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The multiple-scattering theory of Lax is used to give equations for the displacement-displacement Green s
functions for a crystal containing substitutional defect atoms. A self-consistent method is described within
this formalism that is most suitable for large concentrations of mass defects. The essential approximation
is best in three dimensions, but even then is not completely satisfactory for low concentrations of light defects.
The resulting self-consistent equation is solved numerically using realistic three-dimensional densities of
states. The behavior of the density of states and spectral functions for the imperfect crystal is discussed in
some detail for different concentrations and mass ratios. The results are compared with recent machine
calculations and found to be in good agreement. They are also used to reinterpret experimental results
for Ge-Si alloys with some success.

I. INTRODUCTION

HEN an atom of different mass (mass defect} is

added substitutionally to a crystal, its vibrational
properties are considerably diGercnt from those of the
atom it has replaced (host atom). If it is sufficiently

light, it can cause a mode to split off the top of the
vibrational continuum of the pure crystal to produce a
local mode, so called because the amplitudes of the
vibrations of this mode are strongly localized around
the defect. A heavy defect prefers to vibrate at. lower

frequcncics than the host atom, and, provided the defect
is suKciently heavy, this is seen as a low-frequency
I csonancc ln. thc I'csponsc function. Thc changes ln

force constants that in general accompany a substitu-
tional defect can have similar and more complicated
effects. The techniques for calculating the behavior
of such defects are well known and are described in a
I cvlcw al tlclc by Maradudln. '

When more than one defect is present they can in-

teract giving a width to the local-mode frequency as
well as producing additional modes attributable to
adjacent defect pairs, triplets, etc. Langer' has given
an approximate treatment of the density of states for
small concentrations of mass defects in linear chains.
The method is easily extended to three dimensions and
it is reviewed, along with other work concerning small
defect concentrations, in an article by Maradudin. '
Elliott and Taylor have recently discussed the same
problem using double-time Green's functions5 for the
displacements. This is a particularly useful forInalism
as it leads very simply to the appropriate spectral func-
tions required to discuss the density of states, optical
absorption coefficient, and neutron scattering cross sec-
tion in imperfect crystals. For the same reason we will

use this formalism in this paper, also using the same
notation where possible.

~ A. A. Maradudin, Rept. Progr. Phys. 28, 331 (1965).
2 J. S. Langer, J. Math. Phys. 2, 584 (1961).' A. A. Maradudin, Solid State Phys. 18, 273 (1966).
4 R.J.Elliott and D. W. Taylor Proc. Roy. Soc. (London) A296,

161 (1967) subsequently referred to as I.
'D. N. Zubarev, crisp. Fiz. Nank SSSR t Enghsh transL:

Soviet Phys. —Usp. 3, 320 (1960)g.

Although Elliott and Taylor were able to 6nd a good
measure of agreement between theory and experiment,
there is one unsatisfactory feature of the theory. The
spectral function in the local-mode region remains a
delta function although the density of states has a
6nite width. This discrepancy led Davies and Langer'
to propose a self-consistent procedure which we describe

briefly in Sec. 4. This procedure still gives a small con-
centration result for reasons described in that section.

The most detailed descriptions of disordered crystals
containing mass defects are given by the machine cal-
culations of Dean and co-workers' ' for one and two
dimensions and, more recently, by Payton and Visscher'
for one, two, and three dimensions. Some of their re-
sults are given in Secs. 5 and 6 and provide an exccllellt
test for approximate analytic theories.

These machine calculations are very time consuming,
and it is of considerable interest to obtain an approxi-
mate analytic theory to describe disordered crystals at
large defect concentrations, In this paper we give such
a theory, which leads to a self-consistent equation that
is not dificult to solve on a computer and whose solu-
tion is not very time consuming. The necessary approxi-
mation made in this method restricts its validity essen-
tially to three dimensions.

%e use the multiple-scattering formalism. of I.ax"
which is described in Sec. 2 for the particular case at
hand. The self-consistent method is described in Sec. 3
and a brief discussion of other self-consistent work js
given in Sec. 4. The solution of the self-consistent equa-
tion, using a realistic density of states, is described in
Sec. 5 and its behavior discussed in some detail. In
Sec. 6 the solution is compared with the three-dimen-
sional results of Payton and Visscher' with considerable
success. It is also used to reinterpret the phonon-

' R. W. Davies and j. S. Langer, phys. Rev. 131, 163 ($963).
P. Dean, Proc. Roy. Soc. (London) A260, 263 (1961).

8 P. Dean arid M. D. Bacon, Proc. Roy. Soc. (London) A283, 64
(1965).

'D. N. Payton and %. M. Visscher, Phys. Rev. 154, 802
{1967).

» M. Lax, Rev. Mod. Phys. 23, 287 (1951);Phys. Rev. 85, 621
(1952).
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assisted tunneling results in Ge-Si alloys of Logan,
Rowell, and Trumbore" with some success.

The formalism for the vibrational properties of im-

perfect crystals is very similar to that used to describe
the behavior of electrons in such crystals. Indeed Lax's
formalism was given in terms of the electronic properties
of random systems, and the methods extensively used

by Beeby and Edwards" and more recently by Soven"
are entirely equivalent to those of I.ax. Recently Soven"
has also described a self-consistent method for the elec-

tronic problem that is very similar in principle to the
self-consistent method we describe in Sec. 3. Both these
calculations are variants on a self-consistent procedure
first suggested by I,ax."

An essential difference between our problem and the
equivalent electronic problem that helps to make ours
much more tractable lies in the form of the defect
matrix or impurity potential. Even in three dimensions,
a mass defect looks like a delta-function potential
situated at a lattice site, whereas in order to give a
realistic treatment for the electronic structure of o,-brass,

but without too much complexity, Soven" had to resort
to delta-function shell potentials. In a self-consistent
calculation for such a system both this form of potential
and the reciprocal lattice vector summations (not
present in the vibrational problem) must lead to equa-

tions of much more complicated nature as compared to
our final equations (3.12) and (3.14).

Lifshitz'6 has recently given an extensive discussion

of the systematics of the electron energy levels and the
behavior of the band edges in disordered systems. In
particular, he predicts that when the impurity potential
is sufficiently different so as to split states o6 the bottom
of the continuum, the edge of this continuum will

move to higher energies as more of such impurities are

added. When interpreted in terms of our problem this

prediction is in agreement with our findings, as men-

tioned in Sec. 5.8.

2. GENERAL FORMULATION AND LOVf-
CONCENTRATION RESULT

The displacement-displacement double-time thermal

Green's functions, ' G p(l, l'; co), are defined as

G p(l, l'; co) =— ((I (/, t); up(/', 0)))e'"cd/, (2.1)
h

where

» R. A. Logan, J. M. Rowell, and F. A. Trumbore, Phys. Rev.
136, A1751 (1964)."S. F. Edwards, Proc. Roy. Soc. (London) A267, 518 (1962);
S. F. Edwards and J. Heeby, ibid. A274, 395 (1962); J. Beeby,
ibid. A279, 82 (1964)."P. Soven, Phys. Rev. 151, 539 (1966).

'4 P. Soven, this issue, Phys. Rev. 156, 809 (1967)."M. Lax (unpublished).
'6 I, M. Lifshitz, Advan. Phys. 13, 483 (1964).

(.4 (/) B(0)) = eP"e(co)e '"'dco
) (2.2)

where P=h/Li&T at the temperature T. The spectral
function is related to the Green's functions by

ct(co) = lim [G(co+i cp) G(co i p) ]— (2—.3).
ePco $ q

—++0

The Hamiltonian for the imperfect crystal in the
harmonic approximation is

p-'(t, /)~= 2 2 — +k Z ~-(/, /)~'-p(/, /')~p(/', /), (2 4)
M (l)

LL'

where M, (l) is the atomic mass and 4 p(/, l') is the
force-constant matrix. For a defect of type c&(/,) at l;,
it is convenient to describe the change in mass,

M M, (l,)=—M, e "" (2.5)

and the changes in the force constants from 4,p"(/, /')

to 4&.p (/, /'),

64.p'& '& (l /') =4 p (l l') —C.p'(l /')

by the defect matrix

(2.6)

C ""&(l,l'; co) = 64.p'&'&(/, l')

+M,p.'c if &co'/&. p/I (/, /')/'&(/, /, ) . (2.7)

Hy the equations-of-motion method, it can be shown
(see Paper I) that the relation between the Green's
function for the imperfect crystal, G, and that for the
perfect crystal, P, is

G(l, l', co) = P(l,l'; co)+P P(l, /i,. co) C(l, ,l. ; co)

X 6(/g, /'; co), (2.8)

where the total defect matrix is given by

C(l, l';co) =P C'&cf*&(l,l'co) (2.c&)

In general, forming the total defect matrix by the
addition of independent individual defect matrices is
only satisfactory at small defect concentrations. The

((~l (/); 1/(0))) =c//(l —/') ([~l (/), 8 (0)]),
(retarded Green's functions)

= -/&(/'-/)([& (/), 2l(0)3),
(advanced Green's function),

//(/)=1 /&0 =0 «0
The continuation of G into the upper (lower) half of the
complex frequency plane gives the retarded (a,dvanced)
Green's functions. I (l,l) is the atomic displacement of
the pth atom in the unit cell at Ri with Cartesian co-
ordinate a, cc= (cc,p).

The correlation functions are given in terms of the
spectral function 9 (co),



V I B R A I r 0 N A I. I' R 0 V I: R T I I. S

change of the force constant connecting two atoms
depends, at least, upon whether they are both defect
atoms, both host atoms, or one is a defect atom and the
other is a host atom. In fact, it is quite conceivable that
the change in force constant between two atoms can
depend in a more complicated way upon the local
environment of the two atoms. For short-range forces,
the form of (2.7) and (2.9) will only be valid when the
probability of two defect atoms being near each other
is small, i.e., at small concentrations. Thus when force-
constant changes are important, it is not worthwhile
attempting to find solutions to (2.8), with C in its
present form, to better than first order in the concentra-
tion c. There are no difficulties of this nature when only
mass changes are considered.

It is convenient to adopt a slightly different notation
at this point. The defect atoms are labeled i, are at the
sites 1;, and produce changes at the small set of sites si
around li because of the force-constant changes. Then
(2.8) becomes

6(//'(g) = P(//' a&)+P g P P(/, s, ; ~)C'«*'(s, ,s; ~)
ei ~ I

It is reasonable to assume that 6(/, /'; ~) is dominated
by whether or not the sites l or l' are affected by an in-
dividual defect matrix. This suggests separating out the
GI'een s fullctlons associated with a glveIi defect as
follows:

T'«'&(s;, s ' a&) = P C~i"&(s;,s" au)
e .I I

XX'«"(s "s ' co) ' (2 15)

Equations (2.13) and (2.14) are now averaged over
aB con6gurations of defects. We no longer need to use
the special symbols for the perturbed sites. The average
of the summation on the right-hand side of (2.13) can
be written in terms of a conditionally averaged 6',

p p P(/, /, ; (o)(T'«'&(/i, /2, (0) 6'«'&(/g, /'; ~))

= Q P(/, /i, (o) Q c'T'«3&(/i/2, (o)

&&(6'""(/ /' ))s«& (2 16)

( ) denotes an average over aH configurations and
( )ski,.»&~i,.&... an average conditional on a defect of type
/&(/, ) at /;, etc. The probability that a defect is at /; is
given by the concentration of such defects, c'. The
equation for G~ can be treated in an identical manner.
The final equations for (G) and (6')q are

(G(,/'; (a) )= P(/, /'; (o)+ P P(/, /„(o)

Q [I8(s;,s )—Q P(s, ,s,";a)) C"'&(s,",s,'; (u)]
e ~ ll

)& G(s, /'; (o) =g X'&"&(s,,s, ~)G(s, ', /', ~0)

= 6'"'*'(s /' a)) (2 11)
where

6'«'&(//'(u)=P(//'a))+Q Q P(/s ~)
jQi eject'

g C'~'i&(s, ,s/; (v) 6(s,', /'; (u) . (2.12)

Then (2.10) becomes, on inverting (2.11),

6(/, /';(u) =P(/, /'; ~)+Q P P(/, s, ; ~)

)&T~«*'&(s,,s,', &o)G'i'*'&(s ' /' to) (2.13)

and 6 ls given by

6'""(//'co)=P(/ / co) +P P'P(/s '(o)
jQi e~e&'

)&T' '( «, , 's~s) 6'«i&(s, /'; cu) . (2.14)

T is the usual t matrix describing the scattering of lattice
excitations due to the perturbation introduced by one
defect atom in an otherwise pure crystal. '7 It is given

"M. V. Klein, Phys, Rev. 131, i500 I,
'j.963).

l1l2 l4&l3

Except where explicitly indicated, the sums on the
lattice site labels are now over all sites. It is seen that
a 6' conditionally averaged on r sites is always given
in terms of 6"s conditionally averaged on r+1 sites,
thus generating an infinite set of equations which can
only be terminated by making an approximation.

The special Green's function 6'&"&(//'co) can be
interpreted as the effective field, as seen by the atoms
at the sites involved in the perturbation, caused by a
defect at I», due to a disturbance originating at l'. The
wave has been allowed to scatter oB all the other defects
in the crystal before it scatters oG the perturbation due
to the defect at l». The t matrix describes this "final"
scattering explicitly in (2.17).The effective-field Green s
function will depend, in general, upon the type of defect
it refers to as vill as the configuration of the other
defects in the crystal. We expect it to be made up of a
mean part depending only upon the defect type and a
random part that depends mainly upon the local
environment. It is necessary to proceed to at least the
conditional average on two sites to include this random
part.

The simplest approximation is to neglect the effect
of variations in the local environment and hence the
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random part of the effective-field Green's function, i.e.,
put

(6""'(ll'&))~«2»«~&=(6""'(/i/'~ ~))~«.& (2.19)

This has the somewhat unfortunate consequence of
making (6')i independent of 5, as the remainder of the
crystal has been replaced by some kind of homogeneous
crystal. Iri particular, this approximation will be valid
at small concentrations when there is only a small
probability for adjacent defects. This point will be dis-
cussed further in the next section.

We then find

P Lib(/)/i) —P(/)/2p ~) P c'I' " (4)/1) (o)j

neighbor defects or allowing for the random part of the
effective-field Green's function in some simple manner.
Such possibilities are presently being investigated.

The general approach described in this section was
given originally by Lax' to describe multiple scattering
in a medium of randomly distributed isotropic scatterers
with the emphasis upon obtaining the refractive index
of the medium.

3. SELF-CONSISTENT CALCULATION FOR
FINITE CONCENTRATIONS

Following the discussion after (2.9), we confine our
attention to mass defects in describing a method
suitable for large c. On iterating (2.8), it is clear that
the general form of the result is

Finally
X(6'i'»(/i /'(0))pii )= (6(//'; ra)). (2 20)

(6(/, /'; or))=P(l, l'; (o)+Q P(l, li, (o)
Z1Zg

XX(l,,l, ; cu)(6(4, /'; (o)). (3.1)

(6(l,l', a))) =P(l, l', (o)+ Q P(/, /i; ~)
ZIZoZ3Z4

X P c'T'~'»(/i, 4p a))Y '(/2, /4)co)(6(/4, /', co)). (2.21)

When only one type of mass defect is present in a
cubic system, (2.21) has a much simpler form

The summations are over all lattice sites. In (2.21)
and (2.22) we have given a small-c approximation for
X. We introduce a new self-energy E which will eventu-
ally be our approximation for X. A new Green's func-
tion 6' is defined in terms of K,

6 (l,l'; (v) =P(l, l'; (v)+P P(l, li, co)K(/, ,4; cg)

(G.p(/, /'; cu)) = P.ti(/, /', co)+P E.,(/, /„co)
yZl

Z1Z2

X 6'(4, l'; co) . (3.2)

g /I. ii (2 22) Then writing (2.8) in terms of 6' rather than P, we

1—(1 c)M~c~co'I'»—(0,0; a&) obtam

We previously obtained this result4 by both an itera-
tive method and an intuitive approach which was a
much simplified form of the above argument. The ap-
plication of (2.22) to calculating the density of states,
optical absorption coeKcient, and neutron scattering
cross sections for an imperfect crystal with a small con-

centration of mass defects is discussed at length in that
reference. If the factor Y ' in (2.21) is neglected, and
thus the factor (1—c) in (2.22) which arises from it, the
result is equivalent to those of Langer, ' Maradudin, '
and Takeno. " The (1—c) factor ha, s the important
effect for a light defect (0(e(1) of putting the im-

purity band astride the local-mode frequency due to
one mass defect in the crystal. In the earlier work" '8

the bottom of the impurity band lay slightly higher than
this frequency.

Although the result for small concentrations is not
new, the calculation has been presented in some detail
as it gives a different viewpoint on the approximations
leading to (2.21). All the previous methods are hased on

an iterative procedure. Further, it suggests lines of

possible improvement that may be possible to evaluate
numerically such as including the effects of nearest-

1'S. Takeno, Progr. Theoret. Phys. (Kyoto) 28, 33 (1962);
Suppl. 23, 94 (1962).

6(/, l'~)=6"(l P ~)+g 6&'(/l ~)
ZIZ2

with

'V""'(/i, 4; ~) = —K(/i, 4, ~) for a host atom at.

4 (&=6) (3.4a)

= —K(4,4; (v)+Me(o-'5(/, ,/, )I
for a, defect atom at /, (5=d). (3 4h)

Equation (3.3) has the same form as (2.8), so we can
immediately proceed to the equivalent of (2.]7),

(6(l,l'; co))=6"(l,l'; co)+P 6'(/, li, cu) P c'
ZyZ2

XT (/ l M)(6 ~ ~(l2 l '
cu))i~i i. (3.5)

Note tha, t T is now calculated in terms of 6' rather
than P.

If we now identify K with the exact X, then 6' be-
comes equal to the exact (6) and the scattering term
on the right-hand side of (3.5) is equal to zero. How-
ever, as we have seen in Sec. 2, (3.5) is just the first
equation of an infinite set and approximations are neces-
sary. The principle of our method is to set the scattering
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P c'T'(k, (u) = 0. (3.6)

The simplest possible approximation for large con-
centrations of defects is the virtual crystal where
E(«o) =Ac«ca'I, obtained by replacing T' by V' in (3.6).
To obtain the correct description of the local or resonant
modes due to one defect, it is necessary to proceed
beyond the first iteration of (2.8) to obtain the f matrix.
Intuitively, (3.6) is thus seen to be a reasonable first
approximation for large c. Any better approximation
will wright the t matrices I"and I"diRerently by the
different effective fields 6"and 6".

term equal to zero after making the approximation,
necessary to terminate the set of equations. This will

then give a "best" value for K as our approximation
to X.

The simplest approximation, and the one we will

adopt, is to again neglect the random part of the
effective-field Green's function and use (2.19).That we
are using the same form of approximation for both small
and large t, may seem strange, but the difference lies in
'tllc llsc of 6 latllcl tllR11 P III calculRtlIlg tlic l IIlatliccs
in the present case.

Whether or not, other defects are present near a given
defect can have a considerable eRect on the vibrational
frequencies of the defect. IIowever, for small c there is
only a small probability for such configurations, and the
local environment tends to be that of the perfect crystal.
Thus for small c we calculate the f, matrix using P and
neglect the eRects of environmental fluctuations be-
cause, although they can be large, they occur with small
probability.

At large c, a given defect has in general a considerable
number of other defects in its local environment which
tends to look like the imperfect crystal. This justifies
the use of the modified Green's function to calculate the
t matrices in the present case. Hence we neglect the
fluctuations at large c, because, although they are large
in number, they are mainly weak in strength.

In one dimension, this is a poor approximation, as
the local environment constitutes a small number of
sites as compared with three dimensions. In fact,
Dean~ has shown that the considerable structure found
in his machine calculations even at low concentrations
of light defects is due to the local environment. Even
in three dimensions, at a given low defect concentration,
the approximation shouM be better for heavy defects.
Ke can expect that the modes in the impurity band
are still fairly well localized, even at 6nite defect con-
centrations, whereas the heavy-defect resonant modes
are never localized. Hence the local environment eRects
should be most important in the impurity band.

In the present situation, all the functions 111 (2.21)
depend only upon the distance between the two sites
indicated so we can Fourier transform to k space. Our
condition for obtaining E then gives

Using the explicit forms of V, (3.4), with cP=c and
t.""=1—C) We flTld

E(k,oo) I+—P Go(k, «o) E(kp&)

X I—(1—c)M«oi'6'(oi)+ —P 6'(k,~)E(k,oi)
k

=Mc«io'I, (3.7)

Go(o~) =6'(l l «o) =—Q Go(k,oi).

~ g4(k)~ g(k)p
—'lr (RI—RI )

xp
R —

GO&'

(3.10)

0 '(k) and oi, (k) are the eigenvector and eigenfrequency
for the {j,k) normal mode of the perfect crystal. In
particular, in a monatomic cubic crystal

P (pl, l; )oo= 8 pP(oo) . (3.11)

It is then consistent to assume E(«o) is diagonal and
rewrite (3.9) in the form

«(oo) c«= «(oi) L««(co)]GPG («o) &

with
E(«o) =M «(«o)«o'I

(3.12)

(3.13)

(3.14)

Equation (3.14) is obtained from (3.2), (3.10), and
(3.13), on replacing the summation over the quasi-
continuous set of modes (j,k) by an integration over
co' and using a phonon density of states for the perfect
crystal I («o') that is normalized to unity.

As 6' and e must have the same analytic behavior,
then, in regions of zero density of states where
Im«(oi) =0,

(3.1S)

where cu, is the maximum frequency in the phonon
density of states I («o). There is no requirement that «(iv)
should diverge in any gap that might develop in the

Thus E(k,oi) is independent of k, and further sim-
plihcation gives

E((v) —iVc««o'I —E((o)LM««o'I —E(oi)76o(oo) =0. (3.9)

6 ls also related to E by (3.2) II1 tclIlls of P wllicll is
given by (I)

P p(/, 1';oi)=
Ã(M M')II'
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2
v'(cu) =— v(co') dko' Im

X'CO a)'[1—«((v)]—o)"
(3.16)

In the one-phonon approximation, the neutron scat-
tering cross section ls grven by (I)

density of states although we shall see in Sec. 5 that for
certain values of e and c it can do so.

Upon the solution of the self-consistent equation
(3.12) we can obtain several correlation functions that
describe some of the dynamical properties of the im-
perfect crystal. The density of states is given by

crystal. In the small-concentration result (2.22), we see
that the self-energy is real for &v)co as E(&u) is real in
this region. However, for suitable «(0(«&1), an im-
purity band can form in this region. Thus 6 is complex,
but the self-energy is real in the impurity band. Davies
and Langer removed this inconsistency by replacing the
unperturbed Green's function by the perturbed func-
tion in the t matrix in Langer's first-order result. ' Their
resulting self-consistent equation for the one-dimen-
sional case ls

with

y [S.a '(k, (o)+5;...h'(k, o&)], (3.17)

g,.h'(k, cv) = (A),„'P [k e'(k)]' ImG, '(k, (o), (3.18)

for a neutron scattered from k~ to 'k2, k=4~ —k2, into
solid angle dQ with energy change X=A~. (A')., and

(A), are the thermal averages over the scatteringlengths
of the spin states of the scattering nucleus and include
the Debye-Wailer factor. We have assumed equal scat-
tering lengths for both defect and host atoms, but this
restriction can be lifted by using methods described in I.
The result is to produce the following replacements in
(3.18) and (3.19):

(3.20)

The behavior, with respect to c and cv, of the three
correlation functions in (3.16), (3.18), and (3.19) will

be described in Sec. 5 along with the numerical solution
of (3.12).

Because of the form of (3.16), the density of states
will remain correctly normalized to unity for all c. We
have previously shown (I) that the exact G(ca) must
satisfy the following sum rule under all circumstances:

Although only introduced from the analytic stand-
point, (4.1) could be considered to describe an imperfect
crystal with a value of c that is greater than that for
which the first-order theory is valid. The reasoning is
similar to that used in giving meaning to the use of 6'
to calculate the t matrices in Sec. 3. Equation (4.1) leads
to a, quartic equation for a function whose imaginary
part is the density of states for the imperfect crystal.
On solving this equation with &= 3, we find that the
top of the impurity band has exceeded the frequency
cu„'=~„(1—«) '" by c=0.15, although the gap between
the main band and the impurity band does not close till
around c=0.22. This is a highly unphysical result for
there can be no frequencies in the system which exceed
the maximum frequency of a crystal made entirely of
the light-defect atoms, as follows from the arguments of
Rayleigh. '0

This result is undoubtedly due to the fact that the
defect and host atoms have not been considered on an
equivalent basis. For a disordered crystal containing
atoms of mass M~ and 3f~, the final result for the cor-
relation functions and the density of states shouM be
independent of which type of atom is considered as host.
If («",X"(k,co)) describes such a crystal with the type-A
atoms considered as host and (F,X~(k,o&)) describes
the opposite situa, tion, then this defect-host symmetry
applied to (3.1) leads to the relation

M"«"X~(k,cu)+M~«sX" (k, (o) =M "M~«"«s(u'I. (4.2)

cu ImG(co)d(a=a —+—. (3.21)
M" M"

It is easy to show that G'(~), in our approximation, still

satisfies this sum rule.

4. OTHER SELF-CONSISTENT CALCULATIONS

Davies and Langere have given the only other self-

consistent calculation for the dynamics of an imperfect

~9 I,. Van Hove, Phys. Rev. 95, 249 (1954).

Our result, (3.12), satisfies (4.2), whereas (4.1) does not.
It would seem necessary that any theory describing
large defect concentrations should satisfy this symmetry
condition.

Recently Yonezawa and Matsubara" have shown

what is necessary to give the iterative type of solution
this symmetry. On averaging the iterated form of

'0 See for instance A. A. Maradudin, K. W. MontroH, and
G. H. gneiss, Solid State Phys. Suppl. No. 3 (1.963).

2' F. Yonezawa and Y. 1gatsubara, Progr. Theoret. Phys.
(Kyoto) 35, 357 (1966),
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(2.8), care has to be taken that no more than one defect
can be on a given site. This necessitates partitioning all
lattice-site summations such that none of the summation
indices can be the same. After averaging, these restric-
tions must be removed in some manner to enable a
closed form of the solution to be obtained. Langer's
first-order result for the self-energy is obtained by
summing only those proper diagrams containing one
defect vertex and treating the restricted summations

by a random-phase approximation. "However, if the
restricted summations are treated exactly, these first-
order proper diagrams are multiplied by a set of poly-
nomials in c rather than just c. Leath and Goodman"
have recently evaluated these polynomials. Parts of
these polynomials arise from treating the restricted sum-
mations which contain factors equivalent to proper
diagrams with more than one defect vertex. In I we
obtained the (1—c) factor in (2.22) by neglecting these
contributions to 'the polynomials in evaluating the re-
stricted summations. Vonezawa and Matsubara give a
calculation similar to that of Leath and Goodman but
for the equivalent electron problem. They further
demonstrate that if the result is made self-consistent
by the same method used by Davies and Langer, it
then satisfies the defect-host symmetry condition. The
resulting self-consistent equation is, in our language,

2-

0
0

2-

0
0

2-

0
0

(l) E' ~ 2/3, . C 0.10

1 2

(Ill) 0 ~2/3, C~0.50

X

2 3

nr~
JL ~ II I llal

2
X2

(L, W 6 ~2/3, C 0.26

cp expLtw)-'Gp(co) $
dte '

1—c+c expLtp~ Go(~)]
(4.3)

FIG. 1.Comparison in one dimension between the self-consistent
calculation (solid line) and Dean's calculations (histogram) for
c=-, and (i) v=0.10, (ii) c=0.26, (iii) v=0.50.

This is more complicated to solve than our result
(3.12) and does not appear to satisfy the sum rule (3.21).

We note that Maris" has recently given a treatment
for a disordered crystal that is valid at all concentra-
tions. It involves an expansion in p/(1 —p) which is
only taken to third order, self-consistency being included
to prevent divergences. As such it is only applicable to
small changes in mass and cannot describe the behavior
of the impurity bands that arise from the local modes.

S. SOLUTION OF THE SELF-CONSISTENT
EQUATION

A. One Dimension

As we discussed in Sec. 3, the approximation (2.19)
leading to (3.12) is rather poor in one dimension at
finite concentrations. Thus we give only a brief descrip-
tion of the one-dimensional solution of (3.12), mainly to
afford a comparison with the previous self-consistent
calculation of Davies and Langer. '

For a linear chain, connected by nearest-neighbor
spring-force constants, GP(pp) is easily evaluated':

GP((a+ i0+)

(5 1)
(o 'xL1 —p(x))"'( 1—x'Ll —p(x)j)'t'

"P.L. Leath and B. Goodman, Phys. Rev, 14$, 968 (1966)."H. J.Maris, Phil. Mag. 13, 465 (1966).

and (3.12) gives a cubic for p(co),

ap p(x)'+aip(x)'+app(x)+ap ——0,
ap ——2x'L1 —p(1 —c)]—1,
ai ——x'Lp'(1 —c')—(1+4cc)j,
ap=cpt cp 2(1+—cc)(1 x')g, —
ap= (cp)'(1-x') .

(5.2)

We consistently use the notation x=~/cp throughout
the numerical work of this paper.

The density of states is finite when (5.2) has a com-
plex root; the real root that is always present is dis-
carded as unphysical. The density of states, as a func-
tion of x', is then evaluated using (3.16) for p= p and
c=0.16, 0.26, 0.50 and compared with Dean's results'
in Fig. 1.Although none of the structure in the impurity-
band region is given by our method, we do seem to have
a fair over-all description of the effects of increasing
the concentration.

To be able to obtain any of the impurity-band struc-
ture, a better approximation than (2.19) is required
that takes into account the local environment. Any such
procedure will undoubtedly lead to a k-dependent self-
energy E(k,a&), with the resulting integral equation
being far more dificult to solve than (3.12).

In Fig. 2 we compare our calculation with that of
Davies and Langer for &=3 and c=0.10. The much
broader impurity band of Davies and Langer that
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2.0

& ~ 2/3, C ~0.10

EV

1.0K

0
0 2 3

Fro. 2. Comparison in one dimension between our self-consistent
calculation (solid line) and that of Davies and Langer (dashed
line) for e ——-'„c=0.10.

eventually leads to the unphysical condition described
in Sec. 4 is clearly seen.

One feature in common between both these self-
consistent calculations is the reduction in the maximum
frequency of the original phonon band as light defects
are added. In this one-dimensional calculation, the
change is too small (at most about 2%) to see in Dean' s
work. However, as we will see in the next part of this
section, it is quite appreciable in three dimensions.

3. Three Dimensions

The only information we need about the perfect
crystal into which we are introducing the defects is its
density of sta, tes. As a realistic situation we chose to
use the copper density of states due to Sinha. '4 YVe con-
centrated upon the case of e= —2.1 as this corresponds
to gold in copper, the system investigated by Svensson
et al.25 using inelastic neutron scattering.

This density of states is taken as a 42-point histogram,
and the integral (3.14) is done analytically in each in-

terval. Equation (3.12) was finally solved by an iterative
procedure based on Newton's method applied to a,

function of a complex variable. A convenient starting
point is at low frequencies when we can expect Res(~)
=cs and just give a, sufficiently large value for Ims(cu)
so that the method can converge on a complex root
rather than a, real one. We then proceed to higher fre-
quencies in small steps of ~, using the previous value
of e(&o) as a starting point at each stage. Such a pro-
cedure works well over most of the frequency range,
converging at better than one decimal place per
iteration.

However, when a ga,p develops e(~) varies rapidly
with ~ in the region around the gap and may even

~ S. K. Sinha, Phys. Rev. 145, 422 (1966)."E.I-. Svensson, B. N. Brockhouse, and J. M. Rowe, Solid
State Commun. 5, 245 (1965).

0.4

(1 ) c --2.1

c 0.25
(t, t, ) e - -2.1

c ~ 0.75
0

(l. l. l, ) 6 ~ -2,1

c ~ O.S5

0
x

g) -0.4
0'

-0.8
-10—

1.0

Nl

0.5
H

0.5
X

1.0 0 0.5
0

1.0 0 0.5 1,0

FzG. 3. Behavior of e(x) as a function of x for ~= —2.1 and (i)
c=0.25, (ii) c=O.7S, (iii) c=0.95.

diverge. As a result this proves to be a difficult region
to solve (3.12). By choosing a very small frequency
interval between successive stages, the solution of (3.12)
can always be followed into the gap from below but
not from above. This difhculty can be alleviated to
some degree when s(co) is large by considering (3.12) as
a function of e(co) '.

The various types of behavior of s(cu) for e= —2.1
are illustrated in Fig. 3. At c=0.25 we see the typical
resonant behavior, familiar from the small-concentra-
tion results (I), which can be thought of as indicating
the frequency at which the heavy defects prefer to
oscillate. As the concentration increases this resonant
characteristic becomes more exaggerated and moves to
higher frequencies. When a gap appears, Res(o~) may
diverge as illustrated in Fig. 3(ii) for c=0.75. At even
larger values of c, Res(~) takes on a different behavior
in the gap with the divergence disappearing as shown in
Fig. 3(iii) for c=0.95. Although this is a rather low
defect concentration for (3.12) to be applicable, it is
shown because this type of behvaior dominates for
smaller values of the defect-host mass ratio. As ex-
pected, Res(co) has slope discontinuities at the band
edges although they are sometimes too small relative
to the general slope of Res(~) to be seen in Fig. 3. The
cusp for c=0.95 is an extreme example of such a
discontinuity.

In the troublesome region at the bottom of the im-

purity band e(co) is large and we can expand (3.12) in
terms of c(co) '. It is necessary to expand out to e(&u)

'
as the coeKcient of the linear term can vanish for
certain interesting values of the parameters. It is this
vanishing that leads to the change in behavior of
Res(&o) in Pigs. 3(ii) and 3(iii). The behavior of e(cg) '
is shown in Fig. 4 for c=0.75, 0.90, and 0.95. As

Res�

(co)

leaves the main band nega, tive in the iteration method. ,
we can immediately see why this method follows the
lower (heavy) line in Fig. 4 leading to the two types of
behavior shown in Fig, 3. The expansion of the G-reen's
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function is better the larger the value of co. The dif-
ference between the iteration and expansion values of
c(co) around the bottom of the impurity band is less than.
5% for c=0.95 (a& =0.66cu ), but of the order of 50% for
c=0.75 (~=0.56cu ).

At the resonance [Re~(a&) =0 in Fig. 3(i)] Ime(cu)
has the usual peak. As c increases and the gap appears,
this peak is split as can be seen in Fig. 3(ii) and 3(iii).
The physics of the detailed shape is not clear. However,
as we are effectively calculating the response of the
crystal to wave-like excitations of definite k, it is not
surprising that damping of these excitations is much
greater in the impurity band, which has formed from
the localized modes, as compared with damping of
excitations in the main band.

As implied at the beginning of this subsection, if we
start out with too small a value of Im'(co) in the low-
frequency region the iteration tends to lock onto a
purely real value of e(co). We also note that the expan-
sion procedure indicates the presence of several real
roots in the gap. However, we never found any indica-
tions of more than one complex root. The real roots can
be discarded as unphysical if in the band region [just

-0.25—

FrG. 4. Behavior of ~(x) ' in the vicinity of the bottom of the
impurity band, as given by the expansion of (3.12) in terms of
~ (x) ', for c= —2.1. and (i) c=0.75, {ii) c=0.90, (iii) c =0.95.
Solid line, Re ~ (x) ', dashed line, Im e (x) l. Iteration procedure
follows heavy solid line.

a,s we discarded the ever present real root of the cubic
(5.2)j or as of no physical interest if in the gap region.

Having evaluated ~(cu) we are now in a position to
obtain the various correlation functions. The behavior of
the density of states v'(co), and ImG'(a&) is shown in Fig. 5.
The two functions behave in a similar manner but the
different relative magnitudes of their structures could
be important experimentally. These numerical results
satisfy the sum rule (3.21) and give the correct nor-
malization of v'(co) to better than 1%, providing a good
check on the iteration.

As c increa, ses, the resonant peak grows and widens
a,nd eventually begins to show the structure of the
pure density of states v(co). This is not surprising if we
consider the peak as being due mainly to the motions
of the heavy-defect atoms. The structure due to v(~)
that appears in the peak moves very little with increas-
ing c in contrast to the structure at the larger values of
co which tends to move to lower values of co. This can be
understood to some extent from the arguments of
Rayleigh, "the modes in the main band being tied down
to a large extent by a large number of neighboring ones
whereas those in the impurity band are somewhat freer
to move.

In Fig. 6, we show the behavior of the band edges
as a function of c. The width of the impurity band
behaves like (1—c)'" to the accuracy of our calculations,
a,nd its midpoint decreases with decrea, sing c. The most
interesting feature is the reduction in the maximum
frequency of the main band as light defects are added
(1—c increasing). The erosion of the strength of the top
of the main band in forming the impurity band is ex-
pected, but our theory indicates that the erosion is so
great as to completely remove the top of the band. In a
general discussion of the equivalent electron problem,
I,ifshitz" predicts a behavior of the main band edge
that is in agreement with our result.

5 ———
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FIG. 5. Density of states v'(x) (solid line) and ImG'(x) (dashed
line) for the imperfect crystal with ~= —2.1 and (i) c=. 0.25, (ii)
c=0.50 (ill) c=0.75.
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It is of some interest to compare our self-consistent
result for the density of states with that given by the
small-concentration result (2.22). This is done for
c=0.10, 0.90 in Fig. 7. The two curves agree quite vrell

for v=0.10, which is not. too surprising as the Ructua-
tions in the effective field have been neglected in both
calculations and there are no analytic inconsistencies in
(2.22) in this case. However, it does suggest that the
disagreement found by Svensson et at'.25 between the
frequency shift of the lattice modes, due to 9.3%%uq gold
in copper, as given by (2.22) and that obtained from
their inelastic coherent neutron scattering data is not
a concentration eGect. It would thus seem necessary to
invoke force-constant changes and/or departures from
purely random disorder to explain their result. For
c=0.90, the two results do not agree in the impurity-
band region although the areas under the two curves
equal (1—c) (as do all our impurity-band results) and
both are centered on the local-mode frequency ~J„. Ke
also note that the small-concentration result gives the
width of the impurity band as proportional to 1—c, in
contrast to our result of (1—c)'".As this is the region
where (2.22) has analytic inconsistencies, these dif-
ferences are to be expected. It can also be argued that
these trvo concentrations are in the no man's land where
neither approximation is particularly good.

Some other values of ~ were briefly investigated to
check various trends. For instance, @&hen the ratio of
the defect to host mass decreases the gap between the
main and impurity bands closes at lower concentra-
tions of the light defect. The trend was notevaluated
quantitatively as this is an extremely dificult region
ln wlllcll to solve (3.12). Fill'tllcl, wc considered tllc

0.8

—(dL~ 1,28(d ~

O,e—

0.4—

r

0

1

0.50
c

FIG. 6. Behavior of the band edges as a function of c for e = —2.1.
The dashed line gives the position of the resonance t'Re~(&o) =Oj.
The computed points are indicated by the solid circles.
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PIG. '1. Comparison between self-consistent I'solid line) and
first-order (dashed line) densities of states for ~= —2.1 and
c=0.10 and 0,90.

The behavior of its peaks as a function of c indicates
how the presence of defects shifts the phonon fre-

quencies, such as %OUM be seen by coherent neutron
scattering (3.18). This function contains a considerable
amount of detailed information about the dynamics
of t'he imperfect crystal and as a consequence seers
most from our approximation.

The spectral function tends to show a response at
two frequencies (for c nonzero). For low c, one of these

may be identified as being due to the heavy-defect
resonance and the other is near cd, (k). For oI, (k) well

away from the resonance, the response at the reso-

behavior of I'(o&) when the value of e is less than that
required to produce a local mode (e,„=0.35 for the

copper density of states in use). As the concentration
of the light defects is increased, a shoulder develops
on the density of states above ~ instead of a separate
impurity band. There is also a drift of the structure of
I'(oI) to higher frequencies with increasing defect con-
centration. This is to be contrasted to the previously
described situation for e&e,„but is in general agree-
ment with the discussions of both Takeno" and
Lifshitz. "

The spectral function is given by

ImG&'(k, oI)
co Ilrle (o&)

(3.3)
{c0'D Res(cd) j—c0,'(k) )'+—[oI' Ime(co) j'
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for the simple cubic lattice. " For light-defect con-
centrations greater than this and at low concentrations
of heavy defects our results are in excellent agreement
with PV's.

A further point is the behavior of the gap between
the main and impurity bands. We found in Sec. 5.8
that the maximum frequency of the main band de-
creases as light defects are added. It is seen in Figs. 9(iii)
and 9(iv) that this is in agreement with the work of PV.
However, our gap persists to larger light-defect con-
centrations along with the prediction of a slightly
narrower impurity band.

The detailed structure at very low frequencies is due
to the ragged density of states that we use and to the
fact that Im~(co) goes to zero at zero frequency. Hence
we have not pursued the solution of (3.12) into this
region.

We would like to thank Dr. Payton for evaluating
the histogram densities of states shown in Fig. 9 so
that we could make this comparison.

B. Experiments on Disordered Crystals

There are two recent experiments on the dynamical
properties of disordered crystals over a range of con-
centrations. Verleur and Barker'~ have investigated the
optical reflectance of the GaAs-P system. This system is
too complicated for our theory to apply and they also
find there are large departures from purely random
disorder. However, it is of interest to note that they
find a qualitatively similar behavior of the optically
active modes to that which we show in Fig. 8. The
frequency oi the local mode due to P in GaAs increases
smoothly as P is added, eventually approaching the
transverse optic (TO) mode for GaP with a similar

behavior for the TO mode of GaAs. At large defect
concentrations, they see several other modes that they
attribute to departures from random disorder.

The Ge-Si system investigated by Logan, Rowell,
and Trumbore" (LRT) using phonon-assisted electron
tunneling in p-&z junctions is a better case for applying
our theory. Although the lattice has two sites per unit
cell they are equivalent and the only difficulty is the
assumption of just a mass change. An examination of
the dispersion curves for Ge" and Si ", as obtained
from inelastic neutron scattering experiments, indicates
that there are topological differences between the two

sets of curves, particularly along 6, that cannot be ob-
tained by scaling. However, the zone-boundary phonons
do scale by between 0 55 and 0 60 ((1IIIs;/Mo, ) 'i'= 0.62$
and, as the experiments see phonons out towards the

'" M. K. Fisher, J.Math. Phys. 2, 620 (1961).
2' H. W'. Verleur and A. S. Barker, Phys. Rev. 149, 715 (1966).
"B.N. Brockhouse and P. K. Iyengar, Phys. Rev. 111, 747

(1958).
29 G. Dolling, in Inelastic Scattering of Sentrons in Solids and

Iiguids (International Atomic Energy Agency, Vienna, 1963),
Vol. 2, p. 37.

zone boundary, it seems worth while to pursue the

comparison.
The mimimum conduction-band energy in Ge is at I.

and along 6 at about (0.85, 0, 0) for Si.'0 Thus an
electron tunneling between the valence-band maximum
at 1 and the conduction-band minimum must either
emit or absorb a phonon of the appropriate wave
vector in order to conserve crystal momentum. In
tunneling across p-zz junctions in heavily doped semi-
conductors, there are inflections in the I-V characteristic
as the bias is increased to such values that the tunneling
electrons can emit phonons of the appropriate wave
vector. "LRT used electronic mea, ns to plot d'I/dV'
against V as these inflections then appear as peaks,
considerably aiding their location. As their junctions
were made by alloying to form the p-type material in
an e-type wafer of the Ge-Si alloy, they adjusted the
doping of the alloy so that the transitions took place
towards the e-type side of the junctions rather than the
nonuniform p-type side.

There is considerable evidence to indicate that the
band structure of Ge-Si alloys varies linearly with con-
centration. "Both the optical"" and transport" pro-
perties of the alloys indicate that the minimum con-
duction-band energy moves from I. to along 6 as the
concentration of Si exceeds about 0.15.As the minimum
of the conduction band along 6 in Ge also lies at about
(0.85, 0, 0), we assume that it also lies here in the alloys
having Si concentrations greater than 0.15.

In a disordered crystal the wave vector is no longer
expected to be a good quantum number. However,
because it is possible to obtain the behavior of the
optical energy gaps" in a clear manner in the Ge-Si
alloys and because the band edges move almost linearly
with concentration, it would seem a reasonable approxi-
mation to assume that the wave vector is a good
quantum number for the electrons. The work of Soven"
suggests the same conclusion. Thus in the assisted
tunneling in the Ge-Si alloys, the tunneling electrons
are measuring the vibrational response of the crystal
at a given wave vector as a function of frequency
(bias voltage). This wave vector equals (2zr/a) (-,',—,', -', )
for 0.85(c&1.0 and (2zr/a) (0.85,0,0) for 0(c(0.85,
where c is the Ge concentration.

In order to compare theory and experiment we have
solved (3.12) for c=0.25, 0.50, and 0.75 using the recent
Si density of states of Boiling and Cowley. '7 So that
the frequencies at c=o, 1 are approximately correct,

"See for instance M. L. Cohen and T. K. Bergstresser, Phys.
Rev. 141, 789 (1966).

» For a review see E. 0. Kane, J. Appl. Phys. 32, 83 (1961)."J.C. Phillips, Phys. Rev. 125, 1931 (1962).
~ E.R. Johnson and S. M. Christian, Phys. Rev. 95, 560 (1954).
'4 R. Braunstein, A. R. Moore, and F. Herman, Phys. Rev. 109,

695 (1958).
O' M. Glicksman, Phys. Rev. 111, 125 (1958)."J.Yauc and A. Abraham, J. Phys. Chem. Solids 20, 190

(1961).
37 D. Dolling and R. A. Cowley, Proc. Phys. Soc. (London) 88,

463 (1966).
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