
~ J le u 1

M journal of experimental and theoretical physics established by E. L Nichols in 1893

SECOND SERIES, VOL. 156, NO. 4 20 APRIL 1967

Nuclear Photodisintegration in the 1s Shell: A Perturbative
Approach to the Dipole Sum Rules*

P. O. DAVEY

Department of Physics, State University College, Fredonia, New York

AND

H. S, VALK

Behlen Laboratory of Physics, University of Nebraska, Lincoln, Nebraska

(Received 8 November 1966)

The integrated and bremsstrahlung-weighted Fi photoabsorption cross sections, 0-;„t, and ob, have been
calculated for the lightest nuclei, H', H', He', and He4, within the framework of a second-order perturbation
procedure. For the purpose of comparison, two Gaussian nucleon-nucleon potentials were employed: one
containing a repulsive core and central attractive and tensor components, the other only central attractive
and tensor components. The results for 0;„t indicate that while reasonable over-all agreement with experi-
ment may be achieved with either potential, the component contributions diRer widely because of the ad-
mixture of the repulsive core. Furthermore, the results for O.b for the deuteron seem to indicate a deficiency
in the present choice of oscillator basis functions when applied to the loosely bound system. Considerable
improvement for 0.& is noted for H', He', and He', where the nuclei are more tightly bound and less extended
structures. It is found by analyzing exact and approximate third-order contributions to both the deuteron
binding energy and integrated cross section that the use of a wave function containing parameters deter-
mined by minimization of the perturbation expansion through second order is probably not acceptable,
at least for this nucleus. This is further substantiated by comparison with the binding-energy results ob-
tained from an exact numerical solution of the coupled S and D radial differential equations.

I. INTRODUCTION
' 'T is the intent of this paper to present a reasonably
' ' consistent perturbation procedure for computing via
sum rules the total integrated (o.;„&) and bremsstrahlung-
weighted (o q) electric dipole (E1) photoabsorption
cross sections for H', H', He', and He4.

The perturbative approach permits one to introduce
relatively realistic interaction operators and to obtain

I

acceptable values for the E1 cross sections. More im-

portantly, perhaps, it also possesses the advantage of
uniformity in treatment. With the use of the same pair
interaction operators and types of wave function
throughout, the method not only demonstrates that
most of the sum-rule results for the 1s shell nuclei can
be reproduced, but also permits conclusions to be drawn

regarding the relative contributions of the different
interaction components, such as the repulsive core and
tensor force, with increasing nucleon number.

The format of the present paper is as follows: Sec-
tion II develops the general perturbative. formalism to
be applied in Secs. III and IV to the alpha particle, the
trinucleon, and the deuteron. Section V is then con-

cerned with a more detailed discussion of applications
to the deuteron, while Sec. VI is devoted to a discussion

of the advantages and disadvantages of the perturba-
tion technique.

II. GENERAL PERTURBATIVE TECHNIQUE AND
INTEGRATED CROSS SECTION

The vehicle adopted for our program of calculations
is the second-order perturbation procedure devised by
Bolsterli and Feenberg' for their calculations of nuclear
binding energies in the 1s shell. This particular formula-
tion of Brillouin-Wigner perturbation theory appears
especially suitable for photoabsorption cross-section
calculations.

*Work supported in part by a grant from the National Science
Foundation.

Copyright 1967 by The American Physical Society.

' M. Bolsterli and E. Feenberg, Phys. Rev. 101, 1349 (1956).
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In this procedure, the nuclear Hamiltonian is written The parameters'"

H= (Ho'+U)+W=Ho+W
Jii ——+189.75 MeV, Jc=—58.65 MeV,

JB=—107.29 MeV
&

ro 1.55——X 10 "cm
& (5)

=[o~ Z (P"+V")+U3

1~
+ P V,;———g (q;—q;)' —U, (1)

2 A s&~

where the notation is that of Ref. 1, and the shift func-
tion U is chosen so that Woo—= (0~ W

~
0)=0.

In second order, the eigenvalue E corresponding to H
is given implicitly by the erst two terms in the Brillouin-
Wigner energy series generated by the wave function

1 Wof„
+o=—fo+Q -- +

neo E—E„

where fo may be expressed as a product of s-state
orbitals belonging to a sum of single-particle harmonic
oscillator Hamiltonians. It is 40 which forms the basis
for our perturbative approach to the photonuclear
cross sections.

In the special case of a Serber exchange potential
[,'(1 +E,;~)-V;; j, the integrated E1 cross section can
be written as'

f2~'e'h~
o(W)dW=

i

mc 3

SZ ns
X ———— +o*P V r oI' +"o&"r "(3)

6h' s t v7

where r;; is the separation vector between the ith proton
and the jth neutron, and I';;~ is the Majorana ex-
change operator. The other symbols have their usual
meaning.

The use of the corresponding wave function, Eq. (2),
in this expression gives the desired value of o-;„~. Note
that this procedure does not reintroduce those center-of-
mass excitation effects which were removed from the
perturbation in Eq. (1), since Eq. (3) contains only
relative coordinates.

The static nucleon-nucleon potentials employed are
those suggested by Goldhammer' and by Hu and
Massey. ' The explicit expression for the former potential
(hereafter referred to as potential 2) is

L='. ( —' )(+ ' )
+i'o(3+e' e )(1—~' ~ )3o """'"+Js[o(1—~' ~ )j

X(roo/ro')[e" n e"n;, ', u; e,]e ""*~""o'. (4—)—

' M. L. Rustgi and J. S. Levinger, Phys. Rev. 106, 530 (1957).' P. Goldhammer, Phys. Rev. 116, 676 (1959).
4 Y. Hu and H. S. W. Massey, Proc. Roy. Soc. (London) A196,

135 {1949).

r =ro/+8

where the parameters

J=—29 49 MeV Js = —52.20 MeV,
and

r0=2.18&(10 "cm

(7)

were determined to fit the binding energy and quadru-
pole moment of the deuteron.

Following Bolsterli and Feenberg, ' we express the
matrix elements in terms of the following notation:

—A(oh= E—Eo,
A~o= G(g —1),

p = gA(dA ~

~o—go/r

r "%o'——a'g '
il =1+1/2n'

a'= i'/moi,

ro' ——(2h/duo) (g—1),
I—e 4I"

po —go/ro

r . .o/r o —pop .o

f = 1+1/2P'.

(8)

The explicit numerical values of G, Ace, and 8 are
listed in Appendix A for each potential. It will not be
necessary to distinguish the parameters used in the two
separate potentials since the appearance of P or f' iden-
tifies potential A. Both potentials, with the exception
of the core term in A, have a Serber exchange mixture.
The repulsive-core part of A is assumed to have no ex-
change character and will not explicitly appear in
Eq. (3). However, the core does make significant con-
tributions to the perturbed ground-state wave function
+0, and therefore will give rise to non-negligible cross
terms in the final expressions.

Further simplification of the potentials can be
achieved by recognizing that the space exchange

' Note that this result differs slightly from the value of r0 quoted
in Ref. 3; we hnd, however, that the value above more nearly
reproduces the binding energies listed in that reference.' The usefulness of such core terms in structural calculations
has been emphasized by Y. R. Waghmare, Phys. Rev. 136, 81261
(1964).

have been adjusted to give an adequate reproduction
of the stationary properties of the 1s shell nuclei when
used in conjunction with the second-order perturbation
formalism of Eqs. (1) and (2). Potential A has the
advantage of a repulsive. -core term which is soft enough
to exhibit the structural features without endangering
the perturbation expansion. '

The Hu-Massey potential (hereafter referred to as
potential 8) is given by

V;,=J[—,', (1—e; e)(3+~; ~)+—,
'

(o3+ e" u)

X(1—~,"~,)5e """"+Js'[4i(1 ~, —~~)j
X[e; n;,e, n,, ', e"; e,—]e—"'~""" (6)
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operator I';;, when applied to any pair of particles i, j
in the same space state, simply yields the value +1 in
the matrix element. Thus, for the is shell nuclei,
assuming a completely space-symmetric wave function,

2 (1+8;,~)= 1, and potentials A and 8 reduce to

V""=Jee &"*~'+Jee ~'2'~'+Jensq 'S;,e—o'2'1' (9)

(10)V;P= Je "'~'+Je'S; e ~"'~'

An additional substitution,

E"Ao)

Js=
t —1

III. El INTEGRATED CROSS SECTIONS

A. The Alpha Particle

is convenient in order to avoid the use of the rather
large numbers associated with the well depths (J's)
in subsequent numerical evaluations. The numerical
values of the E's for both potentials may be found in
Appendix A.

The evaluation of (13) through second order leads to

SS0'pQ

o, (Hes)=-
6E2h2

4 " (Q;,,' V;;q;1')o 1V o

X (P V;,q; )oo+2P, (14)
1 1 ~so E—E„

where

4

W=Q V;;—M—U and M=x'hop Q q1 '.
i(j' l&m

Employing the techniques of Ref. 1, we arrive at

1ÃrpC
~.*(He')= — (Z V;;q; )oo

6Ã'h'

—2 e"&E ~ dX((g V;;q;,')e "~"W)pp . (15)
Having defined our problem and indicated the

methods to be used for its solution, we now consider the
explicit evaluation of o; 1, defined by Eq. (3), for the
alpha particle. In this case,

s I 2

o;„,(He') = o p+o,„(He'),

Where op 22rsesh/rr——SC= 59 73 MeV, a. nd

moo 4

trex(He4) = —= — %o* Q V,,r, 'J'; hodr . '

6h'

This expression may be simplified by noting .that
Po' may be replaced by -,'P, &,' (all pairs) since only
four of the six pairs of nucleons in the alpha particle are
rs-p pairs. However, since the operator os(1—~; ~,)S,;
has the effect of selecting only 22-P pairs, it is necessary
that we insert a compensatory factor of 2 in the tensor

(13) terms. With these substitutions, and the use of potential
A, we find that

2npMas
t"(He') = — (Cuqu') oo

—2 e"~ 'L(Cuqu'eRu) op+ (Cisqis'eC12) po+ 2 ((Su'quseSu')) po

3fX l

+4(Cuqu eR12)oo+4(Cuqu eC12) oo
—s ((Su'qu eSis')) oo+(Cisqu eR24) pp+(Cisqis eC24) pp

Here,
C;;=J~e-"&'~', R;;= I~g-~'"~',

(C12q12 e~)oo—Uoo(C12qls e)pp]dX . (16)

~ '=Is~' 'S "e-~'~'~'/l

e=e "~"=expL—
& P (p 2+q;2)],

and the double parentheses on the tensor terms indicate
that while the number of such terms has been counted
and the spin and isospin averages have been determined,
no angular or spatial integration has yet been performed.

The choice of

1'= sr-sg k(ms+222+222+242)

as the radial form of the alpha particle s-state zero-order
function makes the calculation (16) straightforward.

Here, it is convenient to make use of the integral trans-
forms given in Appendix B.

The integrals in each case are most directly cal-
culated by performing a binomial expansion and inte-
grating termwise. Numerical results are tabulated in
Appendix C. Substituting these into Kq. (16), we find
that o.„"(He')=47.18 MeV mb, (18)

the first-order contribution being 27.69 MeV mb and
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TABLE I. Contributions to 0-;. t(He').

Type of
contribution

Nonexchange
1st-order central
2nd-order central
Total central
Total tensor
Total

Potential A
IEq (4)j
(MeV mb)

59.7
27.7—0.3
27;4
19.8

106.9

that from second-order 19.49 MeV mb. Thus

o;„3~(He4) = 106.9 MeV mb,

Potential 8
Fq (6)j
(MeV mb)

59.7
33.9

—0.7
33.2
13.0

105.9

(19)

3. The Trinucleon

The procedure adopted in the previous section may
be applied to the three-nucleon system. ' The calcula-
tion differs only in that (1) the sum appearing in Eq. (3)
now includes two n Ppairs -and (2) the wave function
is altered. In this case, the exchange contribution to the
integrated cross section becomes

O.pm
o,„(T)= ——+0*+ (U,,r,,')+pa'r,

6It, '
(22)

thus pushed out to large radial distances where the
r;, ' factor in the expression for the integrated cross
section acts to further amplify its eGect.

in agreement with the value reported in Ref. 7 and not
inconsistent with the experimental result of Gorbunov
and Spiridonov. '

The computation of the matrix elements for potential
8 is analogous to that for potential A, except that the
repulsive-core contributions are absent.

For potential 8, the corresponding results are found
to,be

where o-p has the constant value previously given and
the i and. j again refer to protons and neutrons, respec-
tively. Expanding (22) in the manner indicated above,
we find

0'APSO

o'„-(T)=— (p U,3q; )00
6h'~V'

o e(He4) =46.20 MeV mb, (20)

where the first- and second-order contributions are
33.93 and 12.27 MeV mb, respectively; and

where

—2 e"'E '[(Q U;, q ')eW]00D. , (23)

o" a(He4) =105.9 MeV mb.

As can be observed from Table I, showing individual
COmpOnent COntributiOnS tO o;„3"(He') and o-;„p(He4),
the repulsive core contributes little directly in com-
parison to its role in enhancing the tensor contribution.
That the addition of a soft repulsive core has such a
relatively large effect on the tensor contribution results
from the fact that the tensor interaction in potential A
is long range in character. The region of attraction is

3 3

W=p U,,—M —U, e=e "~', and M=03203 p qi '.
i(j' 1&m

The further expansion of (23) can again be consider-
ably simplified by noting that +, ,3 may be replaced
by -', P,&,

3 (all pairs). As before, the same argument
does not apply to the tensor terms, since the corre-
sponding operator already selects only n ppairs. -

With this simplification, Eq. (23) becomes

Kp1SC
o..a(T) = — (C12g12') 00

—2
3It'E'

'[(C12$12 e13'.12)00+ (C12$12 ec12)00+ ((5'12 f12 e~12 ))00

+2(+12/12 e+13)00+ 2%12/12 eC13)00 2((512 $12 e513 ))00 (C12g12 elf )00 +00(+12/12 e) 00]dl~ (24)

where spin and isospin averages have been taken into
account. A brief discussion of the evaluation of the spin
and isospin sums is given in Appendix C.

The radial form for the trinucleon s-state zero-order
function is given by

2/4e k(01 +02 +03 ) (25)

The determination of the matrix elements then
proceeds in the same fashion as that for the alpha
particle, with the exception that e~&~ U)dh becomes

. 7 P. Goldhammer and H. S. Valk, Phys. Rev. 127, 945 (1962).
A. Gorbunov and V. Spiridonov, Zh; Eksperim. i Teor. Fiz. 33,

21 (1957); 34, 862, (1958);34, 866 (1958) LEnglish transls, : Soviet
Phys. —JETP 6, 21 (1958);7, 596 (1958);7, 600 (1958)j.

—(d24/2A03)243 ' " ' for the trinucleon, since Hp' now
has the eigenvalue &Ace.

Substituting the results displayed in Appendices A
and C into Eq. (24), we find that

o, ~(T)=25.20 MeV mb, (26)

where the first-order contribution is 12.10 MeV mb and
second order is 13.10 MeV mb. Thus

o;„,"(T)= 65.0 MeV mb. (27)

For potential 8, the corresponding results are given

o ~(T)= 24.58 MeV mb, (28)

P. O. Davey and B. S. Valk, Phys. Letters 7, 155- (1963).
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where the erst- and second-order contributions are
16.68 and 7.90 MeV mb, respectively; and

o;„P(T)=64.4 MeV mb, (29) Type of
contribution

Potential A
LEq (4)3
(MeVmb)

TAnLE H. Contributions to 0; q(H', He').

Potential B
(Eq (6)3
(MeV mb)

a result only slightly diferent from that predicted by
potential A.

While it is perhaps somewhat early to assess the merit
of these results, they do appear consistent with experi-
mental data. ""The most recent results of Fetisov
et at."yield the value of 0-;„&=62+6MeV mb, in quite
good agreement with Eqs. (27) and (29).

A more detailed breakdown of the contributions to
o;„2"(T) as in Table II again shows the indirect effect
of the repulsive core in enhancing the exchange con-
tribution to the cross section. Here the direct core terms
contribute —1..3 MeV mb, whereas the central attrac-
tive and tensor contributions are 13.3 and 13.2 MeV mb,
respectively. Furthermore it is apparent from the
relative smallness of the total central contributions in
second order (—0.1 MeV mb) that it is the tensor con-
tribution (13.2 MeV mb) which is most responsive to the
presence of the core.

Non exchange
1st-order central
2nd-order central
Total central
Total tensor
Total

39.8
12.1

—0.1
12.0
13.2
65.0

39.8
16.7

—0.5
16.2
84

64.4

C. The Deuteron

Inserting the wave function given by Eq. (2) into
Eq. (30), and including the 12=0 term, we find for the
exchange contribution

We now consider the explicit evaluation of the
integrated cross section defined by Eq. (3) for the
deuteron. In this case, Eq. (3) becomes

o;sq(H )=oo(2 —22211'/6& f +0*(V12q712 )4'odrj ~ (30)

,nba' ~ (v„q„'),„v„ (v„q„'),„qq„, (v„q„'),„q,„qq„,

)qr.x(H') = — (V12I712') oo+2
6I 2E~ n=p jV jV„ jV jV

which, after substitution of the components of potential A, becomes

(I 12I712 )00

(Voo—Moo —Lroo), (31)
gp

0 pSSC
00

qre. (H ) (C12g12 )00 2 o"' '[(C12Iq12 o~12)00+ (~12It12 o( 12)00+ (+12 IIqt2 &~12 ) oojd)q
6It'S'

2 2
+ (C12$12 )00[(~12)00+ (( 12)ooj+ [(C12$12 ~)00 (C12$12 )oo~ooj ~ (32)

8AM (S+ 2) a

Eq. (34) leads to a total integrated cross section of

o;„,"(H') =44.0 MeV mb.

Here we have used the fact that 3f„p vanishes unless
n=0 or 2.

For the deuteron, the zero-order radial function is
taken to be

(35)

it = qr-2~so-2(m'+02')

Again the evaluation of the individual matrix ele-
ments follows in the same manner as for the two-body
alpha-particle terms and need not be pursued here;
instead we refer to the list in Appendix C.

The result for potential A is

(36)o;„qn(H2) =43.0 MeV mb

o ~(H2) =13.17 MeV mb, (37)

where the first- and second-order exchange contribu-
tions are now 7.64 and 5.53 MeV mb, respectively.

The values of the integrated E1 cross section for
both potentials turn out to be larger than the value
(39.7 MeV mb) obtained by measuring the area under a
plot of o.(W) versus W using the available experimental
data. ""However, we should not expect exceptional

o.. A(H2) =14.13 MeV mb. (34)

Here the first-order exchange contribution amounts to
5.00 MeV mb, while the second order is 8.83 MeV mb.
When combined with the nonexchange contribution,

"J.R. Stewart, R. C. Morrison, and J. S. O' Connell, Phys.
Rev. 138, 8372 (1965)."V. N. Fetisov, A. N. Gorbunov, and A, T. Varfolomeev,
Nuol, Phys. 71, 305 (t965),

"J.S. Levinger, 1VNclear Photo-Disintegration (Oxford Univer-
sity Press, London, 1960).

"M. J. Rediger and H. Neumann (private communication).

The calculation with potential 8 is quickly accom-
(33) plished from Eq. (32) by setting R» ——0 and substitut-

ing the appropriate tensor operator. We find
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Type of
contribution

Nonexchange
1st-order central
2nd-order central
Total central
Total tensor
Total

Potential A
LE1t 14))
(MeV mb)

29,9
5.3—0.3
5.0
9 $

44.0

TABLE III. Contributions to cr;„t(H').

Potential J3
LEa 16)3
(MeV mb)

29.9
7.6—0.5
7,1
6.0

43.0

radii of nuclei and the Ei bremsstrahlung-weighted
cross section 0 b. The importance of this relation lies in
the fact that the rms radii can be determined with quite
reasonable precision by an analysis of the nuclear charge
scattering of high-energy electrons, thus possibly pro-
viding an independent measure of O. b.

Under the assumption that the nuclear ground-state
wave function is fully spatially symmetric, Foldy" has
shown that ob is simply related to the charge radius
through the equation

agreement here, for, as Bolsterli and Feenberg' point
out, the zero-order approximation to the wave function

t Eq. (33)] is poorest for the deuteron. The oscillator
potential is not a good description for a system where
the constituent nucleons spend an appreciable amount
of time far from each other. We therefore have little
reason to expect better values than have been found
with either potential using the present method. More-
over, as will be seen, other considerations seem to show
that the third-order contributions to the binding energy,
at least for the deuteron with potential A, cannot be
disregarded and therefore the use of parameters deter-
mined by minimization only through second order
appears not to be entirely justihed.

It is interesting to note that for potential A, the
direct repulsive-core terms help to decrease the exchange
cross section, contributing —0.4 MeV mb, as compared
to the total central attractive and tensor contributions
of +5.4 and 9.1 MeV mb, respectively (see Table III).
Because of the smallness of the second-order attractive
term (+0.1 MeV mb), it seems that the tensor force
again overcompensates for the presence of the core.

4~2 e2 )yg
0 b

—— — (R,'—R„'),
3 Ac A —1

(38)

42r2 e2) EZ
eh= —

I
(R').

3 held —1
(39)

To evaluate 0 b, then, we need only compute the mean-
square radius for the nucleus under consideration and
multiply the result by the constant given in Eq. (39).

The mean-square radius of a nucleus consisting of A

point nucleons in terms of the expectation value of the
square of the nucleon separation distance is given by

where E, is the rms radius of the charge distribution for
the nucleus and E.„is the rms charge radius of the pro-
ton; both R, and R„ in Eq. (38) are measurable by
electron-scattering experiments. Assuming that only the
protons in a nucleus are responsible for the charge dis-
tribution, it is often convenient to express (R,'—R„')
in (38) in terms of the equivalent quantity (R'), where
E.' is the mean-square radius of a nucleus containing
point nucleons. Thus

IV. THE BREMSSTRAHLUNG-WEIGHTED
CROSS SECTION

A —1
(R'(~))= ( ').

2A
(40)

It has been pointed out" that there exists a close con-
nection between the root-mean-square (rms) charge The mean-square radius therefore becomes

A —1 "IVof IV0„*$ * ~ Wp f
(R2(~))= 14*;2244~+2 A* 2Z — dr+ 2 — ( ') 2

2AE2 ngO P—P„ neo B—E„~goB—E
(41)

In terms of quantities previously employed, the mean-square radius of the deuteron is

(R'(H')) = (q»') «—
4iV2 2%2

(q12 )00V00
e 1 1(q» eV)00K+ + [(q12 M)00 (q12 )00M00]

o +—+0

e"&e e"' 1& U1 ((Ve'q'12 eV) op 2(Ve'q»'—eM) pp+ (Me'q»'eM) oo

—2(Ve'q12'eU)oo+(Ue'q12'eU)pp+2(Me q12 U)00)d)1d)1' ~ (42)

Since each matrix element required in Eq. (42) can not give them again. We find the mean-square radius

be reduced to an integral of the type previously en- using potential A and including all terms of (42) to be
countered in the determination of 0; &(H2), we vill R ~ i~~2 i~ i~ ~~ 2 I49 F2

~ (43)g~'(H')) = 2.49 F'.
"L.L. I'oldy, Phys. Rev. 10?, 1303 (1957). Omitting the second-order (double integral) term in
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Eq. (42) for potential 8, we find

(R~'(H')) = 2.51 F'. (44)

Substituting the values obtained in Eqs. (43) and (44)
into Eq. (39) then yields

o s"(H') =2.39 mb,

o P(H') =2.41 mb.

(45)

(46)

"R.Herman and R. Hofstadter, High-Energy Electron Scatter-
ing Tables (Stanford University Press, Stanford, California, 1960)."J.A. McIntyre and S. Dhar, Phys. Rev. 106, 1074 (1957).

"This value is, in fact, the same as that used by J.N. Pappade-
mos (Nucl. Phys. 42, 122 (1963)] in his calculation of the radius
and Coulomb energy of He', and is not too far from the result of
I N. Hand, D. G. Miller, and R. Wilson LRev. Mod. Phys. 35,
335 (1963)j.

These values of the bremsstrahlung-weighted cross
section are clearly in disagreement with the experi-
mental result' ' of 3.8 mb obtained from the plots of
o(W) versus W. This discrepancy, of course, reflects
the small rms radii of the deuteron predicted by our
procedure and potentials.

The critical role played here by the nuclear mean-
square radius (R') requires that we also compare the
above results with those derived from electron scat-
tering. ""Unfortunately, the quantity measured in the
scattering experiments is the square of the charge radius
R,' and not the nuclear radius. The fact that the latter
enters as the difference Lcompare Eqs. (38) and (39)j of
the squares of two independently measured quantities
permits considerable latitude in values of os(Hs). In
this regard it should be noted that very few elastic
electron-scattering measurements with deuterium tar-
gets have been made in the low momentum transfer
(or model-independent) region; therefore R s(H') must
be considered a derived quantity dependent on suitable
deuteron wave functions. "

If we accept the deuteron rms charge radius of
2.17&0.05 F, then the value 0.85 F for the rms proton
charge radius seems most consistent with the experi-
mental photonuclear calculation. Since there appears
little a priori reason for the experimental photonuclear
results to differ from those derived from the electron
scattering, we shall adopt the 0.85 F value in the sub-
sequent calculations. "The need for a precise low mo-
mentum transfer electron-scattering measurement for
the deuteron is, however, apparent, and the model
dependence cited above should be kept in mind when
trying to make detailed comparisons.

Before proceeding further, it is desirable to call atten-
tion to an unresolved question concerning the use of the
normalization constant E' in such expressions as Eqs.
(14), (23), (31), and (42). Since the value of E entering
into E' was determined by minimization only through
second order in 5', it may be argued that it is not strictly
correct to retain the normalization E' which is of

"second order" in the potentials if we do not retain
terms of corresponding order in the expressions for the
mean-square radius.

This situation is by no means clear, however, since it
will be recalled that the Brillouin-Wigner energy series
is able to achieve much of its convergence by "pulling
down" or "mixing in" higher orders in the usual Ray-
leigh-Schrodinger expansion. Rather than attempt to
resolve these questions here, we shall just adopt the
prescription of neglecting E' when the "second-order"
terms (in the potentials W and V) are not computed, a
procedure which, although reasonable, is still open to
question. Some measure of the effect of this rule of
thumb can be determined for the deuteron with poten-
tial A, since all terms have been calculated in that case.
As we noted above, (R"'(H'))=249 F' when the
double-integral terms in Eq. (44) and the normalization
1P are retained. If both are dropped, (R~'(Hs)) = 2.46
fm', a change slightly greater than 1%. Since the con-
vergence of the series in S' is usually least rapid for such
a loosely bound system, we would expect this to be the
worst case.

Applying this prescription, we arrive at the revised
values

(R.s(H')) =2.46 F',
(Rs'(Hs)) = 2.66 F' (4&)

o s"(H') = 2.36 mb,

os'(H') =2.55 mb.

W2g2h —
my~ ~)»2

osA. , B(H2)—
6Mc ., ss hs

(49)

in which m is the nucleon mass, e; is the deuteron bind-
ing energy predicted by the potential i, and ro&' is the
corresponding triplet effective range, and the other
symbols retain their usual meani. ng. If in the approxima-
tion (49) we now insert the values of e; and re&'obtained
by a numerical solution of the coupled differential equa-

'8 J. S. I.evinger, Phys. Rev. 97, 970 (1955).

While these values reduce the discrepancy with experi-
ment, they still fall short of good agreement. Although
such a disagreement is disturbing, it is not unduly so,
for, as alluded to earlier, the discrepancy seems to have
its origin in the inapplicability of the second-order
perturbation procedure when applied to a loosely bound
system. Since both potentials A and 8 underbind, and
it is reasonable to suppose that an underbound system
should, if anything, yield too large an rms radius, the
di%culty may be expected to lie primarily with the
use of the restricted perturbation series. To further
strengthen this point of view, it is instructive to employ
the effective-range, model-independent estimate of 0.~
due to Levinger, "
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tions (see Sec. VI), we 6nd

ob~(H2) =4.10 mb,

0 bs(H2) =3.77 mb,

in fairly good agreement with experiment. The cor-
responding radii are

(R„'(H'))'~2= 2.07 F,
(Rs2(H2))'~2=1. 98 F.

Thus we anticipate that the deuteron systems A
and 8, if solved exactly, would be associated with rms
radii which do not deviate appreciably from that of our
actual physical system. The sources of this deviation
and their relation to the binding energies calculated by
the second-order-perturbation procedure will be dis-
cussed in more detail in Sec. VI.

Before going on with the calculation of the analogous
cross sections for the trinucleon and alpha particle, it is
desirable to devote a few remarks to the suitability of
the second-order procedure as applied to more complex
systems. In view of the comments in the preceding
paragraph, we are led to expect that the results for H',
He', and He4 will turn out to be in much better agree-
ment with experiment than they were for the deuteron.
The correctness of this statement relies on the fact that
the physical system is more compact and more tightly
bound, so that the harmonic oscillator provides a more
acceptable description of the potential seen by the in-

dividual nucleons. This, in turn, means that the higher
orders of the perturbation expansion should become
relatively less important. In other words, there will be a
more rapid convergence of the series, and truncation at
second order should not be too misleading as regards
either the binding energy or the photonuclear cross sec-
tions. Insofar as the experimental data are available,
we shall find that the above expectations are verified.

The problem of computing the E1 bremsstrahlung-
weighted cross section for the three-body system con-
sists in determining the value of (R'(T)) as defined by
Eq. (41). Writing out the expectation values of r122

explicitly, we find

(T)) $0 r12VOd&+ 403$' 3iV'

IUof 1 Wo*f*
X p dr+ — p (r12')

ngp F—F 3Ã2 n~p E—E„

fication and the suppression of $2, Eq. (50) becomes

The matrix elements needed in Eq. (51) are so similar to
those previously evaluated for 0; b(T) that further dis-
cussion seems unnecessary. Ke find the following results
for potentials A and 8:

(R~2(T) )= 2.45 F', (52)

(Rs2(T))= 2.49 F'. (53)

The Ej bremsstrahlung-weighted cross sections for
the two potentials follow from Eq. (39). The values are

(rb" (T)= 2.36 mb,

0 bs(T) = 2.40 mb .

(54)

(55)

It will be observed that both of these numbers are
within 7% of the experimental result

[O.b(He') = 2.53+0.19 mb]

reported by Fetisov, Gorbunov, and Varfolomeev. "
Furthermore, they also lie between the range of results

0 b(H') =2.08&0.16 mb,

o b(He') = 2.66&0.17 rnb,

(56)

(57)

obtained by substituting values of the charge radii from
electron-scattering data" into Eq. (38). While the dis-

parity in experimental values precludes any more sensi-

tive test of the perturbative technique at this time, it is
evident that the predicted values, Eqs. (54) and (55),
are not inconsistent with the data and in relatively
better agreement than was true for the deuteron.
Unfortunately, the source of the difference in the charge
radii for the mirror system is not well understood.
Indeed, if charge symmetry is preserved, O.b(H') should
have the same value as 0 b(He'). ""This, combined with
the fact that"

(58)

28
(R'(T))= a2(q122) oo— eb's '(q122eU)bbdX

p

(f12 )00U00 1
+ +

E—Ep E—Ep—2')
X [($12 3f) oo (1t12')oo~oo] ~ (51)

is satisfied for the triton regardless of spatial-symmetry
considerations, " leads to an apparent contradiction

O'T .«g p
'

between the electron-scattering result, Eq. (56), and

Once again, we neglect the second-order contribution
in Eq. (50), since this contribution was found to be
small for the deuteron and, in line with our earlier com-
ments, we therefore expect a negligible contribution
to the trinculeon mean-square radius. With this modi-

"H. Collard, R. Hofstadter, E. B.Hughes, A. Johansson, M. R.
Yearian, R. B. Day, and R. T. Wagner, Phys. Rev. 138, B57
(1965).

'0 P. O. Davey and H. S. Valk, Phys. Letters 7, 335 (1963)."R. Bosch, J. Lang, R. Muller, and W. Wolfli, Helv. Phys.
Acta 38, 753 (1965)."J.S. Levinger and H. A. Bethe, Phys. Rev. 78, 115 (1950).
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TABLE Dl . Comparison of results derived in this paper with experiment. o& =bremsstrahlung-weighted cross
section; (R,3)'13=rms charge radius; WH=harmonic mean energy.

Nucleus

H'

H', He'

He4

Potential A

Source

Potential B
e scattering expt. '
Photo disintegration expt, d

Potential A
Potential B
e scattering expt. '

Photodisintegration expt. (He') f

Potential A
Potential B
e scattering expt. g

Photodisintegration exp t."

of, (mb)

2.36a
2.39b
2.55
3.82+0.21
3.8

2.36
2.40
H' —2.0~0.16
He' —2.66~0.17
2.53+0.19

2.61
2.70
2.48&0.17
2.4 ~0.15

(R,')& (fm)

1.78
1.79
1.84
2.17+0.05
2.11

1.78
1.79
H' —1.70+0.05
He' —1.87&0.05
1.81+0.06

1.66
1.68
1.63%0.04
1.61~0.04

8'yg (MeV)

18.6
18.4
16.9

~ ~ ~

10.4

27.5
26.8

~ ~ ~

24.5

41.0
39.2

~ ~ ~

39.6

a Second-order terms and ¹ neglected.
d References 12, 13. e Reference 19.

b Second-order terms and ¹ included.
& Reference 11. & Reference 23.

' References 15 and 16."Reference 2.

the photonuclear value of oo(He3). Whether this con-
tradiction in fact remains, and, if so, whether it has its
source in a breakdown of charge symmetry, or a failure
of Siegert's theorem, awaits further experimental and
theoretical study. In particular, a precise measurement
of 0 b(H3) would be helpful in clarifying this problem.

Expanding Eq. (41) for the alpha particle and
neglecting Ã' yields

«'(He'))= 4 ')oo —2
8

e"" ~'[(qts'«u) oo

+(f12 ec12)00+4(f12 sR23)00+4(gl2 «23) 00

+(f12 sR34)00+(f12 «34)00 (f12 s~)00

+00(f12 e)00]d& ~ (69)

Evaluating (59) we find

(R„'(He4))= 2.04 F', (60)

Hence
(Rs'(He')) = 2.11 F'

03"(He4) =2.61 mb,

0 311(He4) = 2.70 mb.

(61)

(62)

(63)

~ H. Frank, D. Haas, and H. Pzange, Phys. Letters 19, 391
(1965); 19, 719 (1966).

~ R. F.Frosch, R. E.Rand, J.S.McCarthy, and M. R. Yearian,
Phys. Rev. (to be published).

For potential A, these results differ by a small amount
from those reported in Ref. 7 due to a slight change in
the computed value of the mean-square radius.

These values of the bremsstrahlung-weighted cross
section are in not unsatisfactory agreement with the
experimental result of 2.4+0.15 mb found by Gorbunov
and Spiridonov. ' Moreover, acceptable agreement is
obtained with the value 03(He4) =2.48&0.17, derived
from recent electron-scattering data. "'4 The results
derived in this section for the bremsstrahlung-weighted
cross section o 3, the rms charge radius (R,2)'12, and the

harmonic mean energy W~, as well as those predicted
from electron-scattering and photodisintegration ex-
periments, are sunnnarized in Table IV. Here it is seen
that the experimental and theoretical values are not in-
consistent with each other except in the case of the
deuteron, where, for the reasons mentioned earlier, we
should not expect agreement.

Wp„W„„W„p
(64)63=

n, mgo (E E„)(E E)— —

in the energy expansion

Wp Wp
E Eo Bha)=-———

ngp E—g„
~onWam~ o

(65)
o,mmo (E-g„)(g-g„)

"The estimate follows from the assumption that each suc-
cessive term decreases in the constant ratio e3/@.

V. FURTHER ANALYSIS OF DEUTERON
CALCULATIONS

A. Third-Order Binding-Energy Estimates

A measure of the effectiveness of any second-order
perturbation scheme like the above can be obtained by
examining the magnitude of the third-order term in the
expansion. If the third-order term in the binding energy
(say 03) is small compared to second order (02), we can
be satisied that most of the contribution has been
obtained [the remainder being of order of magnitude
03/(1 —03/02)]."Unfortunately, complete calculation of
a third-order contribution is suSciently extensive to
warrant an examination of the possibility of using
approximating procedures. Therefore, we 6rst look at
several rough estimates for the third-order contributions
and then compare with the exact third-order term to
ascertain their possible validity. In the present context,
the third-order contribution is given by the term
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Following a method adopted by Feingold, "we first
determine an approximate mean energy (p) for the spec-
trum of states E such that the second-order contribu-
tion (—8Aoo) is given by the relation

(73)

(W') po/y'(Aa)) '. (74)

manner as X, we find

y' = (W') po/(Ã' —1)(Are)'

(W') pp—8AM = = &2 ~ (66)
Thus making use of the expansion of 5"' and t/I/" given
above and the results given in Appendix D, we now
arrive at the following values:

An expansion of I/I/", where 8'= V—M —U, leads to the
result that

—5(A(a) 'X = (V') pp+ (M') pp

—2(VM)oo —(Voo—Moo)', (67)

where X= (E—p)/hco. We then determine X from

Eq. (67) for the potential under consideration, and

assume that
(6S)(W') pp/X'(Ace) '.

Once again expanding, we find

The expansion, as well as the numerical values of the
matrix elements, is given in Appendix D for both poten-

tials A and B. A direct substitution of the required

values into Eqs. (67) and (69) gives the following

results:

potential A: X= —7.077; 3rd-order H' B.E. est.
=+0.90 MeV. (70)

potential 8: X= —7.966' 3rd-order H' B.K. est.
=+0.37 MeV. (71)

To summarize, the use of an average energy denomi-

nator to evaluate third order indicates that for potential

A the magnitude of this contribution is 15.8% of second

order, while for potential 8 its magnitude is 10.5%.
Although on the basis of these preliminary and quite

crude approximations, it appears that the third-order

contribution is larger than desirable, it is also clear that
further verification of the results is required.

In addition to the above technique for making an

estimate, an alternative simple procedure is suggested.

The approximate evaluation of the mean energy e of

the spectrum of states E may also be accomplished by
noting that the normalization can be written as

ill' —1= (W') oo/(~ —p) '.

Substituting y=(E—p)/Aoo into Eq. (72), in the same

~' A. M. Feingold Phys. Rev. 101 258 {1956).

3rd order B.E. est.= f (V')oo —(M')oo+3(M'V) oo

X'(hoo)'

—3(MV') oo+2(Voo —Moo)' —3(Voo—Moo)

X I (VP) oo
—2(VM) oo+ (MP) oo) ) (69)

potential A: ye=32.914' 3rd-order H' B.E. est.
=+1.37 MeV, (75)

potential 8: y'=36.378 3rd-order O' B E. est.
=+0.65 MeV. (76)

We note that these estimates are essentially in agree-
ment with those given in Eqs. (70) and (71). However,
since the product of energy denominators in e3 is of a
different character from those encountered in either
S'—I or ~2, there still exists a question about whether
the magnitude of the mean energies used in these ap-
proximations is significant. In order to substantiate their
validity, at least to some degree, it is necessary to com-
pute ea exactly. Before proceeding to this task, however,
we first consider third-order estimates to 0-; ~.

B. e; ~ Third-Order Estimates

An application of Eq. (3) to the deuteron yields the
result

M
o';~g(H') = 30 1———— 4'p*(vgprgp')4'pdr, (77)

3h2

where 4o is given by Eq. (2) and the numerical constant
carries the units of MeV mb. Here we see that expand-
ing the integrand gives the second-order contribution
tO Ging aS

20M (Vgprgp') p„W„o

S'h' ~o (E E„)—
We now determine the average energy denominator in

a manner analogous to that described earlier for the
binding-energy estimates, by requiring that

2nd-order cross section

or

20M LVgpr~po(V —M—U))op

(E p)—
20

LV q "(v—M —U))„,
zS'(ha)) '

10
L(V—M—U) Vugu'(V —M—U))op. (79)

zz(hoo) P-

where z = (E—i)/Aoo and rqp'= u'pip'= (A/M~) q,p'. Then
the desired approximation to third order becomes

3rd-order o; g(H') est.
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The requisite matrix elements and numerical values
fol' tile calcillatloil of Eq. (79) ai'e supplied lil Appen-
dix D. Their use yields the following values:

potential A: s= —5.824; 3rd-order 0;~&(H') est.
= —0.41 MeV mb, (80)

potential 8: s= —5.342; 3rd-order o; g(H') est.
= —0.09 MeV mb. (81)

It is obvious from these results that the appearance
of the additional r~2' in the matrix elements consider-
ably assists in the suppression of third order, and it
would appear that truncation of the perturbation series
at second order for the integrated cross section is at
least qualitatively justified. In order to assess the cor-
rectness of this and the previous estimates, we turn to

an exact calculation of the third-order binding-energy
contribution.

C. Exact Third-Order Binding Energy

The determination of ea as defined in Eq. (69) con-
sists for the most part in the careful application of the
methods of Ref. j.. Because of the algebraic complexity,
it is well to introduce an abbreviated notation before
beginning the calculation.

In the following we will use the symbols e—=e ~~0'

and e'=—e—~' &' and rewrite the potential A in the form

where each term has an obvious meaning from Eq. (9).
Then applying Eq. (17) of Ref. 1 to ea, we find

where

8'0 8' 8' 0
ea ——

n, ~o (E E„)(E E—)—e"&E ~'e'&~ ~'(WeWeW)ogdVdX, (83)

(We'WsW)op ——(Ve'Ve V)00—(Ve'Me V) 00
—(Ve'Ue V)00—2(Ve'VeM)00 —2(Ve'VeU)00+2(Ve'MeM) 00

+2(V&'~&U)oo+2(V&'U&~)oo+2(V&'U&U)oo+(le &'V&~)00+2(~&'«U)00 —2(~&'~&U)oo —(Me'3A3f)00
—(3A'UeÃ)00 —2(Me'UeU)oo+(U&'V&U)00 —(U&'M&U)oo —(U&'U&U)00. (84)

The reader will be spared details in the evaluation
of this algebraic morass, but for the sake of complete-
ness, a catalog of the term-by-term results appears in
Appendix D.

Combining the results of Appendix D, one finds that

eg" ——+1.24 MeV. (85)

The fact that this number lies between our two
previous estimates, Eqs. (70) and (75), is most likely
fortuitous and should not be taken too seriously; how-

ever, the proximity of the exact es to the approximate
values is rather encouraging and permits us to perhaps
place a bttle more conddence rn the third-order est~-

mates of 0;„& for which exact calculations were not
carried out.

Taking into account these approximate third-order
estimates, we 6nd for the resultant values of

0;„,~(H')~43.6 MeV mb,

0;„,~(H') 42.9 MeV mb.
(86)

t

Thus we see that while the corrected values are lower
than second-order perturbation theory would predict,
they are still greater than the experimental result. This,
of course, is not unexpected, since both potentials A
and 8 somewhat underbind, and a more loosely bound
system in turn should yield a somewhat larger integrated
cross section.

A less encouraging consequence of Eq. (85) is that the
magnitude of e3 would seem to throw some doubt on
the extensive use of parameters obtained by minimiza-

tion only through second order and to point up the
need for their redetermination through third order.
Unhappily, the latter prospect deprives the perturbative
approach of much of its simplicity and elegance, and
suggests that we consider the practicability either of
minimization with the use of approximate third-order
terms such as might be obtained by modihcations of
the techniques employed in this section, or of the in-
clusion of rednements in the perturbation series. "

VI. SUMMARY AND CONCLUSIONS

We have in the preceding sections utilized what we
believe to be a simple and consistent perturbative
prescription for determining E1 photonuclear cross
sections in the lightest nuclei. This procedure was first
introduced by Goldhammer and Valk~ in their study
of the photodisintegration of He', and its present
application forms a logical extension of their work,
completing a program of calculations in the is shell.
With a full set of calculations at our disposal, we are
now in a position to discuss not only the merits of
the perturbation approach, but also the defects and
limitations, limitations which would not always be
evident in isolated calculations.

It is the intent of the present, section to analyze in
more detail the various contributions both to the Ej
cross sections and to the binding energies and to ascer-

~7 Preliminary results of such a study have been reported by
H. Neumann and H. S. Valk, Bull. Am. Phys. Soc. 9, 545 (I964};
H. S. Valk and H. Neumann, ibid. IO, 448 (1965). Some of this
work is summarized in Ref. 29.
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TABLE V. Contributions to the binding energy of the deuteron.

Potential (MeV)

Perturbation theory
63 e3

Est. 1 Est. 2
{MeV) (MeV) (MeV) (Mev)

Quadrupole
moment
(cm') %D

Exact'

apg(fm) rpt (fm}

A

B
—2.16
—2.08

+0.90 +1.37 +1.24
+0.37 +0.65

6.7
47

Accepted

—1.91
—2.16
—2.22b

2 99X10 " 3.99
2.75X10-» 2.93
2.82 X10-»o

6.06
Very Good

5.396"

1.7
Very Good

1.726"

' References 28, 29.
b R. Wilson, The Nucleon-Nucleon Interaction (Interscience Publishers, Inc. New York, 1963).
e J. P. Au8'ray, Phys. Rev. Letters 6, 120 (1961).
d H. P. Noyes, Phys. Rev. 130, 2025 (1963).

tain on this basis to what extent the second-order
perturbation procedure might be expected to yield
meaningful values. In the process of this analysis, we

hope to clarify, at least to some degree, the role played
in such calculations by the repulsive core and tensor
component of the nucleon-nucleon interaction.

As a starting point for the discussion, it is desirable
to consider the contributions in different orders (order
here refers to the number of times the interaction oper-
ator appears in a given contribution) to the integrated
F1 cross sections for the 1s shell nuclei. These are shown
in Tables I—III.

Here it is seen that for both potentials A and 8, the
ratio E ~ of the total second-order contribution to
that in 6rst order is a decreasing function of the atomic
weight corresponding to the following sequence of
values:

8"(H') = 1.67, 8"(T) = 1.08, 2"(He4) =0.70;
R~(H') =0 72 E (T) =0 47 R (He') =0.36.

(87)

Although it is not possible to assign significance to the
individual numbers, their relative magnitudes for a
given potential do give some indication of the rapidity
of convergence of the corresponding perturbation ex-

pansions, and hence of the validity of truncating the
series at second order. Since these series are generated
from a sum of harmonic oscillator Hamiltonians, this
convergence rate is related to the fact that for the 1s
shell, the higher the atomic weight, the more appropriate
is an oscillator description. From such a statement one

is led to conclude, as has in fact already been observed,
that the deuteron is not as suitable for a second-order
perturbation calculation as is the trinucleon or the
alpha particle.

The occurrence of ratios greater than unity in (87)
has its source in the presence of the repulsive-core term
in potential A. To see this, we note from Tables I—III
that the over-all contribution to o;„t or |Tl, from either
potential is almost the same. (This result is not too
surprising in view of the fact that the parameters char-
acterizing both potentials were constrained to fit ap-
proximately the same set of deuteron ground-state
properties; compare the remarks following Eqs. (5) and

(7).j Since potential A is rather different from potential

88 there must be compensatory changes occurring within
the individual components. Indeed, reference to Tables
I—III will show, for example, in the case of the trinucleon
that the introduction of a repulsive core, as in potential
A, brings about a 26'Po decrease in the central and a
57% increase in the tensor contribution from those com-
ponents in potential 8. Because of the fact that this
large tensor component of potential A can only enter
initially in second order, we are led immediately to a
distinction between the greater ratios on the top line
of (87) and the smaller ones below. It is worth noting
that the above arguments regarding the relative be-
havior of components within the different potentials
would be expected to retain a qualitative validity
even though the perturbation procedure might be
inappropriate.

Since we are using a semivariational-perturbation
approach, the occurrence of a relatively large second-
order contribution is not necessarily in itself a cause
for concern. However, it should serve to indicate pos-
sible limitations imposed by a second-order minimiza-
tion process. In order to understand some of these
limitations, we refer to the deuteron binding-energy
contributions listed in Table V. There we And, as
derived in Sec. V (see Refs. 28-29), that the third-order
contribution ~3 is non-negligible, and has the effect of
reducing the computed binding energy e in. second
order from 2.16 MeV for potential A down to 0.92 MeV.
It should be noted that this value lies well above the
result of 1.91 MeV computed by Signelp' and Neu-
mann" directly from potential A by a numerical
solution to the coupled differential equations for the
5- and D-state radial functions. It is thus consistent with
the fact that the first-order wave function, Eq. (2),
represents a trial function for the Hamiltonian, Eq. (1),
when the energy is computed through third order. The
disparity between the upper limit of —0.92 MeV and
the exact solution of —1.91 MeV is again an indication
of the poor quality of Eq. (2) (with Ace=14.49 Mev)
when applied to a loosely bound system: It has already
been observed in Sec. IV that the true rms radius cor-
responding to potential A probably should be around

~' P. Signell (private communication).
"H. Neumann, Ph.D. thesis, University of Nebraska, 1965

(unpublished),
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2 F,ao whereas the use of Eq. (2), led, via Eq. (43), to a
value of 1.58 F. In other words, the 6rst-order wave
function, Eq. (2), is to be associated with a much more
localized system and derives its contribution to the
binding energy from a much smaller region about the
origin than is demanded by potential A. Although a
complete evaluation was not carried out for ~3 with
potential 8, the estimates, in Table V would indicate
that a similar set of arguments applies, The fact that
the disparity between the estimated binding energy and
the numerical solution of Slgncll and Neumann is less
in this case may be attributed to the role of the core in
"pushing out" the long-range tensor force in potential A:
Since the two trial functions derive the majority of
their binding over essentially the same region of space
[compare Eqs. (43) and (44)], the. absence of the core
in potential 8 corresponds to greater binding with its
trial function.

On the basis of the above remarks it is possible to
assign most of the lack of agreement between the
theoretical and experimental photonuclear cross sec-
tions noted in Secs. III C and IV to the inappropriate-
ness of Eq. (2) with an Aco determined by means of a
second-order minimization process. The question as to
whether this dehcicncy arises from the hrst-order
perturbative form of Eq. (2) or from the procedure for
determining Ace is not clear from the present analysis.
However, other calculations indicate that a more suit-
able A~ can be found for the loosely bound system by
higher-order minimization. '~

The evidence cited in the preceding paragraphs for
the localized character of Eq. (2) (with an Ao) deter-
mined in second order) seems to augur well for its use-',

fulness when applied to more localized systems. Here,

not only should the form of Eq. (2) be more appropriate,
but the es should be so small as to throw less doubt
on the second-order minimizatioii-procedure for finding
Ace. -The favorable comparison of experiment with the
theoretical cross-section predictions for the three- and
four-body nuclei seems to bear this out. Unfortunately,
the uncertainties associated with the experimental data
are as yet too great to yield a critical quantitative test
of the technique. %C can, however, from our experience
with )he deuteron, conjecture that the calculated values
of 0;„„~(T) and 0;„,"(He') should be slightly over-
estimated [recall that even the poor deuteron function
gave a 10'Po overestimate for o;„,~(H')]. Similarly, the
values of oq"(T) and oq"(He') should be underesti-
mates.

Although"'we must acknowledge certain defects as-
sociated with the potentials and the truncation of
perturbation senes, the approach outlined here has
several signi6eant advantages: One lies in its ability to
provide a simple and systematic prescription for cal-
culating the photonuclcar cross sections with relatively
realistic forms for the interaction operators; another in
its ability to provide a complete set of 1s shell calcula-
tions with the same potential and the same type of wave-
funetion properties. The latter is particularly desirable
if one is to make valid comparisons among the diferent
contributions to the cross sections and their behavior
as functions of atomic weight. The fact that fair agree-
ment could be achieved with both interaction operators
for both the trinucleon and the alpha particle without
additional adjustable parameters is most encouraging,
and gives a strong indication that it is possible to 6t all
of the photonuclcar cross sections in the shell with one
form of the nucleon-nucleon interaction.

APPENDIX A.: THE PARAMETERS

After performing various consistency checks, the values determined by Goldhammer for potential 2 and
by Bolsterli and Feenberg' for potential 8 were accepted. For potential A,

and for potential 8,
G=34.5 MeV, E=—1.70, E'= 0.6875, &"= —3 1099

G=17.4 MeV, K= —1,695, X"= -3.0002.

The remaining parameters required for the 1s-shell nuclei are listed. in Table VI.

TAaI.E VI. Parameters for 1s-shell nuclei.

Nucleus

H2

HS,He'
He'

0.3934
0.489
0.65

AM

(MeV)

I4.49
17.94
24.15

1.42
1.52
1.70

Potential A

1.0525
1.065
1.0875

1.08
1 ~ 11
1.14

0.274
0.342
0.485

Potential 8
Sar

(MeV)

132
17.4

'

22.2

1.75
'

1.99
2.27

1.06
1.07
1.10

"In fact an exact numerical calculation (Ref. 29) shows it to be 2.16 F.
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PERTURBATIVE. APPROACH TO DIPOLE SUM RULES

APPENDIX D: MATRIX ELEMENTS OF THIRD ORDER

1. Third-Order Estimates of Binding Energy

The matrix elements of the binding-energy estimates are.listed beloved in algebraic form together vrith the cor-
responding numerical value obtained by substituting the appropriate parameters listed in Appendix A.

Potential A:

(W') oo= (V') oo+ (M') oo
—2(VM) oo

—(Voo—Moo) 2=+2 78417(ho/) 2,

E" -. E
(V') op= (ho/) 2 — +(|-1)"'(~+1)"' (~-1)'"(~+1)"'

M') po
———,'—', (ho/)',

2EE'(2/ —1)1/2(t' —1)'/' 10
+

3 (~-1)"(.+1)"
= +3.144255 (hco) ',

(VM) op= 8 (ho/)'
E'(P—1)8/2 E(~—1)8/2

95/'
= —0.138974(hpo) ',

E'.(|—1)'/' E(7/ —1)"' 3
(Voo—Moo) = Uop= hop +

1-8/2 ~3/2

(W') oo= (V') oo
—(M') oo+3(M',V) oo

—3(MV') oo+2(Voo —Moo) '

—3(Vpp —Mpo)[(V')op —2(VM)op+(M", poj= 13.11270(hop)',

E'3 E3 70 E"' 3EE"(7/
—1)"'

(V') po= (ho/)' +
(t 1) 8(/)2+ 2)8/2 (7/ 1)8/2(7/+ 2)8/2 9 (~ 1)8/2(7/+ 2)9/2 (t 1)1/2(g+ 7/ 2)8/2

3E2E'(f—1)'" 10E'E'"(g—1)'" 10EE"2
+

(7/ 1)1/2(g+g 2)8/2
(7/ 1)1/2(g +g 2)7/2

(7/ 1 )8/2(7/+ 2) 7/2

= —4.608986(hoj) ',

3 E"(P—1)'/' 3 E2(7/ —1)'/' 35 E"2(7/ —1)'/' 3 EE'(7/ —1)8/2(t —1)8/2

(M7V') oo= {ho/)' — +— +— +-
4 (/+1)'/' 4 (7/+ 1)"' 6 (7/+1)o/2 2 (7/f 1)"'—

E'(P—1)'/' E(7/ —1)'/'
(M'V) o=Q(h )'

g7/2

(Voo—Moo) '= —1.977612(ho/) ',

= —0.0530588(hco)8,

=+0.980072(hop)',

Potential 8:
(Voo—Moo) [(V') oo

—2(VM) oo+ (M') oo]= —5.472309(ho/)'.

(W') op =+2.18274(ho/) ',
(ho/)2

(V') oo= (E'+ (8/9)E "2) =+2.753295(ho/)',
(~—1)"'(v+1)"'

E(7/ —1)'/'
(VM).o=-:(h )' = —0.2038»(h ),

~5/2

E(7/ —1)'/' 3
(Voo-.Moo) = hco —— ——— = —1.384079(hpj),

~3/2
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(Wu) 00= +1.79173(hei) ',

(E'+(8/3)EE'"—(16/27) E"')
(V')oo= (Aoo)u -- -= —6.265272(hoo)',

(~—1)"'(v+2)"'

E(g—1)"'
(Mu V)00=—,'g(hoo) ' = -0.109184(hoo)0,

, „(n-1)"'
(M V') oo= (hol) 0(-',Eu+-uuE"') =+0.563174(ho)) 0,

(v+1)"'

PQtcDtlRl A

(Voe—Af'oo) L(Vu) eo
—2(VM) 00+ (Nu) 00j= —5.672532(A40)'.

2. Tbird-Order Estimates of el„,(H')

{0( Vluqlu'(V —~—U)
~
0)= (V»qluu V) 00—(V»qluuM) 00

—(Vluqlu') 00(Voo—Moo) =+2.77945{ho&)',

(V»q»'V) 00= (&q»'&) oo+(Cqlu'C) oo+(&q»'5') ee

BEE'(~—1)u~u(g —1)u~u BEu(~—1)'Iu 70E"u(q —1)»u
+— +—— — — (hol)u

(~t -1)"' (~+1)"' 3 (~+1)"'

=+3.291020(Ao)) u,

15 E(~—1)'/u
(V»q»u/kt') oo= —(Aoo)'

~v jR

(V»qlu') oo=
BE(y—1)"'

— (ho)) = —0.577728(hol),
I

(Voo—M 00) = —1.255202hol,

(0~ (V—M—U)(V„q„')(V—M—V)
~
0)= (ZuCq„u) „+2(ZCuq»u)+2(ZSuq„u) „—2(ZVCq, uu)„—2(ZVCqluu)„

+(C'q»u) 00+3(~~uq»u) 00
—2(~&uq»u) «—2(~u~q»u) «+(5'q»u) oo

—2(~5'uq»u) 0o—2(U5'uq»u) oe

+2(/if Ucqlu )00+(~ cqlu )00+({/Cq» )00 &

3EE"{Ace)u(g —1)ulu(t —1)"'
(&ucq»u) 00= — —-- = —0.187954(A(0) ',

(nC+e 2)'"—
BE'E'(hco) e(g —1)"u(g—1)+u

(RCuq»u) 00= —— — = +0.209936(hoo) 0,
(~i+i 2)"'—

70 E'E"u(hoo) u(i —1)'~u(u/ —1)'~u

(~'q»') eo=— =+0.0503258(hei) ',
(sf+i 2)"'—

15 E'E'(h )0(~—1)'»(g—1)»u
(&~cq»u) oe= —- — = —0.00371997(hoo)',

(nP 1)"'-
BEE'(hoo) u(q —1)u~u(P —1)»u

{&UCq»u) 00= — " ' . — (Voo—3foo) =+Q0837$07(hoe)u(~i1I'I--



( )
(C'qu') oo= = —1.051425(ko) ',

(n —1)'"(~+2)"'
7O EE'"(h )0

(CL5 q» )00 = —2.339720(hoo) ',
3 (n —1)"'(v+2)"'

15 E2(ha)) 2(g —1)"'
(MC'qle') op=- =+O.13379S(h )',

(v+1)'"

(C'Uqu') oo=
3E2(hru) 2(g—1)'I'

(Voo—Moo) = —0.774139(hpo) 2,

70E "2(hei) '
(+ ql2 )00 =+3.754484(hot) ',

(~—1)'"(~+2)'"'
105 E"2(hop) '(g —1)"'

=+1.070358(hop) ',
(~+1)1112

(MSeq»2) po=
2

15 E(ho)) 2(g—1)"'
(M Ucq»2) op=- (Voo—Meo) =+0 268107(hot)',

~&/2

70 E"2(hop) 2(g —1)'ie
(U&'q»') op= — (Voo—Moo) = —3.440537(hei) 2,

3 (g+1)'"

105 E(ho)) 0(g—1)"'
(M'Cqle') 00

=—
16

—0.110559(hpo) ',

Potential 8:

3E(hlo) (g—1)+2
(U'Cqu') 00= (Vop —Moo)'= —0.910229(hoo) ',

~5/2

(0I (V—M —U)(Vloql22)(V —M —U)
I
0)=+1.39281(hei)e.

(0 I
Vuqu'(V —M —U) I o)—(C'ql2') oo+ (~'qu') oo

—(MCq»') oo
—(UCqu') oe,

(oI v„q„2(v—M—U) I
o)=+1.561o7(h ),

3E2(hol) 2(g —1)"'
(C'qu') oo= =+0.595195(hop)',

(~+1)'"
8 E"2(hop) 2(y —1)"'

(QRql22) =+1.657500(hoo) ',
(v+1)'"

15 E(hoo) 2(g —1)0i2

(Mcqle') pp=- = —0.436738(hm) ',
~V/2

3E(ho2) (g—1)'Ie
(UCq ')oo= (Voo—Moo) =+1.128362(ho&) ',

~5/2

(Voo—Moo) = —1.38407940,

(OI (V—M—U)(v»ql2')(V —M—U) I o)= (C'q»') op
—2(MC'qu') op+3(c&eql22) oo+(»q»2) „—2(MS2q„e)„

2«c'q ")o.+2(MU—Cq ')o. 2(U&'q ")oo+(CU q-„)„+(MCq„)„,
(OI(v —M—U)(v„q, ')(v —M—U) Io)=+0260388(h ),
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(C'q12') 00———0.619472 (ho/) ',
(MC'q12') pp

——+0.202908(hp/)',

8 KK'"(hp/)'
(CS2q12') oo=- = —1.725105(I30/)',

3 (2/
—1)1/2(2/+ 2)3/2

K'"(l301)316
(S q12 )00

9 (1/
—1)1/2(r/+2)3/2

= +2.035624(I301)',

(2/+ 1)7/2

(UC'q12') pp
———0.823797 (hp/) ',

(M UCq12') pp
= +0.604480(ho/) ',

10 K"2(hp/) 3(1/ —1)'/'
(MS q12 )00=—

3
= +0.565057(kv)',

8 K"2(hco) 2(2/ —1)'/'
(US'q12') oo =— (Vop —Mpp) = —2.294111(/201)3,

3 (1/+1)"'

(CU'q12') 00= —1.561742 (/20/) ',
(M Cq12 )pp= —0.327553(/201)3.

3. Exact Third-Order Binding Energy

The evaluation of the matrix elements occurring in the exact third-order calculation is facilitated by the use of

the integral transforms given in Appendix B. The numerical determination of the values of J' j'e1&e ~&e"'&e—~'&

&( ( )pod' dX, in those cases where it was not possible to perform analytically the double integration over u

and u, was carried out by expanding the integral and then integrating the series on a Burroughs 205 electronic com-

puter. It will be convenient in the following extensive list of matrix elements to use the abbreviated form

to mean

e1(K' r/)e)'(e U)( )— —

The algebraic exPressions and numerical values (in units of 12/&0) of the matrix elements aPPearing in (We WeW)po

and e3 are K"(t —1)"'(uu') "'
(Re'ReR) op =

[(0 1)(i'—» )+(| u )(0—u)]"'
2ICIC"(2/ 1)'/'(f —1)(uu') —'/'

2(Re'ReC) oo=
[(f-1)(~l.-. ')+(f- ')(~—.)]"'

KK"0 1)(2/
—1)'/'(uu') '—/'

(Re'CeR) oo=
[(n 1)0' »—')+(f —u') (& u)—]'"—

2K'K'(2/ —1)Q' —1)"'(uu') "'
2(Re'CeC) 00=

[(v—1)(nf—»')+(f—u') (n —u)]"'

20 KiKif2(~ 1)3(f 1)1/2up/2u&3/2

2(Re'SeS) pp
=—

3 [(v-1)(nf— ' ')+(t' —')( —)]"'
'(2/ 1)(f 1)1/2(uui)3/2

(Ce'ReC) pp=
[(f—1)(2/2 —uu')+ (2/

—u') (1/ —u)]'/'

= +0.078163;

= —0.470424;

= —0.170240;

= +1.303454;

= +0.277060;

=+0.717435 .
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K'(rj —1)P ~'(uu') '~'

s/a
'(Ce'CeC) pp=

g
—1 'g —uu

7/2 N~ 2@5/2@~3/220 KK'"(g—1)"io(g—u')'u ' u

—1)( '— )+( —) g —u') ]'~'i
10 K'K'"(g 1)P(—f—1)'~' uu' '~'

(Se'EeS) oo = -")(~- )j'"3

= —2.558910;

102371

= +0.001330;

KK"'(g 1)'"'(u—u') "'
—1)(g'—uu )+(q—' —u—u')(g-u) j'~'3

/ ' l $/2"i'( —u)(g —u )(uu

-1)( '-. ')+( — '—u' g —u)]p~'

~ p/p3 K"(|-1)(|.-.)(r-u)( .
(Re'DAN) pp

———

= —0.041607

=+0.072547;

= -0.075625;

3 K' g —1)(g—u)(g —u')(uu')'~'
(C '3l C) o=- = —1.639238;

3—2(Re'MeC) pp=

/ pjQ—1)'~'(g —u') (g—u) (uu— KK'(t -1)'"(~—1

(g—uu')'"
= +0,.703500:

—(Se'HAS) pp
——

-35 K"'(~-1)'(~—u)(~- '—u —u') (uu') '"
6 (g' —uu') o~'

—E"Upp(g —1)(uu') "'
)(~--)"

= —0.047447

= +0.184357;

—KPUpo(g 1)(uu )P'P

—(Ce'UeC) op = =+3.525231;

—1 -"uu' "'KK'U po(t 1)"'(g—1)- —uu—2(Re'UeC) oo = = —1.600106;

—10 E "PUpp(g —1)'(uu')"'

'—uu')'"
= +0.093814;—(Se'UeS) oo=

(~

(~-1)(t.-").
=--'K"(t-—1)( ')' = —'' . 0.340272;—2(&e &e~) oo

1—u (jr 1P—u u-
=--'KK'(|-1)'"(.—1)'"( =+j:;080900;

=+1;040498;—2(Ce ReM) oo
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The third-order contribution to the energy e3 is the sum of the above terms, 1.24 MeV.
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