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It is shown that phase matching in harmonic generation may, in principle, be achieved in a nonlinear
medium which has appropriate optical rotatory dispersion. The treatment follows the analysis of Franken
and Ward whereby the resultant radiative output of a dipolar array generated by a laser beam is obtained.
For specific cases without double refraction, the relative intensities of second- and third-harmonic radiation
are calculated, new phase-matching conditions are derived, and the nature of harmonic radiation in the

presence of optical rotation is examined.

INTRODUCTION

HEORETICAL investigations have shown the
crucial role of dispersion in the generation of
optical harmonic radiation by a laser beam.™® In
the limit for which the incoming fundamental wave is
not depleted in traversing a distance / in the medium,
the resultant intensity of second-harmonic generation
(SHG) shows an oscillatory behavior which is dependent
on the dispersion of the medium,

sin221(Ak) suc

1
(Ak)su? M

Ispg e

The magnitudes of the wave vector at the fundamental
frequency and the second harmonic are given by k4
and ks, respectively, and

(AR) sag=ko—2k;. (2)

The condition for the initiation of growth of harmonic
radiation is apparent from Eq. (1). [sug increases with
/% when

(Ak)sne=0, 3)

the so-called phase-matching condition.

The intensity of third-harmonic generation (THG)
follows a similar form when the fundamental wave is not
depleted,*

sin?2/(Ak) trg
Itpg o ——— y (4)
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where
(Ak)rHG=k3—3k1, (3)

k3 referring to the wave vector at the third harmonic.
Phase matching similarly occurs for

(Ak)THG=0. (6)
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The above solution for THG also requires that the
quadratic Kerr effect can be ignored.! This assumption
will be continued throughout the present discussion.

The general oscillatory variation predicted by Eq. (1)
has been experimentally observed,® and the use of
birefringence properties of anisotropic crystals has led
to phase matching and enhanced harmonic produc-
tion.>% Other schemes for the achievement of phase
matching have been discussed, including the stacking
of specially cut crystal plates,® the use of internal
reflections in a crystal,! and waveguide-type crystal
resonators.”

The purpose of the present paper is to explore the
conditions under which optical rotatory dispersion may
lead to phase matching in harmonic generation, and the
possibilities for achieving such conditions in available
materials. In addition, several characteristic features of
optical rotatory dispersion in a nonlinear medium are
discussed, and these are amenable to experimental con-
firmation. In principle, the optical rotation may arise
from either natural optical activity of the medium, or
from magneto-optic rotation as in the Faraday effect. An
interesting discussion of frequency mixing in optically
active liquids has already appeared in the literature.®

The physical basis for anticipating that optical
rotatory dispersion may be employed in phase matching
in both SHG and THG is as follows. It is well known
that Egs. (1) and (4) have associated with them a critical
length called the coherence length /e.n Which is equal to
w/Ak. In this distance, the harmonic light wave shifts
in phase by an amount 7 with respect to the nonlinear
polarization wave. This phase mismatch leads to the
zeros of Egs. (1) and (4), and physically is correlated
with the harmonic radiation flowing back into the
fundamental wave. It would appear that optical rota-
tion offers the possibility of compensating for the above-
mentioned phase mismatch since rotation of the plane
of polarization of the harmonic light wave by an amount
7 is equivalent to a phase shift of «. Thus in the pres-

§ P. D. Maker, R, W. Terhune, M. Nisenoff, and C. M. Savage,
Phys. Rev. Letters 8, 21 (1962).

6J. A. Giordmaine, Phys. Rev. Letters 7, 19 (1962).

7 A. Ashkin, G. D. Boyd, and D. A. Kleinman, Appl. Phys.
Letters 6, 179 (1965).

8 J. A. Giordmaine, Phys. Rev. 137, A1599 (1965).
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F16. 1. Schematic representa-
tion of waves moving along
the optic axis of a rotatory dis-
persive crystal of class 32 for
SHG. The right-hand diagram
is a view from the exit face of
the crystal in which the propa-
gating waves are directed out
of the paper.

ence of rotatory dispersion, where the difference of rota-
tion between the fundamental and harmonic waves is
adjusted to an amount === in a length J.n, the harmonic
light and polarization waves should be in phase. If the
comparatively smaller rotation at the lower or funda-
mental frequency is ignored, matching is likely to be
achieved when leen™>==m/a, where « is the specific rota-
tion at the harmonic frequency. Thus a typical match-
ing condition might likely be given by

Ak~q (7)
for either SHG or THG.

THEORY

The above physical considerations provide the incen-
tive for a more detailed investigation of possible phase-
matching conditions when optical rotatory dispersion
is present in a dispersive nonlinear medium. The opti-
cally active, uniaxial crystals of the point group 32 have
been selected for evaluation in the case where wave
propagation occurs along the optic axis. Both SHG and
THG are evaluated and, as will be pointed out later,
the THG treatment is equally valid for the case of
isotropic rotatory dispersive media. The effects of
rotatory dispersion are not further complicated by
double refraction because of the selected direction of
propagation, and the medium is assumed to be trans-
parent at the frequencies of interest.

Quartz,® which is perhaps the most studied crystal
from the point of view of rotatory dispersion, falls into
the crystal class 32. The specific optical rotation of
quartz and other inorganic and organic crystals of class
32 are generally available in tabulated form.! Cinnabar
(HgS) is one of them which is well known for the extra-
ordinarily large rotation it produces. The class 32 has
the property of enantiomorphism, in which both right-
and left-handed crystalline forms exist. These forms are

9 For a discussion of the rotatory power of quartz see, for ex-
ample, R. B. Sosman, The Properties of Szlzca (The Chemical
Catalog Company, Inc New York, 1927), p

 Landolt-Birnstein Zahlenwerte und Funktwnen edited by
K. H. Hellwege and A. M. Hellwege, (Springer- Verlag, Berlin,
1962), Vol. 11, Part 8, pp. 434-442.
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mirror images which are not superimposable upon one
another in space. For purposes of this discussion it will
be assumed that we are dealing with the left-handed
form.

In the analysis which follows, the method of Franken
and Ward?® will be employed, whereby the resultant
radiative output of an array of dipoles generated by a
laser beam is obtained. The dipoles are considered to be
oscillating at the harmonic frequency and the incoming
fundamental wave is assumed to be unattenuated
throughout the medium. Franken and Ward have
applied this treatment to the case of SHG in an isotropic
medium without rotatory dispersion, and obtained the
result quoted above in Eq. (1). For the cases of SHG
and THG to be treated here, anisotropic properties as
well as the rotatory dispersion of the medium are
accounted for.

A. Second-Harmonic Generation

The physical situation is depicted in Fig. 1. A plane
monochromatic wave E¢(z,t) of frequency w and wave
vector k; is propagating in the z direction, and it is
polarized along the x axis when incident on the front or
z=0 plane of the crystal. The crystal axes are chosen so
that the z axis corresponds to the threefold axis or optic
axis of the crystal, and the x axis to a twofold axis. The
crystal is considered to be of sufficient extent in the x-y
plane so that edge effects are not important and of
length ! along the z axis. Unit vectors 4, 7, and £ are
defined in the usual way.

Upon propagating a distance z into the medium,
optical rotation produces a left-handed rotation!! of the
plane of polarization of E¢ by an amount 6, in the x-y
plane, where

01= a1z, (8)

a; corresponding to the specific rotation at the funda-
mental frequency w. The fundamental wave at this

1 The convention of left-handed rotation corresponds to
counterclockwise rotation of the plane of polarization as the light
wave approaches the observer. This is the situation in left-handed
quartz. See e.g., J. F. Nye, Physical Properties of Crystals (Oxford
University Press, London, 1964), p. 261.
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point has both x and y components, £.© and E,*
and is described by

Ee(z,t) =%E, sin(k1z—wt) cosfy
+ 7Ey sin(k1z—-wt) sinfy.  (9)

The associated second-order polarization P2?¢(z,f) which
is generated has both nonvanishing x and y components?:

Pro=du[ (E.*)— (Ey*) ]+ duE, E2, (10)

Pwa = d14Ewazw___ Z(leEwayw 3
and
Pro=0,

The second-order susceptibility coefficient dy4 does not
contribute in the present problem with E.*=0, and
more generally, as a result of the Kleinman symmetry
condition.!? The coefficient dy; is positive for the left-
handed form of crystal class 32, here under considera-
tion. Substitution of the components of Eq. (9) into
Eq. (10) gives

P2e(z,t) = pd1 Eo? sin2(krz—wl) , (11)

where the unit vector p is  cos26;— 7 sin26,, indicating
that P2?¢ is directed along — 26y, in the x-y plane when
E¢ is in the direction +6;. Thus the second-order
polarization wave is right-handed or in opposite sense
to the fundamental, and the magnitude of its rotation
about the z axis is twice that of the fundamental.

The polarization wave described by Eq. (11) contains
both a dc and second-harmonic component, i.e.,
sin?(kiz— wt) = 3[1—cos(2k1z— 2wt) ], and it is the latter
which is of interest here. Thus the harmonic component

P2 o« cos(2ki1z—2wt) , (12)

directed along p, acts as the source of SHG in the
medium. Clearly the second-harmonic light wave E*
is polarized along the p direction, but is rotated in the
left-hand sense an amount @ in traveling a distance
I—z to the exit face of the medium, owing to the rotatory
dispersion. Thus,

02=a2(l—2) 5 (13)

where as is the specific rotation at the second-harmonic
frequency. The problem reduces to summing all of the
E2¢ contributions at the exit face due to the second-
order polarization elements of the form of Eq. (12)
distributed throughout the medium. Written in dif-
ferential form, the incremental second harmonic at the
exit face, dE2+(] 1), generated by the polarization within
the element dz is given by

dE?(l,t) « dz cos[ 2k1z—2w(t—1)], (14)

and for purposes of this calculation the constant of
proportionality need not be evaluated. The time ¢ is re-
placed by ¢t—¢ in order to give the proper time phase to
E2¢ which travels a distance /—z in the dispersive

12D, A. Kleinman, Phys. Rev. 126, 1977 (1962); R. C. Miller,
bid. 131, 95 (1963).
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medium. ¢ is the transit time over this distance.
V=(—2)ks/ 2w, (15)

where k& is the wave vector at the harmonic frequency,
20.

Tt is now convenient to sum the various harmonic con-
tributions at the exit face of the medium separately in
the « and y directions. Thus from Eq. (14), the inde-
pendent x- and y-harmonic components are

1
E2(lt) « / dz cos[ 2k1z— 2w(t—1')] cos(6:—26;)  (16)
Jo

and ,

E_,,ﬁ"’(l,l)m/ dz cos[ 2kiz—2w(t—1') ] sin(0,—26y). (17)
0

The necessary angular relationships are shown in the
right side of Fig. 1 for the light waves approaching an
observer situated along the z axis. Upon substituting
expressions contained in Egs. (2), (8), (13), and (15),
and using the shorthand notation

(Aa) s = t2ar, (18)

it follows that

1

E,,“(l,t)oc/ dz cos[ lka—2(Ak) sne— 2wl ]
0

X cos[anl— (Ae)snaz]  (19)

and z

]‘:y‘lw(l,l) o« / dz COSI:Z]GQ-Z(Ak) SH(}—ZLO[]
O Xsin[asl— (Aa)sugz].  (20)

These integrals are easily evaluated in closed form and
converted to the following harmonic functions:

E2o(Lt) < [A24-24 B cos[ (2c1— a)l ]4- B2J /2

Xsin(6—2wt) (21)
and
E2o(lt) = [42—24B cos[ (2a1—aw)l |+ B2]?
Xsin(6'—2wt), (22)
where
( Sln%l[(Ak) SHG — (AO[) sn(}]
(AR)swa—(Ad)sna
» sin3I[ (Ak) sua+ (Aa) suc |
(AR) sna+(Ad) sia
— A cosBr—B cospa
0= arctan[ ———— — ] s
A sinBi+ B sinBs
A sinB1— B sinBs
&= m‘ctanl:——u——;————i] ,
A cosB1— B cosfa
and

Br= U ks—ar~3[(Ak) snc— (Ad)sna ]}
Bo=1{katar—3[(Ak) sua+ (M) sma |} -
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Fi16. 2. Schematic representa-
tion of waves moving along
the optic axis of a rotatory dis-
persive crystal of class 32 or
a rotatory dispersive isotropic
medium for THG. The right-
hand diagram is a view from
the exit face of the medium in
which propagating waves are
directed out of the paper.

E“’(o,i)

The relative intensity of second-harmonic radiation
at the exit face of the crystal, averaged over one period,
follows directly from Eqgs. (21) and (22),

sin®3 [ (Ak) sue— (M) sua
[(Ak) sae— (Aa) suG 2
sin?3[ (Ak) suc+ (Aa) suc ]
[(Ak)suat(Ad)suel

Inspection of this expression shows that phase match-
ing is achieved when either (Ak)sue=(Aa)sug or
(Ak)sng= — (Aa)sug; substituting from Eq. (18), the
phase-matching conditions are

(Ak) sne= % (as+201) .

Ispg =

(23)

(24)

B. Third-Harmonic Generation

The intensity of THG is next calculated for propaga-
tion along the optic or z axis of a crystal of class 32, and
the physical situation is depicted in Fig. 2. The basic
assumptions of Subsec. A above still obtain, whereby
the plane of polarization of the fundamental wave de-
scribed by Egs. (8) and (9) is rotated through an angle
6 in traveling a distance z into the crystal. The princi-
pal modification from the earlier-treated SHG case
results from the form of the third-order polarization
and its relative direction with respect to E¢, Maker and
Terhune!® have given the third-order polarization for
point symmetry 32, and with E,*=0 required in the
present situation, the x and y components of these
polarizations take the form

P 30=3C190 B[ (E.2)*H (E,*)?]
and

Pyo=3CunE, [ (E*)+(E,)*], (25)
where the constant ¢y12: is a nonvanishing component of
the fourth-rank electric susceptibility tensor. The z
component of third-order polarization P,% is nonzero,

13P. D. Maker and R. W. Terhune, Phys. Rev. 137, A801
(1965).
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but it is of no interest for present purposes for harmonic
waves propagating in the z direction. The third-harmonic
light wave E%(z,f) propagating in the z direction is
generated by the third-order polarization in the x-y
plane,
P.o(z,0) =3P 3o+ P30, (26)
It is clear upon substituting E,* and E,* from Eq. (9)
into Eq. (25), and this result into Eq. (26), that the
magnitude of third-order polarization in the x-y plane is
given by
P % o sin®(kyz—wi) (27)
and it is directed along the fundamental electric vector
which generated it, as shown in Fig. 2. This situation is
distinctly different from that of SHG where the non-
linear polarization lagged the fundamental electric
field by an amount 36;, and rotated in opposite sense.
Here the third-order polarization in the x-y plane fol-
lows the fundamental electric field and rotates with it.
It was pointed out earlier that the treatment of THG
along the optic axis of a rotatory dispersive crystal of
point symmetry 32 is also applicable to THG in other
nonlinear media with rotatory dispersion. In particular
this is the situation for an isotropic medium, such as an
optically active liquid, or for an isotropic medium with
magneto-optic rotation. The form of the third-order
polarization in an isotropic medium,3

Plo= 3C1122E5“’(E“’ . E“’) , (28)
where 7 refers to the «x, v, and z components, gives the
same representation as that given in Eq. (27) for the
magnitude of the third-order polarization, and it also
points in the same direction as the fundamental
wave, Ee.

The polarization described by Eq. (27) contains both
the fundamental and the third harmonic, i.e.,

sin®(kiz—wl) = 1[3 sin(k1z—wt) —sin(3k1z2— 3wi) ],

and it is the component leading to THG in the z
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direction which is of interest, namely, where
singl[ (Ak)rne— (Aa)rne ]
P, sin(3kiz—3wl) . (29) ="

The third-harmonic light wave is initially polarized
along the axis of P, which points along E¢, but
thereafter as a free-running wave in the rotatory dis-
persive medium it is rotated in the left-hand sense 6
in traveling a distance /—z to the exit face at z=/. Thus

O3=0a3(l—3z), (30)
where a3 is the specific rotation at the third-harmonic
frequency.

As in the case for SHG, the problem reduces to
accounting for all of the E3¢ contribution at the exit
face due to the third-order polarization given in Eq.
(29) with an appropriately retarded time. The differ-
ential element is given by

dE?(l,t) « dz sin[ 3kiz— 3w(t—1') ], (31)

where

V= (—25)ks/3w (32)

and k3 is the wave vector at the third-harmonic fre-
quency. Taking account of the separate x and y
components,

l

JORLI(A)) OC/ dz sin[3kyz—3w(t—1')] cos(0:1+60;) (33)
0

and
!

E,,"’“’(l,t)a/ dz sin[ 3k1z—3w(l—1)] sin(61+0;). (34)
0

Substituting from Egs. (3), (8), (30), and (32), and
using

(A¢)rna=az—au, (35)
it follows that
1
]’:x?“"(l,i) o / dz bln[lka- Z(Ak)THG—Sw/]
Jo
XCOS[C\!al*" (AO()TH(}Z] ’ (36)
!
L3e(lt) e / dz sin[ lks—z(Ak)rne — 3wt ]
0
Xsin[agl— (Aa)THGZ] . (37)

Upon integration, the following harmonic functions are
obtained:

I,3(,1) o [C2+2CD cos[(au+as)l ]+ D]/

Xsin(e—3wt), (38)
I,3(1,t) « [C2—2CD cos[ (a1+as)l ]+ D?]!/?
Xsin(e'—3wt), (39)

(Ak)rrc— (A)THG
D sin3l[ (Ak)rae+ (Aa)THe |
(AR)rae+ (Ad)THC

C siny1+D sinys
e=arctan ——~*—~—-~——~—:},
C cosy1+D cosys

)

C cosyi—D cosyq
¢ =arctan } ,

—C siny1+D siny;
and

v1={ks—as—3[ (Ak)rnc— (Aa)raa ]},
Yo = l{ks‘f‘aa“%[(Ak) TG+ (Aa)THG]} .

The relative intensity of THG at the exit face of the

crystal, averaged over one period, follows from Eqgs.
(38) and (39),

sin?3/[ (Ak)rre— (Ae)rrG |
[(Ak)rra—(Ad)raa ]
sin®3[ (Ak)rie+ (Aa)rac ]
I

Phase matching is achieved with (Ak)rae==(Aa)ruc
and from Eq. (35) the matching conditions are

(Ak)rpe==+ (0[3—- ai).

THG &

(40)

(41)

DISCUSSION

The intensity of SHG and THG for the cases of
rotatory dispersion, Eqs. (23) and (40), show parallel
analytical form,

sin?}l(Ak—Aa) | sin}U(Ak-+Aa)
(Ak—Ad)? (Ak+Aa)?

o

; (42)

analogous to the parallel form of Egs. (1) and (4) for
SHG and THG without optical rotation,

[ sin?2Ak/(AR)2. (43)

It is clear that in the limit of vanishing rotatory dis-
persion the above expressions become identical.

When phase matching is achieved in the presence of
rotatory dispersion, Eq. (24) for SHG and Eq. (41)
for THG, we have

Ak=ZAa,

and the initial growth of harmonic radiation depends on
/, according to
I = ’4-sin%Aa/(Ac)?.

The phase-matching conditions calculated with opti-
cal rotation are in essential agreement with Eq. (7),
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developed on the basis of physical considerations. It is
clear that the detailed form of Aa depends critically
on the relation of the nonlinear polarization to the
fundamental light wave. In the case treated for THG,
(Aa)rrg is simply given by the difference in specific
rotations az—a;; however, when a more complicated
spatial relationship between the fundamental wave and
the nonlinear polarization exists, as in the case of
SHG, (Aa)suc is appropriately modified as in Eq. (18).
The results indicate that Eq. (7) can be considered to be
a reasonable working relationship for a rotatory dis-
persive medium.

The basic difference between the second-harmonic
and third-harmonic light waves produced along the
optic axis of crystals of class 32 arises from nonlinear
polarizations rotating in opposite sense with respect to
the fundamental wave. Figures 1 and 2 show left-
handed optical rotation of E results in doubly rapid
right-handed rotation of P.,% for SHG, and equal left-
handed rotation of P3¢ for THG. Assuming normal
rotatory dispersion in this treatment, the free-running
harmonic waves E?¢ and E3¢, once generated in the
medium, both rotate in the left-handed sense. Upon
meeting the exit face of the crystal, the rotatory dis-
persion ceases, and the plane of polarization of the
various contributing harmonic waves is thereafter
frozen. The solutions obtained for the intensity of SHG
and for THG clearly indicate that for a plane-polarized
fundamental incoming wave, the resultant harmonic
light leaving the crystal is in general elliptically polar-
ized. Depending on the magnitudes of the dispersion
and optical rotatory power of the medium, the elliptical
radiation may degenerate into circular or plane-
polarized harmonic radiation. The ellipticity of the
harmonic radiation can be anticipated from the phases
(6 and &) and amplitudes in Eqs. (21) and (22) for

IN HARMONIC GENERATION
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SHG, and the corresponding phases (e and €) and
amplitudes in Egs. (38) and (39) for THG.

Equations (42) and (43) indicate characteristic dif-
ferences in the harmonic light intensities due to the
presence or absence of rotatory dispersion. Both solu-
tions are oscillatory as a function of optical path length
! in the medium; however, their finer details are de-
cidedly different. These distinguishing features are
shown in Fig. 3, plotted for the specific case where
Ak=10% cm™! and Aa=10% cm~. In the upper portion of
the figure, Eq. (42) is plotted over one period, and in the
lower portion, each of the terms in (42) is individually
shown. The latter are of the same analytical form as
Eq. (43), corresponding to the case without rotatory
dispersion. It is clear that while the intensity function
without rotatory dispersion has distinct zeros between
each oscillation, this is not the case for rotatory dis-
persion. It can, in general, be shown that where the
ratio Ak/Aa is an irrational number, there are no exact
zeros other than the one occurring at the front face,
1=0. (For the example given in Fig. 3 the ratio is 10;
here zeros repeat after every 9 of the longer or 11 of the
shorter cycles of the lower curves.)

Beside the removal of zeros in intensity with every
oscillation, it should be noted that rotatory dispersion
produces characteristic minima which are roughly half
the intensity of neighboring maxima. Furthermore,
there is distortion of the intensity curve caused by the
rotatory dispersion which is not present in the sym-
metrical curves without rotation.

Turning our attention now to real materials, and
the achievement of phase matching, the possibilities
appear to be limited. Coherence lengths typically of the
order of 1078 cm require specific rotations of roughly
108 rad/cm in order to meet the matching requirements
of Egs. (24) and (41). Of the crystal class 32, both

in? £ (Ak-Aa) in2 L (Ak+aa) | ] [ ‘
L2 ImSm 3 za Sin?Z ; a Ak =103CM™! —
- (Ak~Aa) (Ak+Aa) Aa=102CM™!
E’ 1.0 4
(%23
Z osf- -
|
w 06 |
Fic. 3. General plot of the pro- >
file of the intensity of SHG and 2 o4l B
THG in a rotatory dispersive o
medium over one period, according @
to Eq. (42) (upper curve). The two 02
component terms of Eq. (42) are
plotted individually (lower curves), . 0 -
and correspond to typical intensity = 08} sin? £ (ak-Aq) sin? £ (Ak+Aa) .
girso;ielfssi ;g media without rotatory :') T ks It — R
’ I A N 7\ r o~ r ~ o
\ / \ \ \
AN AN AV ZANNA //\ A /\\ M\
ot AN KT A N ALV W R T
Z AN ) / !
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quartz and cinnabar are known to produce large natural
rotations in the visible and ultraviolet, roughly in the
range of 10 to 102 rad/cm, but these values fall short of
the magnitude required. The situation is not improved
by moving to longer wavelength; although coherence
lengths are greater, the magnitude of natural optical
rotation is in general at least correspondingly dimin-
ished. Likewise, the rotations obtained by the applica-
tion of a magnetic field appear to be smaller than
natural rotations for even the largest of currently
available fields.

The few materials which are capable of producing the
necessarily sizable specific rotations are materials
which are generally prepared in thin films or very thin
platelets. The so-called liquid crystals, for example
cholesteryl benzoate, have natural rotations exceeding
103 rad/cm,0-14 and certain magnetic materials such as
the chromium trihalides!® have built-in magneto-optic
rotations which are correspondingly large. These
materials generally show transmission limitations which
place a further restriction on their use; nevertheless in
the absence of other alternatives they might provide
interesting possibilities for examining phase matching
in appropriate SHG and THG experiments. Clearly,
there would be a premium in the discovery of new highly
rotatory media or methods for producing the same
which were free of the above-mentioned limitations of
size-and optical quality.

CONCLUSIONS

The discussion has shown that rotatory dispersion
may, in principle, be employed in producing phase
matching in the harmonic generation process. This
possibility anticipated on the basis of simple physical
arguments is supported by more detailed analytical
considerations. The analytical treatment follows that of
Franken and Ward with appropriate modification to
include rotatory dispersion for SHG and THG along

14 W, A. Shurcliff and S. S. Ballard, Polarized Light (D. Van
Nostrand, Inc. Princeton, New Jersey, 1964), p. 118; G. W.
Gray, Molecular Structure and the Properties of Liquid Crystals
(Academic Press Inc., London, 1962), pp. 47-48.

18 J. F. Dillon, Jr., H. Kamimura, and J. P. Remeika, J. Phys.
Chem. Solids 27, 1531 (1966).
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the optic axis of crystals of point symmetry 32. The
treatment for THG is equally applicable to isotropic
media. The analysis can be extended to other rotatory
dispersive crystals where new matching conditions may
exist. Because the Franken-Ward-type treatment is
carried out in the limit of no depletion of the incoming
fundamental wave, it would be of interest to carry out
an analogous treatment for rotatory dispersion leading
to the coupled fundamental- and harmonic-wave solu-
tions.? Our preliminary results along this line have sup-
ported the findings reported in this paper for the limiting
case. It is intended that the coupled-wave treatment
will be discussed in a subsequent communication.

The phase-matching conditions derived for the case
of crystal class 32 are not achievable in either quartz
or cinnabar, two crystals of this class with appreciable
rotatory powers. Likewise, Verdet constants are not
large enough to result in the matched conditions with
the largest of magnetic fields available, and the natural
rotation of liquids appear also to fall short of that
required.

It would appear that only in the instance of enor-
mously large rotatory powers, corresponding to those
observed for certain liquid and magnetic crystals, could
a matching condition of the form of Eq. (7) be ap-
proached. The exact form of the matching condition
would of course be dependent on the particular crystal
symmetry. Although there are restrictions relating to
size and optical characteristics, these special materials
offer interesting possibilities for studies of harmonic
generation. Other experimental work in which excessive
rotatory powers are not required is offered by the pre-
dictions in the text relating to ellipticity and intensity
profile of harmonic radiation. Such experiments could
be carried out in a variety of rotatory dispersive media
which have more suitable optical properties.
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