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Dynamics of Distorted Harmonic Lattices. II. The Normal Modes
of Isotopically Disordered Binary Lattices*t

DANIEL N. PAYTON) III AND WILLIAM M. VISSCHER

Los A/amos Scierttiftc Laboratory, Urtiversity of Catiforrvia, Los Atamos, cVeto Mexico

(Received 14 November 1966)

Results of computer calculations of normal modes of certain one-, two-, and three-dimensional harmonic
lattices are displayed, discussed, and correlated with the frequency spectra for similar lattices reported in an
earlier paper. An interesting feature of the results is that localization of the displacemen(s in the normal
modes is associated with certain ranges of concentration and mass ratio.

INTRODUCTION

'N a previous paper' (hereafter referred to as I), we
- ~ presented certain computer, -generated frequency
spectra of disordered harmonic lattices. The present
paper extends the discussion of the normal modes
contained in I to give specific examples of eigenvectors
of binary disordered harmonic lattices and to establish
correspondences between the natures of the normal
modes and their frequency spectra.

Section I contains a brief description of the problem
and a discussion of the method of calculation of the
normal modes. In Sec. II some of the eigenvectors of
linear chains of 200 atoms are illustrated. Square and
cubic lattice normal modes are shown in Sec. III, and
the relation betwee~ their nature and the position of
their frequency in the spectrum is discussed. A discus-
sion of the nature of the eigenvectors of these and other
lattices is included in Sec. IV.

I. MODEL AND METHOD OI' CALCULATION

The model used in the present investigation rep-
resents the atoms of the crystal lattice by point masses
connected to their nearest neighbors by central and non-

central harmonic springs, such that the motions in each
Cartesian direction are independent. The equations of
motion have been presented in I and will not be repro-
duced here. In matrix form they are

I
M —co'I]u= 0,

for an e-dimensional simple cubic lattice, where M„ is
the dynamical matrix and u is the eigenvector. This
equation is the eigenvalue equation for the system. The
problem of finding the eigenvectors is equivalent to
finding the diagonalizing transformation for the dynam-
ical matrix. For a limited number of atoms in the lattice
(depending on the speed and memory of the computer
available), this can be done numerically.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

t Part of this work is included in a thesis submitted by one of
us (D.N.P.) in partial fu161lment of the requirements for the Ph.D.
degree at the University of Missouri at Rolla.

' D. N. Payton and %.M. Visscher, Phys. Rev. 154, 802 (1967).
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The calculations for this paper were done on the
IBM 7030 computer, which allowed us to solve for the
eigenvectors of lattices containing up to about 300
atoms, using a diagonalization procedure devised by
Ortega. ' This is a combination of the Householder'
scheme of matrix reduction and the diagonalization
procedure proposed by Givens. 4 Ortega reduces the
matrix to a tndiagonal form by a series of simple
orthogonal similarity transformations which are not
plane rotations. A Sturm-sequence technique devised

by Givens is then used to find the eigenvalues of the
tridiagonal matrix. The eigenvectors of the original
matrix are then found by an inverse iteration of the
reduction procedure.

II. THE LINEAR CHAIN

The normal modes of the disordered linear chain
have been discussed in the spirit of the present investiga-

tion in a paper by Dean and Bacon. ' By diagonalizing
the dynamical matrix, they obtained the normal modes

of a chain of 50 atoms and discussed the roles of the
modes relative to the frequency spectrum of the dis-

ordered chain. They concluded, for example, that the
isolated high-frequency peaks in the spectra of dis-

ordered chains calculated earlier by Dean' correspond
to highly localized modes associated with identifiable

atomic configurations.
We have also diagonalized the dynamical matrix

and obtained the normal modes of linear chains of
various lengths. We have calculated eigenvectors for
chains varying in length from 50 to 300 atoms, of vary-
ing composition. (mass ratio, ordering, and concentra-
tion of each component). We have reproduced the
results of Dean and Bacon and extended them to more

J.M. Ortega, National Aeronautics and Space Administration
Technical Report No. TR-64-12 NSG-398, 1964 (unpublished).

' A. S. Householder and P. L. Bauer, Numerische Math. I, 29
(1959).

4%'. Givens, Oak Ridge National Laboratory Report No. 1574,
1954 (unpublished); Natl. Bur. Std. (U. S.) Appl. Math. Ser.
29, 117 (1953).' P. Dean and M. D. Bacon, Proc. Phys. Soc. (London) 81, 642
(1963').

'P. Bean, Proc. Phys. Soc. (London) 73, 413 (1959); A254,
507 (1960); A260, 263 (1961).
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I'IG. 1.Normal modes of a random isotopic mixture 200 atoms long, half-heavy atoms and half-light with a mass ratio of three. The
mode numbering is from the lowest to the highest frequency. The frequency is given in units of the maximum frequency of the pure
light chain

general systems. One conclusion is that the correlation
between localization of the normal modes and the
peakedness of the frequency spectrum is true for all the
disordered chains which we have considered.

Our first example is shown in I'ig. 1, which illustrates
some of the normal modes of a particular disordered
chain of 200 atoms with equal numbers of light and
heavy atoms with the mass ratio of 1:3.The mode
numbering is from the lowest- to the highest-frequency
mode. The reduced squared frequencies are given by
s'= 8&v'/&u&', where co& is the maximum frequency of the
pure light-atom lattice. These modes can be located
on the frequency spectrum shown in Fig. 3(c) of I.
The modes (a)—(c) are eigenvectors corresponding to
the low-frequency or long-wavelength portion of the

spectrum which is affected little by the microscopic
structure of the chain. The eigenvectors (d)—(h) show
some localization even at fairly low frequencies. They
might be termed elastic localized modes in that they
extend over microscopically large regions and do not
depend on the local configuration in a detailed manner.
The maximum frequency of the monatomic heavy-atom
lattice lies between modes 118 and 119. In one dimen-
sion, these two modes are qualitatively similar. In two
or three dimensions, as we shall see later, there is a
dramatic change in the nature of the modes across this
band edge.

The modes shown in Fig. 1 (i)—(1), a,re some of the
strongly localized modes which typify those contribut-
ing to the peaks of the frequency spectrum at higher
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frequencies. The II's and I.'s shown on these modes
indicate whether the corresponding atom is a heavy or
light atom, respectively. Ke will consider these highly
localized modes individually.

(i) Mode number 149, s'=4.8. This mode is localized
about the light-atom island configuration

which is effectively two islands with overlapping
frequency' i,e.»

—IIIH and —BIHIHI H—.Th.ese
two islands, when isolated, have normal modes whose
frequencies are close together and whose superposition
is similar to the eigenvector shown here.

(j) Mode number 168, s'=5.4. The predominant
mode excited here is the (+——+~~) mode of the
island of four light atoms. It is perturbed by the pair of
light atoms nearby.

(it) Mode number 174, s'=6.2. This is a high-

frequency mode corresponding to the island

(l) Mode number 200, s' = 7.6. The highest-frequency
mode in this chain is the (+— «&——+ &——+) mode of
the —BI.I.J1./.III—island. In this particular chain
the longest-light island contained six atoms; conse-

quently, the highest-frequency mode of this chain is
that of the highest frequency of an isolated chain of six
atoms as increased by the finiteness of the bounding
masses.

Ke have discussed in I the relation between the
structure of the frequency spectra and the occurrence
of islands of light atoms, as dictated by the special
frequency theorem. As exemplified by Fig. 1, the nature
of the normal modes at frequencies above the pure
heavy continuum is also largely dictated by the
distribution of light islands. The eigenvectors are

simply related to the vibrations of isolated light chains,
and their frequencies can be thus correlated. LSee Fig.
4(e) of I and of Ref. 7.]

For linear chains composed predominantly of heavy
atoms, the localization of the high-frequency modes is
even more pronounced than shown in Fig. 1. Quite
diAerent is the situation for a chain with dilute heavy
impurities. Figure 2 illustrates a typical high-frequency
mode of such a chain, with 193 host atoms and 7 atoms
with three times the host mass. The impurities are
located at the discontinuities in amplitude of the
vibration.

111. THE SQUARE AND CUBIC LATTICES

Because of the simple tridiagonal form of the dynam-
ical matrix, the length of the linear chains for which
normal modes were computed was not limited by
computer size. The dynamical matrices associated with
the square and cubic lattices are more complicateds
though, and the size of the lattice treated had to be
restricted to approximately 200 atoms for practical
reasons. Neverthe]ess, these calculations yieM results
for the spectra which are quantitatively close to those
obtained in I for lattices of much larger sizes. The
boundary conditions were the same as used in I, i.e.,
a set of helical-toroidal. periodicities with axed ends.

Numerous calculations were made for the square
lattice to determine the general nature of the eigen-
vectors for various compositions. Figure 3 shows the
spectrum for a particular 14)&14 lattice for which we
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FIo. 2. A typical high-frequency normal mode of a 200-atom
chain with 7 heavy impurities 3 times the mass of the host atoms.
The blocking of the amplitude takes place at the impurity sites.

z'= ( /~„)'

Fro. 3. Frequency spectrum for the 14X14-atom square lattice
whose normal modes are shown in Fig. 4. The numbering refers
to the mode numbering of Fig. 4.

' H. Matsuda, Progr. Theoret. Phys. (Kyoto) 31, 1.6'1 (1964);
34, 314 (1965).

D. N. Payton, III, Ph. D. thesis, University of Missouri at
Rolla, 1966 (unpublished); I,os AlaInos Scienti6c I,aboratory
Report No. I.A-3510 {unpublished).
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Fro. 4. Normal modes of a square lattice of 14X14 atoms with 15% of the atoms having masses one-third the mass of the host mass.
The isotopic impurities are distributed randomly. The central and noncentral force constants are equal. The displacements are plotted
in the out-of-plane direction instead of one of the degenerate Cartesian in-plane directions.

have calculated the normal modes. Upon comparison
with Fig. 6(a) of I, one sees that, even though the
lattice is quite small, the general features of the spec-
trum of a much larger lattice are still present. The unit
of the abscissa on Fig. 3 is the square of the maximum
frequency of the pure heavy lattice, and the numbering
of the modes starts at the highest-frequency mode. The
numbers on Fig. 3 identify the modes shown in Fig. 4.
Both figures illustrate properties of a square lattice
with 15%light atoms with masses one-third those of the
host lattice. These impurity atoms are dispersed
randomly throughout the lattice. The central and
noncentral force constants are equal for the spectrum
shown, and consequenctly the host continuum portion
has a single logarithmic singularity. Figure 4 displays
four of the eigenvectors of this lattice.

For the square lattice as well as for the linear chain
we can interpret the isolated peaks of the frequency
spectrum at higher frequencies as the normal mode
frequencies of modes localized about islands of light
impurities. Consider the four shown in Fig. 4. The
normal modes are shown in an isometric projection with
the displacements in the vertical direction. This is done
for ease of viewing, since the displacements are actually
along one of the in-plane crystal axes. These pictures are
halves of stereo pairs plotted by the computer.

(a) Mode number 27, s'=0.96. This mode is the
uppermost mode in the host-lattice continuum. It

exhibits the form characteristic of all modes with lowe&

frequencies in that the displacements are not highly
localized and the heavy atoms possess large displace-
ments. The letters I. and H have been placed at the
equilibrium positions of a few of the pertinent atoms
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Fro. 5. Frequency spectrum for the 6X6X6 simple cubic
lattice whose normal modes are shown in Fig. 6, The numbering
refers to the mode numbering of Fig. 6.
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(c)

PIG. 6. Normal modes of a simple cubic lattice of 6)&6&6 atoms with 15~jo of the atoms having masses one-third the mass of the host
mass. The impurities are isotopic and randomly distributed. The central and noncentral constant forces are equal.

and correspond to that site being occupied by a light or
heavy atom, respectively.

(b) Mode number 26, s'=1.1. This is the first mode
above the continuum. All the modes above the con-
tinuurn are quite strongly localized. This one has all
of the atoms very near their equilibrium positions
except those on or closely neighboring the island of
four light impurities

Other modes for this istand will be the

n~ode at s'-= I.36, the

mode at z'=1.8, and the mode

which is in its lowest symmetric mode

at s'=2.2 which is the uppermost mode on Fig. 3.
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(c) Mode number 13, z'= l.l. This mocle contributes
to the large high-frequency peak in Fig. 3. It is the
localized mode of a single isolated light atom. The size
of the peak rejects the fact that there are several
isolated impurities in the lattice and also that many
islands of odd numbers of light atoms have modes which
are almost degenerate with those of the isolated light
atom.

(d) 5'lode number 3, z'-=1.99. This is the higher-

frequenc~ mode of the isolated pair of light impurities.
This mode is the antisymmetric mode (~&) and
is accompanied by the symmetric mode (»—) at
co' = 1.26.

Following t.he same procedures, the siinple cubic
lattice can be analyzed. Again, the complica, ted form
of the dynamical ~matrix limits us to la, ttices of approx-
imately 200 a, toms. The use of a central-noncentral
force model aga, in allows the motions to be separated
a/ong the Cartesian axes. The spectrum of a typical
crystal of 6X6)(6 atoms is shown in Fig. 5. This lattice
again has a 3:1 mass ratio and a light impurity concen-
tration of 15'/q, and comparison with Fig. 10 of I shows
that the spectrum of the small lattice approximates
that of the larger one described in tha, t paper. The unit
of the squared frequency is the maximum frequency of
the infinite host lattice. The numbering of modes again
is in descending order of frequency and corresponds to
the modes shown in Fig. 6. Again, the isometric projec-
tions of the normal modes are halves of stereo pairs
produced directly on microfilm by the comput. er, after
diagonalization of the dynamical matrix. The displace-
ments of the a, toms in each normal mode are shown. The
lines represent noncentral springs; to minimize clutter,
the central springs, which would be in the vertical
direction, are omitted. The equilibrium positions of the
light and heavy atoms which are pertinent to the
discussion are labeled in the three higher-frequency
modes by I. or H, respectively. We will now examine
these modes individually.

(a) Mode number 22, z'=0.9. This mode is the
uppermost mode in the host continuum. It is character-
istic of the nonlocalized nature of the continuum modes.

(b) Mode number 19, s'=1.36. This is the familiar
symmetric mode due to an isolated pair of light a,toms.
Because of the low concentration of light atoms in this
crystal, the localized modes are due to only two con-
figurations of light impurity atoms, the pair —1.1.—and
the single atom. However, since these individual islands
are not completely isolated, their normal-mode fre-

quencies, corresponding to (»—), (&~), and (—&),

are broadened.

(c) Mode number 16, s'=1.6. This mode is localized
about an arrangement of single-light impurities inter-
spersed with the host masses in a chainlike island in

FIG. 7. A typical normal mode in the neighborhood of the lo~v-

frequency resonance in a 5XSX5 simple cubic lattice. The lattice
contains a single heavy atom with mass three times that of the
host lattice.

which alternating atoms are light impurities:

J. I
H H
.I. H f. H I..

This is the

~ ~ ~

mode, which has a frequency quite close to the isolated
impurity frequency.

(d) Mode number 1, s'=1.84. This is the anti-
symmetric mode of the pair of impurities (—+ +—) shown
in mode number 19.

The low-frequency resona. nce which appears in the
spectrum of lattices with low concentrations of heavy
impurities [see I'igs. 6(d) and 9(d) of I] is not, at. least
on superficial observation, accompanied by a,ny specia]jy
recognizable features of the eigenvectors, except in the
limit of no interaction between impurities. A lattice
with just one heavy impurity, though, has many normal
modes in the neighborhood of the low-frequency
resonance, which are localized near the impurity. An
example is shown in Fig. 7 for a 5)&5)&5 lattice with a
heavy impurity in the center position, with mass three
times the host mass.

IV. DISCUSSION

The squa, re a»d cubic la, ttices which have been
illustrated have had fairly low (15'P&) concentrations of
light substitutional impurities. The general character
of the normal modes of these lattices —localization for
frequencies above the host continuum —is preserved as
the concentration is increased, until the critical percola-
tion concentration is reached. At this point (which is
defined as the concentration at which, in an infinite
lattice, the probability of occurrence of a connected
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impurity island of inhnite extent becomes unity) many
of the high-frequency eigenvectors suddenly lose their
localized character, just as the spectrum loses its
peakedness. The critical percolation concentrations are
known to be 0.5 and 0.28 for the square and simple
cubic lattices, ' respectively; these values are consistent
with the concentrations at which the nature of the
results of our numerical experimentation on these
lattices changes.

The mass ratios given by the special frequency
theorem (discussed in I) mark boundaries between
domains of jaggedness and relative smoothness in the
spectra (see Figs. 4 and 7 of I). These same mass ratios
also signal a change (but a less sharp one) from the

' M. K. Fisher, J. Math. Phys. 2, 620 I'1961).

highly localized high-frequency normal modes associ-
ated with light dilute impurities to extended modes.
This ratio is higher than the mass ratio at which the
localized mode at a single isolated impurity appears,
which is unity for the linear and square lattices and is

roughly 3:2 for the simple cubic lattice.
The authors, with Rich, have recently completed

a numerical study" of heat conductivity in disordered
harmonic and anharmonic one- and two-dimensional
lattices. The results of the present paper are very
helpful in understanding the physics underlying the
heat-conduction processes studied there. The connection
will be discussed in detail in a forthcoming paper.

' D. N. Payton, M. Rich, and %.M. Visscher, Bull. Am. Phys.
Soc. 11, 728 (1966); and (to be published).

Some Comments on the Photomagneto electric
Effect in Silicon, R. E. BxRKER, JR. t Phys. Rev. 149,
663 (1966)$. The phrase just before and including
Eq. (10) should read: "we have a charge density
0'= pppF&/e and a voltage U,„=oh/pp p 8 vI, ". '

The sentence following Eq. (13) should read: "Its
logarithm should be a linear function of 1/T with
a lnT terzn added and. . . ."

Conditions for Rotational Invariance of a Harmonic
Lattice& DENos C. GAzIs AND RIcHARD F. WALLIs
[Phys. Rev. 151, 578 (1966)J. Equations (15) and
(16) imply Cauchy's relation for a simple Bravais
lattice and are therefore unsatisfactory. The error
stems from the assumption of Eq. (13) which is
violated at the boundary. Equation (12) follows
from a first-order rotational invariance condition
obtainable from Eqs. (5) and (9) and differing
from Eq. (11) in the replacement of X(k,t'ii') by
X(t'K', tpKp). The assertion that the Lengeler-Ludwig
model is not rotationally invariant is unjustified on
the basis of Eq. (16).We wish to thank Dr. M. Lax
and Dr. W. Ludwig for bringing our attention to
these points.

LPhys. Rev. 151,430 (1966)].Owing to a very unfor-
tunate typographical error the most important equa-
tions of this paper contain misprints. In (2.28),
(2.29), and (2.34), sin (2m s;/3) should be replaced by
sin'(m s;/3).

Theory of Oscillatory Photoconductivity in Semi-
conductors: Boltzmann-Equation Approach, H. J.
STocKER AND H. KAPLAN [Phys. Rev. 150, 619
(1966)].The letter g in Eqs. (52) and (75) should
be replaced by the number 9.

In the definition of n below Eq. (73), rp should
be replaced by ~&.

In the Figure captions for Figs. 3, 4, and 5, the
expression: "Same as Fig. 1, ." should read:
"Same as Fig. 2, .

A subtitle "H. Optical Phonon Scattering"
should be placed on the top of the left-hand column
on p. 623, The letters "H" and "I"preceding the
following two subtitles should be replaced by "I"
and "J," respectively.

The 5 function in Eq. (32) should read 8(o —s),
not b(a —2).

The first term of Eq. (12) should be

Exact Solution of the Integral Equations for the
Anomalous Skin EGect and Cyclotron Resonance in
Metals, L. E. H&RTM~NN ~ND J. M. LUTTiNGER
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