
' B. TatischeG et a/. , Phys. Letters 16, 282 (1965); M. Perrin

and N. Vinh Mau, iMd. 14, 236 (1965).
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Here to, is the antisymmetrized f-matrix operator for
tlie Iillcleoii pMi (OA l 6e~= e~ —eo is 'the excitatloli
energy of the target nucleus in the intermediate state e;
tl'=k —ko', tl=ko —k; and the one-nucleon density
matrices are defined as

po (rs) =— d(1)d(3) d(A)

Xgo (1,ro,3, . ,A)go(i, rs, 3, ,A), (2)

p.r(rt) —= d(2) .d(A)

Xf«(», 2, ,A)t«(ri, 2, ,A). (3)

It is only thanks to the neglect of the momenta of the
target nucleons 1 and. 2 relative to ko, k, and ko' of the
scattering nucleon 0, that we obtain nuclear form factors
as Fourier transforms of p o(r;,r,)

—=p, o(r;)."Otherwise,
the form factors are transforms of the single-nucleon
density matrices "mixed" in the coordinates, p, o(r;,r,),
as ln thc cxRct original cxpresslorls wlllch arc lIl our
approximation reduced to their diagonal components
only.

This equation corresponds to Eq. (4.5) of Johnston
and Watson' except that their Gnal ground state (OI
is replaced by an excited state f (inelastic scattering).
It corresponds also to Eq. (3) of Ref. 6 in the case of
the optical model. This is a variant of the Watson
multiple-scattering series which probably converges
rapidly. The exclusion of the ground state 0 from the
intermediate states ts is related to a "coherent scat-
tering" (optical-model) distortion operator (it has only
diagonal matrix elements) in the propagators for the
states N. Such propagators are called e by Watson (com-

pare, e.g., Ref. 1).We also consider a multiple-scattering
series based on Watson's propagators a (without the dis-

tortion potential) and without the projection operator
excluding the ground state from ( Iis)}. In the former
variant, the distortion operator is treated as if it were

a small perturbation, and as if it could be neglected (one
retains the zero-order terms of an expansion). It means
that in Eq. (1) we use the Watson series expansion
with thc propagatol. s unpcrtulbcd for' thc par tlclc 0; ln

other words, the basic states for the particle 0 are plane
waves rather than any distorted waves.

Oui second approximation ls closure. Fol a 11ght

nucleus it may be that only one level or a group of levels
e are important for our reaction channel so that one
can replace he in Eq. (1) by a corresponding fixed
6~.0 appropriate to a given incident energy E„ for a
heavy nucleus with a high level density, one can replace
Ao o by an "average" (Ae), ; if Fo is high enough we

can even neglect the nuclear excitation energy altogether

((Ae), ((Eo,A'«o'/2m). The summation over I yields
then;

2tn
(k 'oI «GATI ko)

— —A(A —1)
IE'

X (-,'k I to I
-,'ko)F(thtl'), (4)

F(tl, tl )= drtdfos' '" "
I poi (i'i ro)

—por(rt)poo(rs)l, (5)

po«"'(», rs) —= d(3)d(4)" d(A)

Xfr (rt, ro, 3, . A)fo(rt, rs, 3, . A) . (5')

The quantity po«"' is a (0 —+ f) two-nucleon density
matrix.

If we exclude in our (ko'IATIko) only the initial
target (ground) state in the summation over inter-
mediate states, this corresponds to what one obtains
from the multiple-scattering expansion as given, e.g.,
by Watson" and Takeda and Watson" or to the ex-

pansion given in pp. 790—791 of Ref. 13 and in Refs. 4—6.
If no such exclusion is made, we omit the term pofpoo in

Eq. (5).In the following we concentrate on the case of a
spherical even-even nucleus. Our final state f is supposed
to be made of a superposition of particle-hole pairs
coupled to a definite spin Jr (projection Mr) and isospin

Tf (projection Ts«); i.e., our excitations are described

by spherical shell-model con6guration mixing as given

by the random phase approximation (RPA) or the
Tamm-Dancoff (TD) methods. Using second quantiza-

tion, we can write in this case

pof"'(»2)= 2 2 (—)'-" (J- J-'~- —~-I~f~f)
A (A —1) ' ss'.7v'

X(—) '(s o;«- —«-I2'P'sr)7«"'*(«')(oI~-'~-e "~".eIo)os*(1)~;*(2)os(1)o»(2), (6)

where (y (1)}is a complete set of single-particle wave functions of the shell model; the X&i'&(«') are the hole-

particle components of the given eigenvector f; I 0) is the "vacuum" (ground state) correlated or uncorrelated for

'0Actually, the "density matrix" p f,(r) is usually defined with the extra normalization factor A in front of the integral

J'~(2) ~ "d'(~) «Eqs. (2)-(3)."K. M. Watson, Phys. Rev. 89, 575 (1953)."G. Yakeda and K. M. Watson, Phys. Rev. 97, 1336 (I955).
"M. I.. Goldberger and K. M. Watson, Collisiol Theory (John Wiley S Sons, Inc., New York, IN4).



DOUBLE —SCATTE RI N G CO RRE CTIONS 1079

the RPA and TD cases, respectively. The (OI IO) element is evaluated by contractions in the sense of the
Hartree-Fock ground state

I 0) as is usual in the RPA method. This "recipe" constitutes our "first variant. "
For a general spin and isospin component, we can write in this case our nuclear form factor of Eq. (5) in the form:

(si'ti $2't2'IF(q q') Is&ti s2t2)= p p &'r'(»')( —)'~~+l '"(j;j„;m„.—m,
I JfMf)

A(A —1) -' p(occi

X(l l't" t
I

&—P'sr)L &"p—, p.+&p. ,p. Ep"—,.p]=P—Z [ &"p,p—.+&p",p. &'p",.p—], (7)
vv' p(occ)

where

F. p, ~)= (n; si—'ti Ie" '"Iv; siti)

X(p; s2't2'Ie*''i "Ib; s2t~). (8)

If the term porp00 is left out in Eq. (5), we have to add
on a term F;p „p in Eq. (7).The first scattering is related
to ko and to the target nucleon 2; in this sense the
second and the third E in Eq. (7) correspond to two
very simple diagrams perfectly reasonable physically;
the first term —E„p,p„can be obtained from the third
one by interchanging the target particles 1 and 2 and is
a consequence of the mathematical symmetries of our
Eq. (4); unfortunately, physically it means that the
projectile of momentum ko brings the target nucleon 2

from a single nucleon state v to an occupied state P;
this would involve a violation of the Pauli exclusion

principle unless our ground state is correlated as in the
RPA. However, the contractions in Eq. (6) should in
this case be better performed allowing for the true
partial occupations of the hole and particle states; con-
sequently, neither P nor v will be exactly hole states as
in the TD case. This situation in Eq. (7) is a consequence
of the closure approximation and of the contractions
in Eq. (6). Suppose now that we go back to our Eq. (1)
and introduce for the complete set of intermediate
states n the complete set of the RPA.

We perform contractions in the corresponding formula
as we did them in Eq. (6) and then we apply the closure
approximation to the RPA set. We obtain a result of
the form of our Eq. (7) with the only difference that
the term E„p,p„appears with —the summation over P
unoccupied (lying above the Fermi level); in this
"second variant" of our theory we no longer have any
apparent violation of the exclusion principle. The
two variants mentioned correspond to two different
approximations. They are discussed below in con-
nection with our numerical results.

One very serious difhculty with a numerical calcula-
tion is the k integration. In particular, it is generally
very dificult to determine the off-energy-shell propaga-
tion of the nucleon-nucleon t matrix. In the following,
we replace our t-matrix elements by their on-energy-
shell values (the intermediate-state kinetic energy of the
nucleon 0 is set equal to that of the initial state of the
same=ED). This fixing of k as equal to ko" constitutes

"k~k0 in t is somewhat arbitrary; no essential difference would
result, however, if we took k k0' or even k0' k—k0 in the t
elements involved at our high-energy Eo.

our third major approximation analogous to that of
Refs. 3 and 4—6 for the elastic nucleon-nucleus scattering.
The actual off-energy-shell propagation of t would be
generally expected to reduce somewhat the magnitude
of our correction, although the most important con-
tribution should be expected naturally from k close
to ko.

In the case of the scattering of 145-MeV neutrons
from deuterons, Everett' has found that the off-energy-
shell propagation of t matrices involved in the double-
scattering terms could be limited to an interval of
(—40, 20 MeV) of our intermediate state energy
tt'k'/2m about the incident laboratory energy t't'ko'/2m.

The nature of our nuclear form factor in the case of
C" is still more restrictive, and reduces that interval
considerably.

Recently, Nishida" has investigated the off-energy-
shell propagation of the t matrix for a simple but
"reasonable" nucleon-nucleon potential in a wide
energy range. He Ands that up to the scattering angle
of about 90 the initial energy on-shell amplitudes
almost coincide with the corresponding off-shell ampli-
tudes in a wide energy range between 30 and 150 MeV.
Obviously, the approximation is the better the higher
the incident energy. In order to estimate an upper limit
to the error of our approximation we have chosen
E=90 MeV. Actually the situation is better at 150 MeV
as for our results of Table II. Ke have exploited the
results of Fig. 6 of Ref. 15 which compares the o6-shell
amplitudes of E0=90 MeV to Ep=70 MeV and of
Eo——90 MeU to 80=110 MeU with the corresponding
on-shell amplitude of Eo——90 MeV.

We have estimated the upper limit of our error by
suppressing the effect of our nuclear form factor (this
overestimates the effect considerably). We numerically
calculate the integral J'dk over the interval D (the
solid angle 4ir and 70 MeV & t't'k'/2m & 110MeV) as

k'—toz — —to2—

ku' k'+ib—
and compare it with the corresponding one with Q= Q,
in the t elements. For h{j~k0 where the effect is the
most important we Gnd that the absolute value of the
difference between the two integrals is of only 2%.

"Y.Nishida, Nucl. Phys. 82, 385 (1966).
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Consequently, we feel that the on-shell approximation
is very probably not important in our energy range.

In order to perform the remaining k integration
it is practical to work with harmonic-oscillator wave
functions p (i) for which the Talmi transformation
can be performed. In this way, by introducing the
center-of-mass system, and the relative coordinates,
R= (r&+rp)/v2 and r= (rr —ro)/K2, respectively, we can
put all the k dependence of F into the matrix
elements of the relative coordinates only. Using the
Brody-Moshinsky transformation brackets, " we can
write

&n.t.I..[e' ' tn, t,I,)&n,t,p, ~e' ' ~n, r,I,)
=P (1 I, ; p,p, ~X'p')(I'L', m'M't X'p')(lolp, popd~xp)

X (IL; mM
i

Ij.p) ('
[ uc; X')(

i
bd; X)

X (E'L'M'
t
e'K'"i ELM) &n't'm'

i

e'o"
i nlm), (9)

where

and

&'~ac l ')=&nVX'L'; V~n.i.n.I.; ~'),

( ibd; X)=(nlEL; Xinolond4, X),

K= (kp —kp')/V2, Q'=Q —kV2, Q= (ko+kp')/V2.

Our next approximation is to suppress the k-angular
dependence of our products of t-matrix elements.
Following, e.g., Ref. 6, we replace each such element by
its value at forward angles. This approximation tends to
overestimate our second-order correction. The relative
"flatness" of the angular dependence of the nucleon-
nucleon t-matrix elements makes this Ansatz not un-
reasonable. Another procedure would be to perform the
k angular averaging of our products of t elements.

In our numerical work, we confine ourselves to small

(kp kp ) scattering angles e. In the case of deuterium,
Kverett~ 6nds that it is enough to consider for the
angle +(k,kp) the interval II—20'~& g(k, k,) ~& 0+20'.
Because of the nature of our nuclear form factor of
C", this interval is even narrower. We feel that our
angular approximation could not, in general, introduce
errors higher than a few percent. Consequently, the
only k integration remaining can be performed analyt-
ically in a closed form for each partial configuration:

dk
(n Tm'( e'o"

( nlm)
ko' —k' —(2m/k') &&o)„+ih

27r2

b ll'( —)"P i"(Il' —mm
~
le)

v2 lI

where
X(II'; 00 II 0)r~ "'""(Q), (Io)

g&,"'""(Q)—= R„.&.(r)R„&(r)j&,(Qr) e'r"rdr, (11)

kp' —k' —(2m/k') &5p),~+ib

»».»'"=p "(a,e'), (»)
where 8= g (kp, kp'). In particular,

2m
g—=%2(k

'—- -(6 ). ; l=(2l+1)"'. .

h2

Until now we have worked with to, and P elements
of de6nite s and t substates with the corresponding
summations. It is actually more practical to work with
the eo e; and ~0 ~; operators and to perform the spin
and isospin integrations after all the spatial integrations.
Some of the corresponding final expressions for the
j-j coupling shell model are presented in Appendix I.
They involve quite an amount of Racah algebra and
rather complex geometrical factors. In order to simplify
the fo11owing discussion, we prefer to consider two ex-
treme simple coupling models.

In the 6rst of these models we suppose our J~, My to
be given by the vector addition of the orbital angular
momenta of the particle-hole pairs; Ty and T3~ are
projected out as before; the spins of the particle-hole
pairs are coupled to S=0. It is then a restricted model
in which we exclude the S=1 particle-hole pairs, and we
have J~——L~. This oversimpli6cation of the physical
reality should not alter the general characteristics of
our correction effects, except for any possible polariza-
tion effects. In. the place of our F's of Eq. (7), we can
work now with the corresponding k integrals as in

« (II):
g», oo

=' I(kp, kp', cos8)

ir 3/2

Ifl r&o"= —ger — J (—)'"+'~&, .r~'p( —)"+L( ~P'P' X=Jr)('~ pp' Y=o)
2

L Lg L' l lz l'
XiL'XL'X r kL xL¹L'(g)oil/ 2/i g( min'l'(Q)

0 0 0 0 0 0

Jr (4
X I(—)"'I"L.~r*(»), (13)

I L I' (0 Mr —Mr)
~6 T, A. Qrody and M. Moshinsky, TaNes of Transformatiom Brackets (Monogra6as del Instituto de Fisica, Mexico, 1960).
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x 'I'
(t)2„p, (' "= —82r — J (—)' ' x ~ ' Q (—)L+'+'N, "(

) p); X)(' [ p»'; V)
2

$1. 1.1 I.' l li
X2L X,,X,X,'i zzL&z'zr(It)2(1) 2/1 g ~&~~vy)

(0 O O 0 0 0

X' Jf~

(15)

4-,ss'=E 4-«, s(')(~ )1

ly

zzLzz'L'(+)— Rzz. L (R)RzzL(R)jL,(ER)RgdR, (16)

and, g), is defined by Eq. (11).$„0,„)2 is related to p(&„,t)„, by a relation similar to Eq. (15).
In our numerical @rod. me shall use an approximate form of the Io; operators which is sufhcient for our computa-

tion of the parameters n, p, etc., as defined below. The meaning of this form of zp; is explained more in detail in Sec.
3. We put ]0; in the form:

zp'=~p' +zp'( (00 +0" )+zo' ' &0''0'+zo "' (0'0 +0" )&0'& +tp ('zp (r '+~0 '" '(&0 (2 )(ep 'c;)', (17)

where o;„=(2; n, n= kg Xkg('/j kp(Xkp ~. The vector n is the vector perpendicular to the (0 2) scattering plane.
Actually, in practical applications the contributions of t'") and t("') are quite small compared vrith any other.

After the summations over the spins and isospins of the particles i and 2, the entire double-scattering correction
amplitude becomes, in the case of our model (5=0) and for T= 0,

li 1.1 JZ )—= p Q &,L, (')(kp, kp', cos8)+p(,L, ( &(kg, kg', cos2&)00„) I(
—) 'I'L, 2z, '(002), (18)

LXLI 0 Mz —Mzl
+here

&=(zpi(0)[02(0)+3zpi(~)~02(~)+3zpi(~)~02(~)+9~ (~r)~ (~r)+2~ (n)~ (e)+@

4(zpi' '42 +"01 ~02
" )0

& =(zpi(0)[02(0)+(01(m)[02(0)+(01(n)~ 2(a)+z (~)~ (n)+3~ (r)~ (nr)+3t (0r)~ (r)+3~ (0q)~ (~~)+3~
]Op

Ps= 4(F01 ~02 +41 ~02 )0 ~

(19a)

(19d)

If we drop the term ppzppp in Eq. (5), pp„,t)„z('0) has to be replaced by pt), ,t),
z(0 0)+(t, p„pz(0 0). The products ()f two

z's are taken, as explained above, with the ansatz k=kp(=kp') which corresponds to the notation ( )0. To be
consistent, we now have to write the (main) term, which is first order in Z matrix (impulse approximation) in the
same model approzilnation:

4 4
(kp'I T'lko) z= 2(lkg'I &0&I-:kp)(~0)(4~)"'2 x.."'(—)"'&4

o o 0)
Xkzz"~'~'"~'~(VZE)2zzFzz0zz*(0&2)= pA("(kp, kg', cos8)+2 —"(kp, kg', cos8)op jgzzFzzzzz~((0„), (20)

where (-', kg'
j tpi )

—',kp)((rp) is the (21-averaged 101 element explicitly defined in Sec. 3.
In the following, me are not interested in the absolute values of the cross sections but. rather jn the relative con

tribution to T coming from AT. In particular, %re study the angular distributions and the order of magnitude of



N. VxN GIAI AND J. SAWICKI

the 5T' correction terms. The angular distribution of the outgoing nucleon 0' is, with an arbitrary normalization,
given by

4m Jg lg

Tr&.,) Q(T+AT)t(T+AT)= (2&0&~'+[A& &)2+Sr '2 Re g Xi
2Jr+1 Q 0 Q

X(A &0&ly/, z,,&0'*+A &'&lP& &*)P/,(cosa2) + (Ar. "Vi r,, "'"+&i & iA z "*)
lyL Ily'I y'

Ly' I y g li ty' 2 )j ly'

&&K(-)'"'&f-'(2~+1)&~ ' Pg(cos62) . (21)
0 0 0 0 0 0 I.g' I.g Jg

The actual physical situation as outlined in the Appendix
ls probably intermediate bet%Keen ouI 61st model %Kith

the restriction 5=0 and the second model in which we

assume the complete degeneracy in spin. (for an even-

even nucleus). In this model, any spin orientation is

equivalent. As for the components X~„„)'~), they are
essentially the sam. e as before; even in the case of an
RPA diagonalization for spinless nucleons, the X(„„)(~)

remain unchanged provided one confines oneself to a
simple Wigner force, and the coupling constant (well

depth) is an adjustable parameter to fit the experi-
mental energy of the level in question.

In this model one has to add to the coefficients n, P,
u„and P, of Eq. (19) the respective correction terms:

A&2= (41"'42'"'+41'"'42 "+41"42'"'

+41'"'42"+341 "42'"'+341'"'42"
+341& &42& &+3t01&" 142& )0,

gp 4(] &0)] &nl+. ] &n)[ &al)

(22a)

3. NUMERICAL CALCULATIONS
AND DISCUSSION

We perform our numerical computations on the ex-

ample of the 4.43-MeV state of C" with Jp=2+, T=Q.

TAaz.K I. The RPA eigenvector of the 2+, T=O state of
for the asymptotic model of no spin-orbit coupling; the coupling
constant of a zero-range signer force is adjusted so as to fit the
4.43-MeV energy.

(2] &nl42&n)+61 1&mr) 4(2m~ +l41&0)t02&r)+41(~l42(0)

+34 & )4 & )+3t & )4 l"i), (22c)

4(t01 "02 +41 42 )0 ~

Actually, (b T) of our second model, if calculated with

the same over-all normalization as in Eq. (18), would

correspond to the right-hand sides of Eqs. (18) and (20)
multiplied by (—V2); we drop this factor everywhere

as vie work with an arbitrary normalization.

The RPA eigenvectors of this state for both our models
(5=0 and "random spins") are obtained directly by
diagonalizing the corresponding secular matrices for a
simple zero-range Wigner force, The coupling-constant
parameter is taken as adjustable so as to fit the energy
4.43 MeV. The two model solutions are identical in
this case. The eigenvector obtained is given in Table I.
It is quite similar to what one obtains if one averages
arbitrarily over and renormalizes the corresponding
components X(„„)(f)of the RPA eigenvector obtained
by Goswami and Pal" for the complete j-j coupling.
Our corresponding Wigner force coupling constant Vo
for the "random spins" model is reasonable (~ V0~/
42rb02=1.944X3+lr—10.3 MeV, in agreement with the
value 10.2 MeV as given by Vinh Mau"), and it is
three times smaller for the 5=0 model. As in the
quoted j-j coupling RPA calculations we 6nd an im-

portant fraction of the "backvrard-going graphs, " or
the component X(,„.) &f).

In order to compute the coeflicients &2, p, n„and p„
»d (2lro'~41~ 2lro)(o, ) we have chosen the on-energy-

sheB elements of the free nucleon-nucleon scattering"
matrix M(e) corresponding to a realistic potential con-

taining a hard-core repulsive part. In particular,
Kerman et &2l.20 tabulate aH the components of M(0)
for the Gammel-Thaler potential at the nucleon labora-

tory energies of 156 and 90 MeV just appropriate to
our application. As one can see from Table III of Ref. 20
the coefficient Br (T=0,1) of the operator 00„01„is at
small scattering angles 0 numerically rather close to the
coeKcients Py and E~ of the operator a.o~g.~„and
op&0]&, respectively, w'here y and g are vectors which
form with n an orthogonal frame. To a reasonable ap-
proximation, one can work then with 82(8)=F2(8)
=Er(0) which simplifies greatly our formulas and per-
mits us to apply directly Eqs. (18), (23), and (24). In
terms of the quantities A p, 8~, P~, and E~ of Ref. 20,

(vs ')

—1.125—0.577

1P '1f
0.305
0.225

—0.199—0.146

1s '1d

0.235
0.183

'7 A. Goswami and M. Pal, Nucl. Phys. 44, 294 (1963).
'8 N. Vinh Mau, thesis, University of Paris, 1963 (unpublished).
'9 We neglect the difference bete een k0 and k0', vrhich is rather

small at 156 MeV.
"A. K. Kerman, H. McManus, and R. M. Thaler, Ann. Phys.

(N. Y.) 8, 551 (1959).



DOUBI E —SCATTF RING CORRECTIONS 1083

TABLE II. The differential cross section o (8), in the center-of-mass system, for the "C(p,p') "C* (2+ state, 4.43-MeV) reaction (in
mb/sr) for the incident proton energy= 156 MeV. The impulse-approximation results and the double-scattering corrections are given
for our two models: the model with S=O and that of "random spins. "The nucleon-nucleon potential is that of Gammel and Thaler.
Results for the variant of our theory where the term ppIppp is omitted in Eq. (5) are given in the last two lines.

t (c.m.)

0 (0), impulse
approximation

Model S=O
Model of

random spins
Double-scattering Model S=0

corrections Model of
60 (8) random spins

Double-scattering Model S=0
corrections( jo) Model of

random spins
~r(8) when p pfp p p is omitted

in Eq. (5) (model S=O)
Double-scattering corrections

(%) when ppyppp is omitted in
Eq. (5) (model S=O)

10.50'

2.923
2.118

—0.827
—0.339

—28.3
—16.0

—0.569

—19,5

15.68'

7.772
6.785

—1.419
—0.139

—18.3
—2.0

+0.146

+1.9

20.76'

10.346
10.957

+1.205
+2.858

+11.6
+26.1

+2.001

+19.3

30.54'

6.625
6.943

—1.312
—1.314

—19.8
—18.9

—0.959

—14.5

we have with Ep=F p=Bz ..

M &o' =-,'(As+32 i), M &' =-', (Bo+3Bi),
M&'l = —,'(A i—A o),

M &"'= sr (Bt—Bo) M & "&= -'(Co+3Ci)
M&""'=—,'(Ci —Co) .

The t-matrix elements are obtained from the cor-
responding M elements by multiplying them by the
normalization factor —2A'/(2~)'m. With the help of
Eqs. (19) and (22), we finally calculate the coeflicients
n, P, &r„and P, .

Another calculation was performed with M(8) for
the Yale YLAM+YLAN 3M potentials for Eo=100
MeV as tabulated by De Bouard et @It."Using the same
notations of Ref. 20, we 6nd for t elements of the first-
order term the expressions:

(1) In the case of our model with S=0 and for T=0:

(sko'[for[ sko&(ao) = — [M " +M ao ] (23)
(2~)'m

and (2) for the model of "random spins" (T=O):

(—ko'
I for I

—
ko&(&ro)

2A,"
[(M"'+M&"')+(M"+M'"')os„j. (24)

(27r)'m

The neglect of the differences between the components
8, E, and Ii corresponds to the neglect of the splitting
effects of the two-nucleon tensor force (as if we did not
have any tensor forces). In our numerical results as
given below we have arbitrarily taken B(=E=F)
~~s(B+E+F). Had we chosen only the B of Ref. 20
instead of the arithmetic mean of the three, our 6nal

"X.deBouard, B.Tatische6, A. Willis, N. Marty, C. Rolland,
and B. Geoffrion (private communication).

net double-scattering corrections would be slightly
increased. All the quantities involving the elements to;
are computed numerically from the tables of Ref. 20.

The components of our vector ~2+& are taken from
Table I; the usual harmonic-oscillator constant is
Qv=bo '=0.62 F '.

All our numerical computations have been performed
on the Univac 1107computer of the Faculte des Sciences
d'Orsay.

In Table II we give our Anal results for the two
models. The contributions to the diRerential cross
section o(8) from the impulse term and the double-
scattering corrections are tabulated in mb/sr.

The contributions quadratic in the double-scattering
corrections are generally of the same order of magnitude
as the crossed (interference) terms, and of the opposite
sign; consequently, they cancel most of the (negative)
contribution of the latter to our 6nal ha(8). Quite
similar results are obtained (not presented here) for
the variant of our theory discussed in Sec. 2, where we
do not include any Pauli principle violating component.

From Table II we see that the double-scattering cor-
rections are generally considerable. In particular, they
reduce the absolute values of o (8) at very small and at
large (&30') angles. The detailed numerical results for
our two extreme model approximations (S=O and
random spins) differ considerably; a more realistic cal-
culation based on the j-j scheme as indicated in
Appendix I could be interesting. We conclude that the
double-scattering corrections to inelastic nucleon scat-
tering are rather sensitive to the details of the nuclear
wave functions involved.

If we omit the term po~poo in Eq. (5), the absolute
values of Aa(8) are generally smaller. The corrections
ha(8) at Eo= 100 and 90 MeV are of the same order of
magnitude as those at 156 MeV. We And no appreciable
difference between the ha(8) computed with M(8) of
the Gammel-Thaler potential and the Vale phase
parameters.
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Actually, the "C nucleus most probably has a stable
strong (negative) deformation, "and any detailed RPA
(TD) calculation of the wave functions should be
based on. a deformed (Nilsson-type) scheme. " Un-
fortunately, no RPA eigenvectors of this nature are as
yet available in the literature for the 2+ states.

Our calculated absolute values of o (0) are much larger

(by about a factor of 2) than the measured values. '4 It
is known from the results of Haybron and McManus"
that the eRect of an elastic distortion on the impulse

approximation term is quite important for the absolute

values of the cross sections even at incident proton

energies as high as 150 MeV.
The distortion is relatively unimportant for the

angular distributions. Our calculations could be redone,

e.g., with a simple JWKB approximation distortion.

On the other hand, it is just our case with the term pp fppp

omitted in Eq. (5) which seems to include the first cor-

rection of the distortion in the sense of the multiple-

scattering series with undistorted (plane) waves. How-

ever, the main eRect of the distortion appears to be a
certain renormalization of the "eRective" plane waves

of the scattering nucleon; this reduces considerably the

absolute values of o.(0) as given by the first-order term,

and may reduce even more the double-scattering term,

so that the application of distorted waves in the place

of plane waves could possibly tend to reduce the ratio

Ao (0)/a (8). The convergence of the multiple-scattering

series would tend to be better in the former case.
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where the o'o' (i= —1,0,1) are the usual tensor com-
ponents of the spin operator of the projectile. The terms
6' ) and 6;( ) are obtained by regrouping the various
terms of the expression

(-&~'I &o I~)(~l &o
I ~&

+&J3I&o l~)&~'I&o I )
—

&Pl& l~&(~'I&o Ip)).

If the term porpoo is omitted in Eq. (5) the term

&
'lto lp&(J3I&o IP&

must be included. In the following we do not give ex-
plicit formulas for this case. The corresponding extra
terms f„s„s have a form similar to that of Eq. (A7).

Let us define the following quantities (averaged over
o)g):

~i(oi = V2&)oi(o) [oo(o)+3) (&)boob')
&

(&1)=—v2&] (&i[ (o)+3] («)$oo(&i)

&i(~2i = ii2([ (o)[ (~)+3( (~) ~ («) )
~i(~i~o)= ~&toi(~)i'oo(~)+3(oi(«)(oo(«i&

(A2)

bio"'= —242&t, ioit„i»&„,

~, i ~i= 2v2(], ( i] (o))

~,(~oi= 2~g&~, ioi~, i~i)

(yo(&10'2i = 2v2&) (Iri] (/i)

One then Ands

(A3)

»PE»»: ELEMENTS &no'I~zino) IW THE
CASE WHEN THE TARGET STATES
ARE DESCRIBED BY j-j COUPLING

In this case we limit ourselves to final states with
T=O; thus the isospin surrUnations are identical with
those of Sec. 2. On using the representation of the
operator to; of Eq. (19), we can write the correction to
our transition amplitude in the form:

2m
&ko'I DTlko)= —— (hi'i++( —)'oo'6 i i), (A1)

Ig2

Pocc

(A4)

A.,ss„(X,L,L,) ~, i'&[( )~~I;Pf*(—&„)+( )i+&I'i, ~i—*(„,)]

1

+6@ii & L( )~/+xI r Irf (oi )+( )1„+Ly—ory~(~ )] (A5)'
2

"A. B. Volkov, Nucl. Phys. 74, 33 (1965); H. Morinaga, Phys. Letters 21, 78 (1966); W. A. Lochstet and ~. F. Stephens, phys.
Rev. 141, 1002 (1966); B. C. Cook et al. , ibid. 143, 724 (1966); S. C. Pultz et al. , ibid. 143, 790 {]966).

2' S. G. Nilsson, J. Sawicki, and N. K. Glendenning, Nucl. Phys. 33, 239 (1962).
J. C. Jacmart, J. P. Garron, M. Riou, and C. Ruhla, in Direct Interactions and Ngclear Reaction Mechanisms, edited by

Clementel and C. Villi {Gordon and Breach Science Publishers, Inc. , New York, 1963).
"R.M. Haybron and H. McManus, Phys. Rev. 136, B1730 (1965); 140, B638 (1965); R. M. Haybron et al. , phys. Rev. Letters

12, 249 (1964).
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(y I I )—(8~6)1/2 p ( )I+jp+i„+x'+r+/+dye, (f)*&I&+/i

NN'I 'el
e'l'le

1.' I.i I- (l' li l
X(' ~."V)(

~
ppX)1f 'f.,iipil'J, gppy„g„, k~k'2

0 0 01000
I J 'J X' V

where g(Q) and h(E') are defined by Eqs. (11) and (16a) of the main text, and

Jf 1 BC 1 gQ Jy
Ip 1 lp

)({&&2( in)

gp
)v

l, «'lp l ~ Y ~ (A7)

-/p E,

Jy X Jy
+( )jr+/p+x'

Jv g ~v' ~P

(g yl) —(8irp)i/2 p y p {r)~( )$+j~+zf+//f/+L+i'+lp+4'+ip+x
NI.N'I '1.1

min'l'l1

I.' L,g I- l' /g

&&( ~p, ~)( ~p.~)pi+~f1. f.,l llipf, happ& yak
0 0 0 0 0 0

~l -Ll Jf
I-j JJ

X j g ~P' pry*(/p )h /iI ¹I'g)g min'v(q) (A'8)
0 3IIy —

Afar

I.' V .
For 6;('& one obtmns the following expressions:

g,.(~)=D,+g, (A9)

&'=2 2 L~i'"' r.~" p(pli)+~ '"i' Z(—)"~"pp,'(4)+~i'""'&:pp, 'j,
» Pocc

g.—Q g [a2(wi&Pp, p i+e/2(am)gp, p i+ir2(rirp)gp, p sj (A11)

1 lii
vp

4 . . (A12)



Equation (A12) involves 12-j symbols as defined, e.g., by Jahn and Hope. "The coeKcients C are de6ned as

C '(V'I. l l ) = —2(6~')'j'x ~ [»*(—)i-jp+' P i'+L ('!'.V)
Zl.v'L, '

I i I. (P li l
&&(!pp~)1 I'Ltl pii'i, ~p~~.q„,R4'2i22

0 0 0&000

(
I-y 32 1. 12 Jf

klgL II'L'IIL(lf )g kk'Vkkl(Q) (A13)
0 —Mf+i MI i i M—I i ——MI lp lp jp

)/ L j' g/

k —g P, l(Iglkl yl l )L( )4+L+l+XP3II'(j+}—k}k(~ ) ( )3II+Lk+V+lk+4+(j+}k}P' (j+jk} 3Ijk(—~)g (A14)

vrhere

J-, '(I.g J.,u, l,)= 36(—8~3) jx„,[}*( )"-'~»-2pi+ (!..},)

I ' Lg I F It'g

&& &!PPX)XX,'i.tltmii'i, qp'q, q.4'R"i,'i '
0 0 0 0 0 0

X(I.g 13 ft' Jg l3 X Jg lg

!
Ik [j+k kjy} [kjz

—[j+k}} &
'—kjg kjq [—j+k} [j+k})'—k IP jk k k k'

Jy 1' l 1 1 1 '/y I.g l3

~hL ¹L'IIL(~)g kk'V kkl(Q) (A 15)

Here (i,j,k) form an even permutation of (—1,0,1).The quantities I", Q', and R' are defined by

P k 4(3&k)i/mx, (»*P( )j» jjk+lP+4~+—II+L+X+}'+VI'll+Lk

L t I l' ll l )
&«!P. } )(!P.})II.X,,l, ii'J,1";~„y,.M"i, 000000)

Jf l2

tj1 JI 4 tjlg I.t l2 k} lp 1 lp l„ l„. JI
xl

}ki —M'I Mg i (0 —MI i i MII —,
'—jp ——', j; j„ .lp fl„

I.g l2

)(» l I g «ll ¹L'III(g)g kk'Vkkl(Q) P [3II j}*(~) (P 16)—

.l' I.'

Q; 4(3 k)ijmx (I}*g ( ) p;+Zj+L+V+l +'lp-+X'l+L (!p„y )(!pg)11 j i g J gp2g g, it2$2 l 3

I,' I., I. l' li lk} tji JI 12 ) li I.g lI,x-
}~' 0 0 0 Ik 0 Oj 4 kjf kjl jj 0: kjy jk kjg—) kp— — —

' Jf 4 l
'

lg I.g lg"

'i l, k& l l g whL ¹I'iVL(g)g l'kk(Qklk)y' (jktj j}k(~„) (Aig)—
-j, ~ l, - -/' I.'

kk H A Jkkhtk ~kid J HPPg, Phys. Rev. 93, 318 (1954); R. J. Ord-Smith, kMkg. 94, 1227 (1954).
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x
/2

(A18)j tVf —j kk j—t)dr Mr —(j +/e) J

where (i,j,/e) is again an even permutation of (—1,0,1), and

G, '(/ / ) — 6(8~ ) /2x, &fl* Q ( )i,+i, +je+t+t,+t +te+srs+x+x + + + s(
l
po ) )( l

po),)

Jf 1 l3 "1 l3 t2 l1 1-1 l2

j, — t, && /e /, p~ && / L ), It& N'I'NI(+)g n' 'tn (tQ)F' srf (g+k) "—
(~ ) (A19)

-j, —,
' t„- I-lp l„X- -l' I.'
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Projected Hartree-Fock Spectra of 2s-id-Shell Nuclei
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The Hartree-Fock calculations with a phenomenological internucleon residual interaction are carried out
for the 2s—1d-shell nuclei up to 'Al. The low-lying excited states of these nuclei are obtained by projecting
out good angular-momentum states from the deformed Hartree-Fock states. The energy spectra thus ob-
tained are in good agreement with the experimental results. From the study of the odd-odd nuclei, it is
found that the employed residual interaction correctly reproduces the ground-state spins of these nuclei.
The binding energies calculated from the projected ground-state energies and a naive model are in very good
agreement with the experimental binding energies.

1. INTRODUCTION

'HE complexity of shell-model calculations for
more than three nucleons prohibits any such

calculations for many-nucleon systems. For nuclei in
the 2s—1d shell, the shell-model calculations have been
carried out in the case of at the most four particles
outside the "0 core. ' Since the exact shell-model cal-
culations for many-nucleon systems are prohibitive,
attempts have been made to do the next best thing.
Redlich' showed for the erst time that the results of
shell-model calculations can be reproduced by projecting
the good angular-momentum states from an intrinsic
determinantal state. These observations of Redlich in

~ Present address: Tata Institute of Fundamental Research,
Colaba, Bombay, India.

~ T. Inone, T. Sebe, H. Hagiwara, and A. Arima, Nucl. Phys.
S9, 1 (1964); T. Kngeland and A. Kallio, ibid S9, 211 (1964). .' M. Redlich, Phys. Rev. 110, 468 (1958).

the 2s—1d shell were confirmed by Kurath and Picman, '
who showed that for nuclei in the 1p shell as well, the
projection method is a good approximation to the
configuration-mixing calculations. This success of the
projection method in obtaining shell-model wave
functions implies that there is an underlying independ-
ent-particle behavior in these wave functions. The
natural tool to study this independent-particle behavior
is the Hartree-Fock (HF) method. The recent calcula-
tions of Bassichis, Giraud, and Ripka clearly demon-
strate that one can derive the energy spectra of nuclei
in the 2s—1d shell by projecting out good angular-
momentum states from an intrinsic (HF) state com-
posed of the deformed single-particle orbitals.

Kith this success of the projection prescription, we

' D. Kurath and L. Picman, Nucl. Phys. 10, 313 (1959).
4%'. H. Bassichis, B. Giraud, and G. Ripka, Phys. Rev. Letters

13, 52 (1965).


