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A theorem is proved (on the basis of physically reasonable assumptions) to the effect that in Hartree-
Fock (HF) theory an electron can always be added to an N-electron system without raising its energy.
The theorem is applied to show that the conventional HF wave function is unstable for certain negative
atomicions (H—, Li~B~,N-,N—, 0~, 0™, Na~, P), and that the typical extent of the instability is chemi-
cally significant. A consequence of the instability is that the lowest level in HF theory does not have the
symmetry of the exact ground level. This is the case, in particular, for the closed-shellions H-, Li—, 0, and
Na~—a result contrary to some earlier expectations. The two-electron one-center system with fixed nuclear
charge Ze (Z not restricted to integer values) is investigated in detail on the basis of a simplified model
defined by specifying restrictions which the allowable determinantal wave functions must satisfy. The
orbitals of the determinantal wave functions of the model are of the form y; =v;X;,2=1, 2, where X; is a spin
function and ; is essentially of 1s hydrogenic form. As Z decreases, the model shows explicitly the onset
of the instability described above. It further shows that for Z>1, any true minimum-energy determinant
D, is bound (although the interesting question of whether D, is bound for Z< 1, apparently raised here for
the first time, remains unanswered). A precise analogy between the electron problem and certain spin
problems is defined. This analogy sheds light on the HF approximation. It leads to examples which show
strikingly that it is important not to always impose symmetry restrictions on an otherwise restricted wave
function; the analogy also makes clear, in a simple way, certain points fundamental to an understanding of
HF theory. Some possible implications of the results of this paper for solid-state calculations are discussed.
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I. INTRODUCTION

HE basis of an important part of the theory of

the electronic structure of atoms, molecules, and
crystals is the Hartree-Fock (HF) theory, in which a
many-electron energy eigenfunction is approximated by
a single Slater determinant of one-electron orbitals.’~4
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In this paper we report an investigation of some funda-
mental aspects of HF theory relating to ground Slater
determinants.8 ¥

An elementary, but apparently new, theorem is
presented in Sec. II relating the energy of a ground
Slater determinant for an (N-1)-electron system to
certain properties of the corresponding N-electron
system. This theorem is used in Sec. III to demonstrate
quite simply that the conventional HF approximation
to the ground state is unstable for many negative
atomic ions, and to provide a lower bound for the
amount of the instability.

The theorem of Sec. II can also be used to demon-
strate for some systems that a ground Slater deter-
minant does not have the symmetry of an exact wave
function of lowest energy. (Other approaches have been
used in the past for this purpose, but never for closed-
shell one-center systems.) The theorem is used in this
way in Sec. IV, together with published numerical

13 G. G. Hall and A. T. Amos, Advances in Atomic and Molecular
Physics, edited by D. R. Bates and I. Estermann (Academic Press
Inc., New York, 1965), Vol. 1, p. 1.

4 R. K. Nesbet, Adv. Chem. Phys. 9, 321 (1965).

15 A brief report of some of this work has been presented in
Bull. Am. Phys. Soc. 11, 234 (1966).
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values, to establish the fact that for many closed-shell
one-center systems (H~ is an example) the ground
Slater determinants do not have the 1§ symmetry of
the exact wave function of lowest energy.

These results imply, for those systems showing the
instability, that the ground Slater determinants are not
known—even in a crude qualitative sense. One reason
this situation can occur, despite the extensive and very
precise calculations that have been made over the past
few decades, is that these calculations have typically
forced the determinants being considered to have the
symmetry presumed to be characteristic of the exact
ground level.

As a first step towards understanding the nature of
the variation with nuclear charge of ground Slater
determinants for one-center systems, the system of two
electrons moving in the Coulomb field of a fixed-point
charge Ze is examined in detail in Sec. V. It should
perhaps be emphasized that our purpose is not to
obtain a ground wave function more accurate than one
of the Hylleraas type.!*"® Rather, the two-electron
one-center system is viewed as a relatively simple
system useful as a testing ground for the HF approxi-
mation. The class of determinants considered in Sec.
V, which is highly restricted and very simple, provides
some physical insight into the theorem of Sec. IT and
the source of the instability. The instability is exhibited
explicitly, exemplifying the results of Secs. III and IV,
and one can see in detail, on the basis of a very simple
analysis, how the instability depends on Z.

Finally, the results are summarized and reviewed in
Sec. VI

Unfortunately there is no standard usage of terms
in the literature on the HF approximation. To avoid
confusion we therefore begin by stating some definitions.

The energy of a wave function ¥ is

E(Y)=(V,HY)/(¥,¥), (1.1)

where H is the Hamiltonian. Every wave function con-
sidered in HF theory is a Slater determinant D. It is
well known that D is invariant under any linear trans-
formation of its orbitals, to within a constant factor.2

A HF wave function Dyuy is a D for which E(D) is
stationary. The orbitals of D can always be chosen
to satisfy the HF equations.2—24:14

16 E. A. Hylleraas, Z. Physik 63, 291 (1930).

17 C. L. Pekeris, Phys. Rev. 112, 1649 (1958).

8 H. A. Bethe and E. E. Salpeter, in Handbuch der Physik,
edited by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 35, p. 241.

% A. L. Stewart, Advan. Phys. 12, 299 (1963).

% No restrictions are imposed on the orbitals. In particular, an
orbital is not necessarily a product of a function of the space
coordinates and a function of the spin coordinate.

2 A. Messiah, Quantum Mechanics II (John Wiley & Sons Inc.,
New York, 1963). See also, for example, Ref. 2, Eq. (II.4b) and
Ref. 12, Eq. (3.3).

2 P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).

V. Fock, Z. Physik 61, 126 (1930).

# J. C. Slater, Phys. Rev. 35, 210 (1930).
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A D is locally stable if any sufficiently small variation
of the orbitals never decreases the energy.?:26

A ground Slater determinant D, is one with the lowest
energy: E(D,) < E(D) for all D. A D, is a Duy and is
locally stable. But a locally stable HF wave function
is not necessarily a Dy; if it is not, then it is said to be
metastable.

The difference E(D)— E(¥,) between the energy of
a D and the energy of an exact ground-state wave
function ¥, is a measure of the accuracy of D as an
approximation to ¥,. When D= Dy, this difference is
often called “the correlation energy.” For several
reasons we prefer not to use this terminology in this
connection. One reason is that, so far as we are aware,
formal definitions of ‘““the correlation energy’’ given in
the literature overlook the fact that the definition is
ambiguous until the particular Dgr to be used is
specified.

The quantities defined here are very difficult to
calculate in practice: for a small number NV of electrons
(as in atoms and small molecules) it has been possible
to obtain a good approximation to a HF wave function,
of which we cite two examples?”:?%; but as far as we are
aware no such wave function has been shown to be
locally stable, let alone a ground HF wave function,
even for N as small as 2. Indeed, although it might be
possible to check local stability, no practical procedure
is known for determining for a many-electron system
with interaction, which HF wave function has the lowest
energy.88* For very large N it is extremely difficult to
obtain any HF wave function,® let alone a D, The
difficulty is not surprising considering the fact that one
must deal with a complicated functional of a huge
number of functions, the energy as a functional of the
orbitals. Thus, determining a ground HF wave function
and knowing that it is indeed a minimum energy deter-
minant is far beyond present-day capabilities. As one
might expect under such circumstances, a Slater deter-
minant is found from time to time with an energy lower
than that of an earlier HF wave function, or approxi-
mation thereto, showing that the latter was not a

25 A formal criterion for local stability of a HF wave function
has been developed recently (Refs. 4 and 26).

26 W. H. Adams, Phys. Rev. 127, 1650 (1962).

27 C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod.
Phys. 32, 186 (1960).

( 286W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys. 32, 219
1960).

2 To our knowledge there are for large N no HF wave functions
given in the literature. We refer here to “realistic” models, such
as electrons interacting, via Coulomb forces, with each other and
some set of fixed point charges. For idealized models, such as the
electron gas, it is sometimes easy to obtain some HF wave
functions.

% Even for the electron-gas problem D is not known [A. W.
Overhauser, Phys. Rev. 128, 1437 (1962)]. For a fermion gas with
s-function interaction replacing the Coulomb interaction, the
condition for local stability of the HF wave function formed by
the determinant of plane waves of lowest energy has been reduced
to a simple inequality (Ref. 4, pp. 27-28). Nonetheless, this wave
function when locally stable, has not been shown to be a D, even
for this relatively simple problem.
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ground HF wave function. In this paper we exhibit
some examples of this type.

It is interesting to consider in connection with the
foregoing discussion the somewhat simpler, but quite
analogous situation occurring for Heisenberg models of
a system of IV interacting quantum-mechanical spins.
The analog of a Slater determinant D is a product

N
P=H¢i7

i=]

where ¢; is a single-spin state. In the case of NV very
large, it is very difficult to determine the analog P, of a
D, for most of these models, as might have been
anticipated. Nevertheless, in contrast to the situation
for the electron problem, approaches have been found
which have been successful in determining a P, for
many choices of the parameters in the Heisenberg
Hamiltonian. These ideas are further clarified in
Appendix A where the analogy between N-fermion
models and N-spin models is defined precisely and
discussed in more detail.

II. UPPER BOUND ON THE GROUND
HF ENERGY

In this section we prove for many-electron systems
with the usual nonrelativistic Hamiltonian

=z (E-z 2 Yz = e

i \2m v ll’r— R,,l 1] !ri— l‘jl

the following

Theorem: Consider an N-electron system with the
nuclei fixed in position and lying within a bounded
region: |R,| < Rmax. If a physically reasonable Slater
determinant D for this system has the property

D=0(r;per) (2.2)

for large 7;, where p is finite and v is positive, then
E(D)LED), (2.3)

where D, is the ground HF wave function for the
corresponding (V+-1)-electron system.

The theorem states, in other words, that the energy
of the N-electron determinant D is an upper bound on
the ground HF energy for the (V-+1)-electron system.
More pictorially, an electron can be added to the
system without raising its energy. We note that the
property (2.2) holds for all #; if it holds for one, because
of the antisymmetry of D. Also, the Coulomb potential
of the nuclei is the same for the N-electron and the
(N+1)-electron systems. The meaning of “physically
reasonable’ in the statement of the theorem is clarified
in Appendix B.

HARTREE-FOCK THEORY 3

The proof is as follows. We define the (N-+1)-electron
determinant

D()=a[D(1,2, - - ,N)$(N+1)], (24
where @ is the antisymmetrizer and
b= (/)P ", (2.5)

with @ a one-electron spin function and «>0. It is
shown in Appendix B that

lim E[D(9 1= E(D). (2.6)

The relation (2.3) follows immediately from this to-
gether with the relation

EDy)<ED(9)], (2.7)

which is a consequence of the definition of D, and holds
for all ¥k>0.

The physical content of (2.6) is apparent after a
moment’s reflection. According to (2.2), the electrons
of D are essentially localized within a sphere of radius
7¢=2y~1; D is obtained from D by adding an electron
in the orbital ¢, which for « sufficiently small becomes
very spread out compared to 7y and Ruy.x. Hence this
electron spends very little time near the nuclei and the
other electrons, so that its Coulomb interaction with
them becomes very small; also its kinetic energy
becomes small, both approaching zero as x — 0.

Reviewing the logical structure of the proof, we
observe that it depends neither on the class of wave
functions being D’s nor on the particular form of the
Hamiltonian (2.1). In our discussion the D’s were
actually used only in the proof of (2.6). However, the
physical argument of the preceding paragraph suggests
that (2.6) is true also for more general classes of wave
functions. It thus appears that the theorem can be
considerably generalized. If the theorem can be ex-
tended, in particular, to’the class of all wave functions
(as seems likely), it follows that for one-center systems
electron affinities are always non-negative: E(¥,)
S E(¥,). This more general theorem would not apply
to the electron affinities of molecules, where the ground
states of systems differing by one electron do not in
general have the same nuclear configuration, and also
vibrational energies can enter the definition of electron
affinities in an important way.

III. THE INSTABILITY OF CONVENTIONAL
HF STATES

The difference A= E(D)— E(D) is tabulated in Table
I for some one-center systems. D and D are respectively
N- and (V+41)-electron Slater determinants for the
systems 4 and A~. The values of E(D) and E(D) are



4 T. A. KAPLAN AND W. H. KLEINER

taken from published calculations®®® in which, it is
readily seen, D and D satisfy (2.2). The theorem of
Sec. II then applies, and it follows from (2.3) that if
A is negative, E(D) exceeds the ground HF energy of
the (NV-41)-electron system by at least |A|. Thus,
when A is negative, the D used to calculate the published
E(D) cannot be a ground HF wave function D, for the
(N41)-electron system,® and |A| provides a measure
of the discrepancy between D and D,. We see in Table
I that a majority of the A values are negative, and have
magnitudes which are chemically significant.

We note in passing that in regard to exact ground
states, as opposed to ground HF states, the more general
proposed theorem discussed at the end of Sec. IT would
contradict calculated results on 4 and A~ with A—=N—,
N——, and O, given in column 5 of Table IV of Ref.
32. This suggests that these calculations of the ground-
state energies are in error.

IV. SYMMETRY CONSIDERATIONS

An interesting implication of these results concerns
symmetry. There has been considerable recent interest
in and discussion 882353612 of the symmetry properties
of HF wave functions. It is now generally understood
that although a HF wave function is usually assumed to
transform in the manner of an exact energy eigenstate,
it need not. Many examples have been pointed out of
systems with ground HF states which do not transform
in the manner of an exact energy eigenstate, and, in
particular, in the manner of an exact ground state.
Most of the evidence® comes from systems with de-
generate ground levels, although some comes from
systems with nondegenerate ground levels: covalently
bonded molecules with large enough internuclear
distances.

The possibility that an atomic system with a non-
degenerate ground state (a closed-shell one-center
system) have a ground HF level with symmetry
different from that of the exact ground level has been
pointed out and discussed recently by Nesbet®s and by
Heine3® In contrast, this possibility was ruled out in
a more recent review of the HF approximation.?’
Nesbet, using a qualitative criterion based on the near-
ness in energy of certain “excited” configurations, con-
cludes that the actual occurrence of this possibility is
unlikely. Heine, on the other hand, claims to prove that
the usual 15 HF wave function D for a two-electron

3t L, C. Green, M. M. Mulder, M. N. Lewis, and J. W. Woll, Jr.,
Phys. Rev. 93, 757 (1954).

@2 F, Clementi and A. D. McLean, Phys. Rev. 133, A419 (1964).

3 E. Clementi, A. D. McLean, D. L. Raimondi, and M.
Yoshimine, Phys. Rev. 133, A1274 (1964).

# Clementi and McLean state in Ref. 32 that the type of in-
stability that we exhibit here probably would occur, and to avoid
it they find it important to introduce certain constraints on the
orbitals.

3 R. K. Nesbet, Rev. Mod. Phys. 35, 498 (1963).

36 V., Heine, Czech. J. Phys. B13, 619 (1963).

37 Reference 12, p. 235, comment about restriction (iv).
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one-center system is stable. His argument, however,
uses a restricted variation from D, and is therefore not
a valid proof (although he does attempt to show that
this restriction does not affect the result of the proof).

The theorem of Sec. II and its application in Sec.
III lead to the conclusion that closed-shell atomic
systems do indeed exist which have a ground HF level
with symmetry different from that of the exact ground
level, in contradiction to the earlier views. Consider
the one-center systems in Table I which are expected
to be closed-shell (1S) according to the conventional
configurational description of their ground states.?®
Unless we assume that the errors in the calculated
energies on which Table I is based are unreasonably
large, we are forced to conclude that H—, Li~, O,
and Na~ do #of have ground HF wave functions with
1S symmetry.®:%

V. THE TWO-ELECTRON ONE-CENTER SYSTEM

In this section we treat in some detail the two-
electron atomic system with fixed nuclear charge Ze.
In this case the Hamiltonian (2.1) takes the form

L= f(x1)+f(x2)+g(x1>x2) ’ (51)

with f(#)=—3iV2—Z/r and g(xy,x)=1/|r1—1,|.
Atomic units# are used in (5.1) and throughout the
rest of this section. In the present context we do not
impose the ordinary physical restriction which restricts
Z to integer values. The exact solutions of the corre-

38 The ground level of each of the two-electron one-center
systems H-, He, Lit, Be**, -+« is known from theoretical con-
siderations to have 1S symmetry.

® For H~ the best published calculation of the ground 1S HF
energy E(D(1S),) is that of Green et al. (Ref. 31) in which a
three-parameter trial wave function gave the energy value
E3=—0.487825 a.u. These authors argue that the three-parameter
function gives a good approximation to D(1S),, but no quantitative
estimate of the energy error e=E;— E(D(1S),) was given. Further
evidence indicating that this 3-parameter function is quite
accurate—perhaps surprisingly so—is provided by more recent
calculations of Roothaan ef al. (Ref. 27) using more flexible
variational trial functions to approximate D (1S), for larger Z(2>2) :
When orbitals containing up to 13 parameters were used, the
energy was found to be lowered from the three-parameter values
by at most only about 1078 a.u. for Z=2, 3 and smaller amounts
for Z>4. This suggests that the error for H™ is no more than
about 10~ a.u., that is, e|A|, where A is given in Table L. It
would, of course, be interesting to have calculations of the type
in Ref. 27 extended to the case Z=1. The calculations on Li~,
0—, and Na~ in Refs. 32 and 33 are quite similar to those of Ref.
27, so we expect errors of similar magnitudes.

4 The conclusion of footnote 39, that e&|A| for H~, has been
further substantiated by very recent calculations of D. Ellis and
P. Ros (unpublished) : the lowest value of E(D(.S)) they obtained
was —0.487924 a.u., corresponding to a six-exponential space
orbital of the form Y ¢; exp(—air) with (ci,a;) = (0.484552, 0.4),
(0.191794, 0.5948), (0.316376, 1), (0.067697, 1.4532), (0.018547,
2.7709), (—0.004246, 4.1); it is estimated that the energy can be
lowered by at most 0.0001 a.u. by using a better choice of coeffi-
cients for the given exponentials. The value E(D(1S))= —0.48793
a.u., very close to that of Ellis and Ros, is given in Table V of
C. C. J. Roothaan and A. W. Weiss, Rev. Mod. Phys. 32, 194
(1960), but no wave function is specified.

4 1. Shull and G. G. Hall, Nature 184, 1559 (1959).
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TaBLE I. Symmetry-restricted Hartree-Fock energies of some
one-center systems 4 and the corresponding system with one more
electron A~. A=E(D)—E(D) where D and D are the symmetry-
restricted determinants® for 4 and 4, respectively.

A A~ A (a.u.)
H(S) H-(1S) —0.01217
Li(2S) Li—(1S) —0.004496
B(P) B-(3P —0.00986
C(P) C—(45) +0.02017
N(*S) N-(@P) —0.07902
N-(P) N—(P) —0.29287v
O(P) O—(2P) —0.01988
0-(P) 0—(S) —0.30506°
F(P) F-(15) -+0 05007
Na(25) Na—(15) —0.0043
Al(P) Al-(3P) +0.0011
Si(3P) Si—(45) -+0.0351
P(S) P-(3P) —0.0200
S(BP) S—(*P) +4-0.0334
CLeP) CI-(1S) -+0.0947

s D for H- are from Ref. 31; all other values are from Table IV of Ref.
32 and Table V of Ref. 33.
b These values are somewhat uncertain according to Ref. 32.

sponding Schrédinger equation

Be—W)¥=0 (5.2)

are either singlets or triplets, and the ground state is
known?®® to be a 1S, so that this is a closed-shell system.
Approximate solutions of (5.2) have been compre-
hensively reviewed recently.!®® Here we are concerned
with the HF approximation to the minimum-W ¥; as
a first step towards understanding HF theory for this
simple system we consider a model for the HF approxi-
mation based on Slater determinants Dmedel defined by
three assumptions ([1]-[3]) to be discussed in turn.
In D the orbitals ¢;, =1, 2, can be assumed to be
orthogonal without loss of generality. We do not make
this assumption, although we do assume them to be
normalized: {¥;|¢:)=1.

(1) Each orbital ¢¥; is a product
Yi(®) = u:(1)X(s) (5.3)

of a space orbital #; and a spin function X;, both nor-
malized: (us|u:;)=(X;|X;)=1; X; is the eigenfunction,
with eigenvalue 3, of the component s-n; of the spin-
angular momentum s in the direction of some unit
vector n;. Using (5.3) in D and substituting into (1.1)
we find that the energy E(D) reduces to

A—Bu
E=E (M],Mz,p.) = ) (54)
1—Cu
where
A= (uys|3C| wrma), B=u1u2|3C| uons), (5.5)

C=[(umlus)[?, p=[(xa]Xa)?,

with the overlap matrices (u1|us) and (X4|X,) satis-
fying 0SC<1 and 0<u< 1. The energy (5.4) is a
monotonic function of u; it therefore suffices to treat
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only the parallel spin (u=1) and antiparallel spin (u=0)
cases. For parallel spins, D is a triplet. For antiparallel
spins, D is a singlet if |(u1|us)| =1; otherwise it is a
singlet-triplet mixture. If (u:|#2)=0, then C=0 and
B>0, so that E(u=1)—E(u=0)=—B<0, and, as
expected, the lowest energy is attained by the triplet.

In passing we note that, starting with the energy
expression (5.4), one can obtain a system of restricted
Hartree-Fock (RHF) equations in the same way as
the HF equations are obtained. It can be shown that a
solution of these RHF equations provides also a solution
of the HF equations (we have shown this only for the
present special case). The converse, that a solution of
the HF equations with orbitals having the space-spin
product form is also a solution of the RHF equations,
is a special case of the following self-evident general
theorem: Any solution of the HF equations must be a
solution of restricted HF equations obtained by con-
sidering a restricted class of determinants containing
the given HF wave function.

(2) The space orbitals u; and #, are spherically
symmetrical. D then represents an S state ; the converse
is also true.2 1S HF wave functions incorporate assump-
tions [1] and [2] and also #;=wu,. Previous approxi-
mations to 1§ HF wave functions?+! for two-electron
one-center systems have already been discussed® % in
this paper. In contrast to the earlier work we do not
assume #;=u, with a fairly complicated form for the
orbital, but rather we allow #;>£u,, assuming a very
simple form for the two orbitals. Namely, we assume

(3) %1 and u; are of 1s hydrogenic form v:
vi(r) = (ai®/ )3~ (ertiondr

'Dz(l‘) = (a23/1r)3/2e—(a2-|-iaz’)r , (5.6)

where the four o’s are real; also ;>0 and a>0. The
coefficients in the exponents are allowed to be complex
for the sake of generality. This restricted problem is
worthwhile for two reasons. It provides a model which
is simple to analyze, and we expect that the results will
show many of the features to be expected when less
restricted orbitals #; are used.

Results

For the model thus defined by assumptions (1)-(3)
the coefficients 4, B, and C in (5.4) and (5.5) become

5 3 1
i S)er (- per yer e,
16 4 8i®

B=CF, C=[E-N)/k+)F, (.7

5 3 1
F=¢— 2<Z-—-———>K-)\2-— <1———>02+—a4—|—p2 ,
16 4k 8x®

# M. Delbriick, Proc. Roy. Soc. (London) A129, 686 (1930).
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where we have introduced new parameters «, A, p, and o

k=%(etas), p=3(aa'+ad),

A=3%(a1—as), o=3(ei'—ay),

(5.8)

which are real and satisfy the relations ¥«>0 and
0<2/k2< 1. The antiparallel spin energy E, is clearly
minimum when p=0¢=0. We have little doubt that the
same is true for the parallel spin energy, the triplet
energy, E; (see Appendix D).

Antiparallel Spins

To determine the minimum energy for the anti-
parallel spin case we make use of the energy expression
[4 from (5.7) with p=¢=0]

3 1
Eu=E,(x\; Z)=1*4(— 2Z)K+<1"“—‘>)\2+—>\4 (5.9)
4x 8i?

together with its first and second derivatives

0E, N2 3\
—=ut -2+ ———, (5.10a)
ok 452 8t
AE, 3 A
- 2>\<1—-—+——) , (5.10b)
N 4 4l
O*E, 3N 3 M
=2———t——, (5.11a)
% 2¢ k2 2k k*
2E, 3\ AR
=-—< -1, (5.11b)
OkON  2k% K/
o’E, 3 3\
=2——t——, (5.11¢)
ON? 2k 2k k*
and the determinant
02E, *E, [/0*E.\?
= ——( ) . (5.12)
oz ON? IKON

The stationary points are determined by
OE,/dk=0E./ON=0

together with x>0 and 0<2\2/k2<1. From (5.10a) and
(5.10b) it follows that there is one singlet stationary
point (ks,\s) with \;=0, and four nonsinglet stationary
points. Two of the nonsinglet stationary points, (kas,Ans)
and (kns, —Ans) With \,s70, are locally stable and are
degenerate ; the other two are unstable (and degenerate)
and will henceforth be ignored in this section. [A sta-
tionary point is locally stable if (5.11a), (5.11c), and
(5.12) are positive; it is unstable if any of these quanti-
ties is negative.] A detailed examination (see Appendix
C) yields the results given in Table II concerning these
points. The singlet and nonsinglet stationary energies
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in Table ITI are equal for Z=Z,m°%!=1.0773. This value
lies in the range 17/16<Z<13/12 where both the sin-
glet and nonsinglet stationary points are locally stable.
The singlet stationary point is thus metastable for
17/16 < Z< Z ™! and the nonsinglet stationary point
is metastable for Z modl<< Z<13/12.

We note that the more spread out of the two non-
singlet orbitals has orbital exponent k—|\| which de-
creases monotonically to zero as Z decreases from
13/12 to 1. In other words, this orbital becomes more
spread out as Z decreases, becoming spacially unbound
as Z— 1.

When the nonsinglet minimum energy occurs arbi-
trarily near the boundary |\| =k, it may be at a non-
stationary point, in that d E/d\ need not vanish. This
is, in fact, the situation for 0<Z<1, in which case
kns=%Z and Eq min(Z)=—3%22%

We conclude that for antiparallel spins the minimum
energy as a function of Z is given by

Ea-min(Z) =Ea(’<ns,>\ns; Z) y O<Z<Zcm°d"1
=F.(x,0; Z),  Zm<Z. (5.13)

This is plotted in Fig. 1. Also plotted are the metastable
values of the antiparallel spin energy.

Triplet

The triplet energy expression is more complicated
than the antiparallel spin energy expression. For this
reason and because the minimum triplet energy never
lies below the minimum antiparallel spin energy E.
for Z>0, we only outline the calculation for the triplet
(in Appendix D) and give results: the minimum triplet
energy is plotted in Fig. 1 and tabulated in Appendix D.

Discussion

It is interesting to examine how these results are
related to the theorem of Sec. IL. Letting D, in (2.3)
represent a ground HF wave function of the two-
electron system and D a ground wave function of the
corresponding one-electron system, we conclude from
(2.3) that the ground HF energy of the two-electron
one-center system never exceeds the 1s hydrogenic
energy Fi,=—3Z% In particular, for Z=1 the negative
value of A=E;,—E(D(S)) given in Table I showed
that the 1S HF wave function considered there is not a
ground HF wave function: D, lies below D('S) by at
least |A|. The analog of the theorem of Sec. II, of the

4 We note that for 0<Z<1 a small variation about the mini-
mum energy point in (ai,es) space does not represent a small
variation of Dmedel in that

lim lim / | D (@81, @) model — D () ™03l s 70,
830 a0

where the integral includes summation over spin coordinates. As

a consequence, the occurrence of the minimum energy Slater

determinant at a nonstationary point in (ai,as)-space does not

imply that it occurs at a nonstationary point in the set of

determinants.
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TasrE II. Results concerning stationary points of the antiparallel spin energy. (A pair of unstable nonsinglet stationary points
discussed in Appendix C is not included in the table.)

Singlet Nonsinglet
5 ]
Stationary points exist for —<2Z 1<Z2<13/12
16
with k=2 —— kns=%—3(13—-122Z)12
16
As=0 Nns=Kns (3_4"":)1/2

Stationary energy

Local stability
17
16

for Z>—, local minimum
16

1
—[46—72Z— (13— 12Z)#2]
54

1<£Z<13/12, local minima

5
—<Z<—, saddle point
16

min (max) with respect to x(A)

type discussed at the end of that section and applicable
to the present model, results from varying D only
within the subset of Dmedels, This leads to an analog
of (2.3) in the form E(D,modl)< E,, which shows that
the singlet energy E; is not minimum for the model in
the range Z<1.0669- - -, where E;,< E,.

It is noteworthy that for Z<1 our results for the
model give no information about the ground HF wave
function not already known from the theorem of Sec.
II. On the other hand, for Z>1 the model calculation
does give additional information by providing a D,
namely Dymedel for which E(D)< Ei.. This proves that
D, is bound for Z>1.

This raises an interesting question which to our
knowledge has not been answered (or even asked): Is
D, bound also for Z=1?

Concerning the physical origin of the nonsinglet
ground level: in the ground state of the two-electron
one-center system there is, as usual, a competition
between the tendency on the one hand to lower the
interelectron Coulomb energy by spatially separating
the distributions of the two electrons and on the other
hand, to lower the nuclear Coulomb attraction energy
by concentrating the electrons near the nucleus. As Z
is lowered, at least one sharp transition occurs when the
former tendency dominates. The ground HF and
ground model wave functions exhibit a transition at
Z=7,>1 at which the 1S symmetry is lost. There is no
transition of this type for the exact ground level. The
HF value Z,2F is unknown, although Ros and Ellis
have obtained an approximate result 1.05< Z,EF<1.075
using flexible variational space orbitals of the type
mentioned in Ref. 40, indicating that Z HF is close to
the value Z,mcdel=1,0773 mentioned earlier in this
section. The model transition at Z,md! reflects in the
model wave function a spatial correlation of the elec-
trons of a radial (or in-out) type, which is the only type
of spatial correlation allowed by the restriction to

orbitals each of which is a product of a spherical spatial
function and a spin function.

A second type of transition occurs at Z=Z, where
the ground-level wave function (or functions) becomes
unbound: For the exact ground level, 0 Z/exact<(1 4
The question raised previously as to whether D, is
bound for Z=1 is equivalent to asking whether
Z/HF<1. For the simple model of this section,
Z/model=1_ determined by the intersection of the
minimum nonsinglet and the one-electron energy
curves.

z
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F16. 1. Crossing points for energies as a function of Z occurring
in the model of Sec. V. The one-electron energy Ej,, the triplet
energy E; and the nonsinglet antiparallel spin energy E,s are all
equal to —0.5 at Z=1. The singlet energy E, moves down from
the upper left, crossing successively the curves for Ei,, E:, and
Epn,. The coordinates (Z,E) of the crossing points are: s-le
(1.06694, —0.56918), s-¢ (1.07036, —0.57436), s-ns (1.07727,
—-8?3%?8 The right-hand endpoint of Ens occurs at (1.08333,

4 We note that as Z decreases the exact minimum energy
triplet first becomes unbound at Z=1, since it is unbound for
Z=1 (see Ref. 18, p. 240) and it lies below the minimum energy
triplet of the model for Z>1, which is bound for Z>1. Also, the
minimum energy HF triplet, which lies between the minimum
energy exact and model triplets, becomes unbound at Z=1.
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VI. SUMMARY AND CONCLUSION

To summarize: We have pointed out a useful simple
theorem to the effect that an upper bound on the
energy E(D,) of a minimum-energy Slater determinant
D, for an N-electron system is provided by the energy
of an (V—1)-electron Slater determinant. We applied
the theorem to show that for most of the negative
atomic ions for which HF calculations have been
presented in the literature, the HF wave functions
calculated differ from the ground HF wave functions
in symmetry and by chemically significant energies.
The two-electron one-center system was discussed using
a very simple model, providing a concrete and detailed
illustration of previous results.

These results dramatize the fact that no practical
criterion is known for determining whether a Slater
determinant is one of lowest energy. They also show
that errors due to neglect of “correlation effects,” when
judged by the size of the “correlation energy,” can be
significantly smaller than usual estimates indicate.
That results for this type for closed-shell one-center
systems should be noticed and pointed out only at this
late date in the history of the development of HF
theory seems to us remarkable, particularly in the case
of the relatively simple two-electron one-center systems.
These observations suggest to us that the Slater deter-
minant has hitherto unappreciated and unexploited
potentialities as a useful, visualizable, and relatively
simple, approximate many-electron wave function, in
particular with regard to relaxation of conventional
restrictions on the orbitals. Criteria of goodness of
approximation other than how well the approximate
energy represents the exact energy—the one criterion
used in this paper—are often appropriately used in
practice. How well a D, or a good approximation to a
D, satisfies such other criteria remains to be seen, of
course, and is an important consideration. Our point
is that the problem of determining a D, is worth ex-
ploring in greater depth, particularly for solids with
their great complexity where it is difficult enough to
use the HF approach let alone more sophisticated
approaches developed in recent years which can in
principle give more accurate approximations.4

4% The instability of the free O~ jon discussed in Sec. III
suggests that an oxide crystal would be a promising system for a
HF approach with orbital restrictions relaxed. The HF approaches
customarily used [see, for example, J. Yamashita and M. Kojima,
J. Phys. Soc. Japan 7, 261 (1952) and S. Nagai, sbid. 20, 1366
(1965)] are based on an ionic model, the oxygen orbitals corre-
sponding to a symmetry-restricted (1S) determinant for O—.
The fact that the ground HF energy for free O™ is at least 8 eV
below the energy of the conventional 1S HF wave function, an
energy difference of the order of magnitude of usual environ-
mental energies— for example, crystal-field splittings and band-
widths— suggests that in a minimum energy Slater determinant
for the crystal the orbitals related to the oxygen will not corre-
spond to those in a determinant for O~ ions in a 1§ state.
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Note added in proof. Perkins** has independently ex-
amined the model of Sec. V and finds that the singlet
is not the only stationary Slater determinant. However,
his claim that the singlet energy is a true minimum for
Z217/16=1.0625 is in error: the singlet energy is a
true minimum only for Z2> Z,m°d=1,0773. The singlet
is only metastable for Z in the range 17/16<Z < Z medel ;
it is the nonsinglet which is stable in this range (see
Fig. 1). Going outside this model by using more general
radial orbitals, Perkins finds a tendency for one of the
orbitals to become spread out as Z is lowered toward
Z=1, a feature also of the model of Sec. V, as pointed
out there.
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APPENDIX A: AN ANALOGY BETWEEN THE
N-ELECTRON PROBLEM AND
N-SPIN MODELS

As indicated in the Introduction there is a direct
analogy between the HF approximation for N-fermion
models and the product approximation for N-spin
models, that is, between “single-particle” approxi-
mations for these two types of models. It is worthwhile
to examine this analogy in more detail here because it
can shed light on HF theory, particularly since there
has been significant progress in solving problems within
the product approximation for N-spin models.

Instead of IV electrons each with operators r;, p;, s;
(position, momentum, and spin), and functions of
these, one has IV “spins” as the particles of the spin-
model, each with its spin operator S;. Whereas for
electrons the spin quantum numbers S; are all 1, for
the spin-models each S; can be any positive multiple
of 3. Instead of the electron Hamiltonian function H
of r;, pi, s;, one has a spin-Hamiltonian function H, of
the S;. To be explicit, we consider for H, the form

Hg=_z ],-,-Si-S,-—Z K,']‘Siszz, (Al)
ij i

where ¢ and j run from 1 to N; the subscripts i are
usually associated with the atomic positions and the z
components of S; with some direction in some crystal
structure, and the parameters J;;, Ky; (and also the S;)
are then chosen to reflect the symmetry of that struc-
ture. The problem analogous to determining a ground
wave function ¥, of H (¥, is in the Hilbert space
spanned by all Slater determinants D) is the deter-
mination of a ground spin-state ¥, of H, (¥, is in the
Hilbert space spanned by all product states
P=Tli-1" ¢, where ¢; is a single-spin state). The
analog of a single determinant D is a single product P.

_ ‘= ]. F. Perkins, J. Chem. Phys. 43, 4184 (1965). We are
indebted to S. T. Epstein for pointing out this reference to us.
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The analog of each of the four definitions given in the
Introduction is easily provided for the spin problem by
substituting P for D, H(‘“Hartree”’) for HF, and single-
spin state for orbital.

The spin problem referred to above, in which there
has been progress, is the determination of a ground H
state, P,. This is, of course, the analog of the problem
of finding a ground HF wave function D,. We will not
go into any detail here about the work on the spin
problem, since it has been amply documented,*—48 but
will confine ourselves to a few remarks intended to
illuminate and make use of the analogy. We restrict
our attention to the large-IV case.

It is easy to find many H states; this contrasts with
the typical difficulty of finding HF wave functions.
For example, any P in which all the orbitals ¢; are
quantized along the z axis is a stationary point of E(P),
i.e., an H state; we will call these collinear P’s. This is
true for any values of the parameters J;;, K, and S;.

However, the fact that one possesses these H states
is of little help in solving the real problem of interest,
namely the determination of a P,. It could be considered
to be of some help if one knew that one’s list of Px’s
included all Py’s, but one often does not know this.
Even if one did have a complete list of the Pw’s, the
enormous number of them plus the difficulty in ordering
their energies as a function of a few parameters would
render it practically impossible to straightforwardly
determine the minimum.*%

The statements of the previous paragraph are quite
obvious, and their analogs for the electron problem are
valid. Yet many who work on HF theory do not seem
to be aware of these concepts, surprise being evoked
when they are told, after expending large amounts of

46 J. M. Luttinger, Phys. Rev. 81, 1015 (1951).

4T, A. Kaplan, Bull. Acad. Sci. USSR, Phys. Ser. 28, 328
(1964) (Columbia Technical Translations), and references con-
tained therein.

4 D. H. Lyons and T. A. Kaplan, J. Phys. Chem. Solids 25,
645 (1964).

91n the case of the quantum-mechanical Ising spin-model
(J:;=0) one does know the complete list of Pr’s, namely the set
of all collinear P’s with the individual spins quantized along the
2z axis. Nevertheless, the difficulty of determining a P, straight-
forwardly is enormous (see Refs. 46 and 47). It is, however,
possible to find a P, for some choices of the Ising model parameters
by using the method of Luttinger and Tisza (Ref. 46) or the
method of Ref. 48, but for other choices, these and other known
methods fail (Ref. 48).

% Tt might be worthwhile bringing out the following point. As
stated in Ref. 49, the entire set of Pg’s in the case J;;=0 consists
of the (2S+1)¥ collinear P’s. This set of course is complete in
the Hilbert space. Further, each one of these P’s remains a Py
when the J;; change from zero. But there are nonzero values of
the J;; for which other P’s become Pn’s—showing that the
number of Px’s can be greater than the dimensionality of the space.
Thus the set of all states satisfying 8[ (P,HP)/(P,P)]=0 (all
Py’s) is probably unsatisfactory as an approximation to the set
of eigenstates of the Hamiltonian H,. This situation provides a
clear illustration of what Pekar [Zh. Eksperim. i Teor. Fiz. 18, 525
(1948)] seemed to be trying to say in connection with the analo-
gous HF problem. (His statement, made without proof, that
there are more Duy’s than there are exact energy eigenstates is
clouded by the fact that in the HF problem one begins with a
Hilbert space of infinite dimensionality.)
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computer time to obtain an accurate Dgr, that their
Dsxy is only one of many Dgg’s, that their Dgr might
not be a D,, and that, in fact, it might not even be close
to a D,. One of the uses of the analogy is to make
evident these concepts which are essential to an under-
standing of HF theory.

Despite the great difficulty of finding a P,, it has
been possible to do so for some spin models by means
of special techniques.?~*® This may be regarded as an
encouraging sign, vis-d-vis the electron problem, at
least perhaps for some highly idealized fermion
problems.

Finally, the spin problem provides rather striking
examples of the inadequacy of the standard type of
symmetry restriction in which the wave function P is
required to transform in the manner of an exact energy
eigenstate. As one example, suppose in H, that K;;=0,
¢and j run over the positions n in a simple cubic lattice
with Jam=J (0—m), Jun=0 unless n and m are nearest
neighbors and Jum=J<0 for nearest neighbors—a
situation obviously leading to antiferromagnetism. The
Hamiltonian H, commutes with S?, where S=3",_,% S,.
The exact energy eigenstates can, therefore, be chosen
to be eigenstates of S* also, and it is often helpful in
practice to require this when dealing with exact energy
eigenstates. This suggests that we impose the same
requirement on the approximate wave function P. Let
us therefore require that P be an eigenstate of S2. The
problem then, in this restricted Hartree theory, is to
determine a lowest energy P that is an eigenstate of S2.
(This is completely analogous to a type of restriction
conventionally used in symmetry-restricted HF theory.)
We see from the following theorem that in this case the
symmetry restriction alone largely determines P.

Theorem®™: A product state P which is an eigenstate
of 82 must be of the form JT;—1¥ ¥ (3) where ¥,(2) is the
eigenstate of S5, with the maximum eigenvalue S; S,
is the Cartesian component of S; along an arbitrary
direction 2, this direction being the same for all spins 1.

According to the theorem, the only P’s which are
eigenstates of S? are ferromagnetic (with maximum
value of $?). Thus, within the Hartree approximation,
the restriction of requiring P to be an eigenstate of S
leads, in the present example of a Heisenberg anti-
ferromagnet, to the worst possible description.

APPENDIX B: PROOF OF EQUATION (2.6)

In this Appendix we prove the relation (2.6), namely,
lim,.,0 A,=0, where

A=ED())—E(D). (B1)

We first obtain a convenient expression for A, using
expressions for D and D(k) in which the orbitals are

51 For a proof of this theorem see T. A. Kaplan and W. H.
Kleiner, MIT, Lincoln Laboratory, Technical Note No. 196715,
(unpublished).
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orthonormal. If
D= a[y1(1)s(2)- - -yw (V)]
then, from (2.4), it follows that
D) =cal¥1(1)¢2(2)- - ¥ (N (N+1)]. (B3)

Without loss of generality we choose the y; to be ortho-
normal and write D (k) in terms of orthonormal orbitals
as

(B2)

D)=¢'GL¥r1(1Y2(2)- - Yn (V) (V+1)], (B4)

where

@sa(@—é WS, (B5)

with
Si= s dr) (B6)

and
o= (1= |92, (87)

=1

In (B3) and (B4), ¢ and ¢’ are normalization constants.
Using the standard expression for the energy (1.1) of a
determinant of orthonormal orbitals we then find

A= (@lfl@)é [l elvido

- (‘/’i‘i& ' gl(ﬁx‘l/w)] ) (BS)
where » .
v
=y B
/ om 2 =R (B9)
g(1,2)= , (B10)
1'1—l'2|
and

(ablglcd)E/d&déza(1)*b(2)*g(1,2)o(1)d(2), (B11)

J d¢ standing for the usual integral over space and sum
over spin coordinates.

To prove that lim,,o A,=0, we prove that each term
on the right-hand side of (B8) vanishes as k — 0. Since®?

| Widel g i) | < Widil gl¥idhs) s (B12)
it suffices to show that in the limit each term of
(Be| f1b0)=a{ (¢ flbs)
— 3 [(@e] f1¥n)Satc.c.]

+Z @il IS ASa)  (B13)

8 C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951). Although
Roothaan’s proof explicitly assumed the orbitals to be functions
of space only, reinterpretation of the symbols in his formal proof
leads directly to (B12).
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and of

(Wide| g|¥ide) = a*{ (Wite| g i)
=2 Lol gl¥an)Satc.c.]

+2 (il glyapn)Si*Sa}y  (B14)

vanishes. For this purpose it is a sufficient condition
that the following quantities exist:

W), /drl¢n+(r)llr—Rl*l, @119,

/drdf'l%a(f) l2l¢”+(rl) l ll'—' r’l~1 ) (Whlgl%il/n) )

where ¥, (r) is defined by ¥i=y;y (r)a+y,_(r)8, 8 being
the usual spin function orthogonal to . This condition
is weak and will almost invariably be satisfied in prac-
tice. The term “‘physically reasonable” occurring in the
statement of the theorem of Sec. II refers to D’s which
satisfy the above condition.

The rest of the proof involves a straightforward
calculation. Here we simply illustrate the type of
argument used by discussing the overlap integrals S;:

1S = | G| < (/m) 2 / e 1) dr

< (@/ap" / V()| dr=0(%).  (B15)

The last step requires that J'|y:.(r)|dr be bounded,
which follows from (2.2) and normalizability of ;.
Consequently, lim,o ¢=1. In a similar manner we find
that the matrix elements in (B13) and (B14) involving
¢, have the following behavior for small «:

(¢x‘f}¢x)=0("): (¢'x|fl§[/n)=0("3l2):
(\&i‘bl ! 4 I 'pi¢x) =0 (K) ) (‘/"id’x ’ 8 l Yba)=0 (Ks/z) .

It is then clear that (B13), (B14), and hence A, vanish
in the limit k — 0, proving (2.6).

APPENDIX C: STATIONARY POINTS OF THE
ANTIPARALLEL SPIN ENERGY

The calculation for the singlet stationary point is
very simple. The analysis for the nonsinglet stationary
points is more intricate, so we record here some details
of it for easy reference. In this case setting (5.10b)
equal to zero gives for A

N=x2(3—4x). (C1)

Substituting (C1) into the remaining equations of
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(5.9)-(5.12) we find

E,=—23+4— (2Z+1)«k, (C2)
OE,/dk= —612+8k— (22+3), (C3)
OE,/ ok = (24— 28k+9) /x>0, (C4a)
O2E,/0kdN=3\(2k—1)/s?, (C4b)
E,/ N = (3—4«) /k, (C4c)
A=4(3—4x)(2—3k) /k. (C5)

From 0E,/dx=0 and (C3) one finds that
k=25(13—-122)'~.
The corresponding energy is given by

E.=3{(13—12Z)k— (4Z+1)}
= {46—T727+ (13—122)2} /54.

For « to be real we must have Z<13/12. From (C1)
and the constraint 0 \?/k2<1, we see that a nonsinglet
stationary point exists only for §<x< 2. Consequently,
there is a pair of degenerate stationary points (kns, £=Nns)
with Kkns=2—31(13—122)2) Apy=kns(3—4kns)'? in the
range 1<Z<13/12, and another pair (kas’, 2=\ns") with
Kns' = 2+ (13—122)12, N/ =kns' 3—4kns')!2 in  the
range 17/16< Z<13/12.

From (C4a), (C4c), and (C5) we see that a nonsinglet
stationary point is locally stable if k<%. It follows that
the points (kns, =Nns) are locally stable in the range
1< Z<13/12, while (kns', &=Ans’) are unstable through-
out the range in which they are defined.

Nonstationary Minimum Energy

The nonsinglet minimum energy for 0<Z< 1, which
occurs near the boundary || =k, is obtained simply by
substituting A2=«?2 into (5.9) and finding the minimum
with respect to «.

APPENDIX D: THE TRIPLET ENERGY E,

To examine E;(k\,p,0;Z)=(4—B)/(1—C) with 4,
B, C given by (5.7) we notice first that since 9E,/
dp=2p, stationary points of E, occur only for p=0.
Replacing the remaining parameters k, A\, o by «,
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TasLE III. The minimum triplet energy E; min (in atomic units)
as a function of Z, for the model of Sec. V. For 0<Z <1, E; min
coincides with the minimum antiparallel-spin energy and the one-
electron energy: Ee, min(Z) = —322 with k=3Z, |\ [=«".

VA Et, min Kmin Amin
1.000 —0.5000 0.5000 0.5000~
1.005 —0.5050 0.5047 0.5003
1.010 —0.5101 0.5091 0.5009
1.020 —0.5204 0.5172 0.5027
1.030 —0.5308 0.5250 0.5049
1.040 —0.5414 0.5325 0.5074
1.060 —0.5629 0.5469 0.5127
1.065 —0.5684 0.5505 0.5141
1.070 —0.5740 0.5540 0.5155
1.075 —0.5795 0.5575 0.5170
1.080 —0.5851 0.5610 0.5184
1.085 —0.5907 0.5644 0.5199
1.100 —0.6078 0.5747 0.5243
1.500 —1.1718 0.8323 0.6548
2.000 —2.1606 1.1448 0.8238
3.000 —5.0717 1.7660 1.1636
4.000 —9.2240 2.3862 1.5035
5.000 —14.6163 3.0062 1.8432

10.000 —60.1762 6.1057 3.5405

x=N/i?, y=02/k? (0<x<1, y20) and minimizing with
respect to k, we find that E; reduces to

(A1—CFy)?

E(xy;Z)=— (D1)
’ 4(4,—CF4)(1—C)
corresponding to
(4,—CFy)
k(@y; 2)= =, (D2)
2(A 2 CFz)
where
Ar=3r—30—27+5, Ay=1+aty,
Fi=ty+iy=22+§, Foml—s—y, (D3)

C=[(1—x)/1+)F.

The expression (D1) represents the energy only for
those values of #, y, Z for which «(x,y; Z)>0. An
examination of E.(x,y; Z) for y<1 and y>>1 together
with a sampling of values of E,(x,y;Z) leads us to
conclude that its minimum with respect to y always
occurs for y=0. Results of minimizing E,(x,0; Z) with
respect to x are given in Table III and are plotted in
Fig. 1.



