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Optical Rotatory Dispersion~
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It is shown that phase matching in harmonic generation may, in principle, be achieved in a nonlinear
medium which has appropriate optical rotatory dispersion. The treatment follows the analysis of Franken
and Ward whereby the resultant radiative output of a dipolar array generated by a laser beam is obtained.
For specific cases without double refraction, the relative intensities of second- and third-harmonic radiation
are calculated, new phase-matching conditions are derived, and the nature of harmonic radiation in the
presence of optical rotation is examined.

INTRODUCTION

l
'HEOR. ETICAL investigations have shown the

crucial role of dispersion in the generation of
optical harmonic radiation by a laser beam. ' ' In
the hmit for which the incoming fundamental wave is
not depleted in traversing a distance / in the medium,
the resultant intensity of second-harmonic generation
(SHG) shows an oscillatory behavior which is dependent
on the dispersion of the medium,

sin 2l(dk) sao
IHIIG Gc

(Ak) sHo

The magnitudes of the wave vector at the fundamental
frequency and the second harmonic are given by k~

and k~, respectively, and

(dk) sHo= k2 —2k'.

Thc coDditlon fol thc lnitlatlon of growth of harnlonic
radiation is apparent from Eq. (1).IsHo increases with
/' when

(Ak) sHo =0, (3)

the so-called phase-matching condition.
The intensity of third-harmonic generation (THG)

follows a similar form when the fundamental wave is not
depleted, "

sin 2l(LB)THo
ITHG ~ ——

(~k)THo'

(Ak) THo
——kg —3k',

k3 referring to the wave vector at the third harmonic.
Phase matching similarly occurs for

(&k)THo=o.

* A preliminary report of this work was given at the New York
meeting of the American Physical Society, 30 January 1967
LBu1l. Am. Phys. Sac. 12, 81 it967l.g' J. A. Armstrong, X. Bloembergen, J. Ducuing, and P. S.
Pershan, Phys. Rev. 127, 1918 (1962).

~ D. A. Kleinman, Phys. Rev. 128, 1761 (1962).' P. A. Franken and J. F. Ward, Rev. Mod. Phys. 35, 23 (1963).' P. D. Maker, R. W. Terhune, and C. M. Savage, in Quaetu~m
E&kcAolics III, edited by P. Grivet and N. Bloembergen (Colum-
bia University Press, New Vork, 1964)) p. 1559.

The above solution for THG also requires that the
quadratic Kerr effect can bc lgnoI'cd. This assumption
will be continued throughout the present discussion.

The general oscillatory variation predicted by Eq. (1)
has been experimentally observed, ' and the use of
birefringence properties of anisotropic crystals has led
to phase matching and enhanced harmonic produc-
tion. '"' Other schemes for the achievement of phase
matching have been discussed, including the stacking
of specially cut crystal plates, ' ' the use of internal
rejections in a, crystal, ' and waveguide-typc crystal
resonators. v

The purpose of the present paper is to explore the
conditions under which optical rotatory dispersion may
lead to phase matching in harmonic generation, and the
possibilities for achieving such conditions in available
materials. In addition, several characteristic features of
optical rotatory dispersion in a nonlinear medium are
discussed~ and thcsc a,I'c amenable to experimental COD-

fi ti . I pi ipl, th pti l ot ti y ic
from either na, tural optical activity of the medium, or
from magneto-optic rotation as in the Fa,raday cBect.An
lnteI'cstlng discussion of frcqucncy mixing lIl optical]y
active liquids has already appeared in the literature. '

The physical basis for anticipating that optical
rotatory dispersion may be employed in phase matching
in both SHG and THG is as follows. It is well known
that Eqs. (1) and (4) have associated with them a critical
length called the coherence length l„l, which is eqn. al to
~)hk. In this distance, the harmonic light wave shifts
in phase by an amount 7r with respect to the nonlinear
polarization wave. This phase mismatch leads to the
zeros of Eqs. (1) and (4), and physically is correlated
with the harmonic radiation Qowing back into the
fundamental wave. It would appear tha, t optical rota-
tion o6ers the possibility of compensating for the above-
mentioned phase mismatch since rotation of the plane
of polarization of the harmonic light wave by an amount.
x is equivalent to a phase shift of x. Thus in the pres-

5 P. D, Maker, R, %V. Yerhune, M. Niseno6, and C. M. Savage,
Phys. Rev. Letters 8, 21 (1962).' J. A. Giordmaine, Phys. Rev. Letters 7, 19 (1962).' A. Ashkin, G. D. Boyd, and D. A. Kleinman, Appl. Phys,
Letters 6, 179 (1965).

8 J, A. Giordmaine, Phys. H.ev. 137, A1599 (1965).
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FIG. i. Schematic representa-
tion of waves moving along
the optic axis of a rotatory dis-
persive crystal of class 32 for
SHG. The right-hand diagram
is a view from the exit face of
the crystal in which the propa-
gating waves are directed out
of the paper.
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ence of rotatory dispersion, where the diQerencc of rota-
tion between the fundamental and harmonic waves is
adjusted to an amount ~x in a length l„h, the harmonic
light and polarization waves should be in phase. If the
comparatively smaller rotation at the lower or funda-
mental frequency is ignored, matching is likely to be
achieved when /„t, &~/n, where n is the specific rota-
tion at the harmonic frequency. Thus R typical match-
ing condition might likely be given by

for either SHG or THG.

THEORY

The above physical considerations provide the incen-
tive for a more detailed investigation of possible phase-
matching conditions when optical rotatory dispersion
is present in a dispersive nonlinear medium. The opti-
cally active, uniaxial crystals of the point group 32 have
been selected for evaluation in the case where wave
propagation occurs along the optic axis. Both SHG and
THG are evaluated and, as will be pointed out later,
the THG treatment is equally valid for the case of
isotropic rotatory dispersive media. The effects of
rotatory dispersion are not further complicated by
double refraction because of the selected direction of
propagation, and the medium is assumed to be trans-
parent at the frequencies of interest.

Quartz, ' which is perhaps the most studied crystal
from the point of view of rotatory dispersion, falls into
the crystal class 32. The specific optical rotation of
quartz and other inorganic and organic crystals of class
32 are generally available ln tabulated form. '" Cinnabar
(HgS) is one of them which is well known for the extra-
ordinarily large rotation it produces. The class 32 has
the property of enantiomorphism, in which both right-
Rnd left-handed crystalline forms exist. These forms are

9 For a discussion of the rotatory power of quartz see, for ex-
ample, R. B. Sosman, The Properties of Silica (The Chemical
Catalog Company, Inc. , New York, 1927), p. 646.

'0 I.andolt-Bornstein Zahlenwerte Nnd Ii unktionen, edited by
K. H. Hellwege and A. M. Hellwege, (Springer-Verlag, Berlin,
1962), Vol. II, Part 8, pp. 434-442.

mirror 1DlRgcs which RI'c not supclimposablc Upon oQc

Rnothcl 1Q spRcc. FoI' pulposcs of this discussloQ l.t will

be assumed that we are dealing with the left-handed
fOI'ITl.

In the analysis which follows, the method of Franken
Rnd Ward' will be employed, whereby the resultant
radiative output of an array of dipoles generated by a
laser beam is obtained. The dipoles are considered to be
osclllRtlQg Rt thc harmonic frequency Rnd thc lncolTllng

fundamental wave is assumed to be unattenuated
throughout the medium. Franken and Ward have
applied this treatment to the case of SHG in an isotropic
medium without rotatory dispersion, and obtained the
result quoted above in Eq. (I). For the cases of SHG
and THG to be treated here, anisotropic properties as
well Rs the rotatory dispersion of the medium are
accounted fol.

A. Second-Harmonic Generation

The physical situation is depicted in Fig. 1. A plane
monochromatic wave E (z, t) of frequency co and wave
vector ki is propagating in the z direction, and it is
polarized along the x axis when incident on the front or
s=-0 plane of the crystal. The crystal axes are chosen so
that the s axis corresponds to the threefold axis or optic
axis of the crystal, and the x axis to a twofoM axis. The
crystal is considered to be of Sufhcient extent in the x-y
plane so that edge effects are not important, and of
length 3 along the s axis. Unit vectors i, j, and 0 are
defined in the usual way.

Upon propagating a distance s into the medium,
optical rotation produces a left-handed rotation" of the
plane of polarization of E" by an amount Hl in the x-y
plane whei e

0], AgS )

O, i corresponding to the specific rotation at the funda-
mental frequency cv. The fundamental wave at this

"The convention of left-handed rotation corresponds to
counterclockwise rotation of the plane of polarization as the light
wave approaches the observer. This is the situation in left-handed
quartz. See e.g., J.F. Nye, Physical Properties of Crystals (Oxford
University Press, I.ondon, 1964), p. 261,
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P 2' —0

The second-order susceptibility codFicient dq4 does not
contribute in the present problem with E,"=0, and
more generally, as a result of the Kleinman symmetry
condition. "The coefficient d~~ is positive for the left-
handed form of crystal class 32, here under considera-
tion. Substitution of the components of Eq. (9) into
Eq. (10) gives

P2"(k,!)=pd»E02 sin'{k!k—co!), (11)

where the u11it vector p is 0 cos281—j sin281, indicating
that P'" is directed a,long —28,, in the x-y plane when
E" is in the direction +8I. Thus the second-order
polarization wave is right-handed or in opposite sense
to the fundamental, and the magnitude of its rotation
about the s axis is twice that of th|." fundamental.

The polarization wave described by Eq. (11)contains
both a dc and second-harmonic component, i.e.,
sin'(k!k —cot) = —',-[1—cos(2kIk —2~!)],and it is the latter
which is of interest here. Thus the harmonic component

di««ed a»ng P, acts as the source of SHG in the
medium. Clearly the second-harmonic light wave R'"
is polarized along the p direction, but is rotated in the
left-hand sense an amount 02 in traveling a distance
l—s to the exit face of the medium, owing to the rotatory
dispersion. Thus,

8,=G2(!—k), (13)

point has both x and y components, L' " and E„",
and is described by

{k,!)=CEO 8111(kIk—N!) cos81

+jEo sin(kIk —cot) sin81. (9)

The associated second-order polarization P2"(k, t) which
is generated has both nonvanishing x and y components':

-P*'"=~»[{&*")'—(&. )')+dI«. I-'.", (10)

I„"= —dy4F ~"F.,"—2d yyF ~"E'.„",

medium. t' is the transit time over this distance.

t,'= (!—k)k2/2s),

where k2 is the wave vector at the harmonic frequency,
2M.

It is now convenient to sum the various harmonic con-

tributions at the exit face of the medium separately in

the x and y directions. Thus from Eq. (14), the inde-

pendent x- and y-harmonic components are

I'.' 2"(!,!)~ dk cos[2kI —2!0(!—t')] cos(82 —281) (16)

1'.y2" (!,/) ~ I!k cos[2k!k 2N($ —!)] s111(82—281) . (17)

F,.'(!,t) ~ dk cos[!k. z(Ak)SHG —2!d!]—
g cos[n2l {An)—sIIGk] (19)

and
E

F ' (!,t) ~ dk cos[!k2—.":(Ak)SHG —2~!]

Xsin[I22!—(An) SHGk] (20).

These integrals are easily evaluated in closed form and

converted to the following harmonic functions:

J!' '"(!&t) ~ [. +~t.. 2» Bcos[(2nI—n2)!]+B']'!'
&& sin(8 —2u!) (21)

and

E 2.(!!) [»2—2»B cos[(2GI—,)!]+B']'&'
&& sin(8' —2~!), (22)

The necessary angular relationships are shown in the

right side of Fig. 1 for the light waves approaching an

observer situated along the s axis. Upon substituting

expressions conta, ined in Eqs. (2), (8), (13), and (15),
and using the shorthand not;ation

(A&) SHG II2+2III i

it follows that

where o.2 is the specihc rotation at the second-harmonic

frequency. The problem reduces to summing all of the
E'" contributions at the exit face due to the second-
order polariza, tion elements of the form of Eq. (12)
distributed throughout the medium. Written in dif-
ferential forjT]., the incremental second harmonic at the
exit: face, dE2"(l,!),generated by the polarization within
the element dz is given by

F2"(!,&) ~ Ck cos[2kIk —2(v(!—t')), (14)

and for purposes of this calculation the constant of
proportionality need not be evaluated. The time t is re-
placed by t—t' in order to give the proper time phase to
E'" which tra, vels a distance !—k in the dispersive

"D.A. Kleinman, Phys. Rev. 126, j.977 (1962); R. C. MiHer,
&bH. 131, 95 I'j.9r&).

where
S1112![(Ak)SHG (AII) SIIG)

(Ak)SHG (AII)SHG

Sink![(Ak) SHG+(AG)»IG)8=—
(Ak) SIIG+ (A&) SHG

—» cospI —B cosp2
ar ctan

» sinPI+B sinP2

» sInpI —B sInp2
5'= arctan

» cosPI —B cosP2,

PI=!(k2—(22 $[(Ak) sHG (A&) sIIG]) &

p2=![k2+I12 2[(Ak) BHG+ (A&) BHG) j ~
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FrG. 2. Schematic representa-
tion of waves moving along
the optic axis of a rotatory dis-
persive crystal of class 32 or
a rotatory dispersive isotropic
medium for THG. The right-
hand diagram is a view from
the exit face of the medium in
which propagating waves are
directed out of the paper.

E' (2t)

E3'(
l E (O,t)

Z out

(Ak) sHQ &(II2+2III) ~

B. Third-Harmonic Generation

(24)

The intensity. of THG is next calculated for propaga-
tion along the optic or z axis of a crystal of class 32, and
the physica, l situation is depicted in Fig. 2. The basic
assumptions of Subsec. A above still obtain, whereby
the plane of polarization of the fundamental wave de-
scribed by Eqs. (8) and (9) is rotated through an angle
8~ in tra.veling a distance z into the crystal. The princi-
pal modifica, tion from the earlier-treated SHG case
results from the form of the third-order polarization
and its relative direction with respect to E'". Maker and
Terhune" have given the third-order polarization for
point symmetry 32, and with E&',"=0 required in the
present situation, the x and y components of these
polariza, tions take the form

and
P, ' =3C, L, [(J ")'+(E„)']

P„3~=3CIIq2j&„~[(E~)z+(E ~)2] (2D)

where the constant c~~22 is a nonvanishing component of
the fourth-rank electric susceptibility tensor. The z
component of third-order polarization P,'" is nonzero,

"P. D. Maker and R. W. Terhune, Phys. Rev. 137, A801
(&96s).

The relative intensity of second-harmonic radiation
at the exit face of the crystal, averaged over one period,
follows directly from Eqs. (21) and (22),

»n'z1[(Ak) SHG (A&) SHG]
~SHGO--

[(Ak)SHG (AII)SHG]

sin'-,Il[(Ak) sHQ+(An) sHQ]
(23)

[(Ak) SHG+ (A&) SIIG]

Inspection of this expression shows that phase match-
ing is achieved when either (Ak) sHG= (An) sHQ

(Ak)sHG= —(An)sHQ, substituting from Eq. (18), the
phase-matching conditions are

but it is of no interest for present purposes for harmonic
w'aves propagating in the z direction. The third-harmonic
light wave E'"(z,t) propagating in the z direction is
generated by the third-order polarization in the x-y
plane,

P.„'"(z,t) =zP,'"+jP„'". (26)

P'"=3C, „L~"(E"E") (28)

where i refers to the x, y, and z components, gives the
same representation as that given in Eq. (27) for the
magnitude of the third-order polarization, and it also
points in the same direction as the fundamental
wave, E".

The polarization described by Eq. (27) contains both
the fundamental and the third harmonic, i.e.,

sin'(k Iz —Iot) =
~ [3 sin(k Iz —&8) —sin(3k Iz —3a&t)],

and it is the component lea,ding to THG in the z

It is clear upon substituting P," and E„ from Eq. (9)
into Eq. (25), and this result into Eq. (26), that the
magnitude of third-order polarization in the x-y plane is
given by

P,„'"~ sin'(kIz —&Ot),

and it is directed along the fundamental electric vector
which generated it, as shown in Fig. 2. This situation is
distinctly diferent from that of SHG where the non-
linear polarization lagged the fundamental electric
field by an amount 30&, and rotated in opposite sense.
Here the third-order polarization in the x-y plane fol-
lows the fundamental electric field and rotates with it.

It was pointed out earlier tha, t the treatment of THG
along the optic axis of a rotatory dispersive crystal of
point symmetry 32 is also applicable to THG in other
nonlinear media with rotatory dispersion. In particular
this is the situation for an isotropic medium, such as an
optically active liquid, or for an isotropic medium with
magneto-optic rotation. The form of the third-order
polariza, tion in an isotropic medium, "
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direction which is of interest, namely,

I' „' cc SIn(3kIZ —3a~t) .

03——na(/ —z), (30)

The third-harmonic light wave is initially polarized
along the axis of I' „'" which points along K", but
thereafter as a free-running wave in the rotatory dis-
persive medium it is rotated in the left-hand sense 03

in traveling a distance l—z to the exit face at z= l. Thus

where sink�/[(Ak)
THG —(An) THG]

C=--
(Ak)THG (AII)THG

sin-,'/[(Ak) TING+ (An) THG]
D=

(A k) THG+ (Acr) TIIG

C srnyr+D srnyq
E = arctan

C cos'yr+D cos'rg

C cospy —D cos+9
t

e =arctan——C sinyr+D siny2

sr=/[k, —~,—z [(Ak) THG —(A~) THG]],

t2 = /[k3+II3 z [(Ak) THG+ (A&) THG]] ~

The relative intensity of THG at the exit face of the
crystal, averaged over one period, follows from Eqs.
(38) and (39),dF'"(/, t) ~ dz sin[3krz —3co(t—t')],

where o3 is the specific rotation at the third-harmonic
frequency.

As in the case for SHG, the problem reduces to and
accounting for all of the K'" contribution at the exit
face due to the third-order polarization given in Eq.
(29) with an appropriately retarded time. The differ-
ential element is given by

t'= (/ —z)ka j3(v,
sin &/[(Ak) rHG —(An)I HG]

(32) I rrro ~—
[(Ak) THG —(A&) rIIG]'

and k3 is the wave vector at the third-harmonic fre-

quency. Taking account of the separate x and y
components,

srn'z/[(Ak)rrm+ (AII)THG]
(40)

[(Ak) THG+ (Ak) THG]'

i ".,»(/, t) ~
Phase matching is achieved with (Ak)THG= &(An) rr;G

dz srn[3krz 3~(t t )1 cos(~I+0') (3 ) and from Eq. (35) the matching conditions are

(Ak)»IG= a(oa —~I). (41)

F..„»(/, t) ~ dh sin[3krz —3(o(t,—t')] sin(HI+03) . (34) DISCUSSION

The intensity of SHG and THG for the cases of

S b t't t' f- E (") (8) (30) d (32) d rotatory disp«sron, Eqs. (23) and (40), show parallel
analytical form,

using

it follows that

(ArI) T HG = Irr cr I r (35) sin'-', /(Ak —An) sin' —,'/(Ak+ An)
I cc —+

(Ak —Arr.)' (Ak+An)'
(42)

I~: '~(/t) ~
0

d: -in[/k, —z(Ak), ,—3~t]
analogous to the parallel form of Eqs. (1) and (4) for
SHG and TH(» without optical rotation,

Xcos[nI/ —(An) Trrcz], (36) I ~ sin'-'/Ak j(Ak)-'. (43)

I&'y (/, t) ~ dz sin[/k3 —z(Ak) Trro —3urt]

Xsin[n, / —(An)THGz]. (3t)

Upon integra, tion, the following harmonic functions are
obtained:

lt is clea, r tha, t in the limit of vanishing rota, tory dis-

persion the a,bove expressions become identical.
When phase matching is achieved in the presence of

rotatory dispersion, Fq. (24) for SHG and Eq. (41)
for THG, we have

and the initial growth of ha, rmonic radiation depends on
F.,' (/, t) ~ [C'+2CD cos[(nr+na)/]+D']It'

X srn(e —3&0') r (38) I~ /2+ sin'/An j(An) '.
p' »(/ t) CC [C2—2CD cos[(nr+cr3)/]+D ] I

Xsin(e' —3~t), (39)
The phase-matching conditions cakulated with opti-

cal rotation are in essential agreement with Eq. (7),
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quartz and cinnabar are l-nown to produce large natural
rotations in the visible and ultraviolet, roughly in the
range of 10 to 10' radt'cm, but these values fall short of
the magnitude required. The situation is not improved
by moving to longer wavelength; although coherence
lengths are greater, the magnitude of natural optical
rotation is in general at least correspondingly dimin-
ished. Likewise, the rotations obtained by the applica-
tion of a magnetic field appear to be smaller than
natural rotations for even the largest of currently
available 6elds.

The few materials which are capable of producing the
necessarily sizable specific rotations are materials
which are generally prepared in thin films or very thin
platelets. The so-called liquid crystals, for example
cholesteryl benzoate, have natural rotations exceeding
10' rad/cm, 'o "and certain magnetic materials such as
the chromium trihalides '" have built-in magneto-optic
rotations which are correspondingly large. These
materials generally show transmission limitations which

place a further restriction on their use; nevertheless in

the absence of other alternatives they might provide
interesting possibilities for examining phase matching
in appropriate SHG- and THG experiments. Clearly,
there would be a premium in the discovery of new highly
rotatory media or methods for producing the same
which were free of the above-mentioned limitations of
size and optical quality.

CONCLUSIONS

The discussion has shown that rotatory dispersion

may, in principle, be employed in producing phase
matching in the harmonic generation process. This
possibility anticipated on the basis of simple physical
arguments is supported by more detailed analytical
considerations. The analytical treatment follows that of
Franken and Ward with appropriate modification to
include rotatory dispersion for SHG and THG along

'4 W. A. ShurcliB and S. S. Sallard, Polarized Light (D. Van
Nostrand, Inc. Princeton, New Jersey, 1964), p. 118; G. W.
Gray, 3Iolecular Structure aud the Properties of Iirtuul Crystals
{Academic Press Inc., London, 1962), pp. 47-48.

'~ J. F. Dillon, Jr., H. Kamimura, and J. P. Remeika, J. Phys.
Chem. Solids 27, 1531 (1966l.

the optic axis of crystals of point symmetry 32. The
treatment for THG is equally applicable to isotropic
media. The analysis can be extended to other rotatory
dispersive crystals where new matching conditions may
exist. Because the Franken-Ward —type treatment is
carried out in the limit of no depletion of the incoming
fundamental wave, it would be of interest to carry out
an analogous treatment for rotatory dispersion leading
to the coupled fundamental- and harmonic-wave solu-
tions. ' Our preliminary results along this line have sup-
ported the findings reported in this paper for the limiting
case. It is intended that the coupled-wave treatment
will be discussed in a subsequent communication.

The phase-matching conditions derived for the case
of crystal class 32 are not achievable in either quartz
or cinnabar, two crystals of this class with appreciable
rotatory powers. Likewise, Verdet constants are not
large enough to result in the matched conditions with
the largest of magnetic fields available, and the natural
rotation of liquids appear also to fall short of that
required.

It would appear that only in the instan. ce of enor-
mously large rotatory powers, corresponding to those
observed for certain liquid and magnetic crystals, could
a matching condition of the form of Eq. (7) be ap-
proached. The exact form of the matching condition
would of course be dependent on the particular crystal
symmetry. Although there are restrictions relating to
size and optical characteristics, these special materials
offer interesting possibilities for studies of harmonic
generation. Other experimental work in which excessive
rotatory powers are not required is offered by the pre-
dictions in the text relating to ellipticity and intensity
profile of harmonic radiation. Such experiments could
be carried out in a variety of rotatory dispersive media
which have more suitable optical properties.
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