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Self-Consistent-Field Tight-Binding Treatment of Polymers.
I. In6nite Three-Dimensional Case
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A general self-consistent-6eld tight-binding linear-combination-of-atomic-orbitajs (LCAO) formalism
is given for three-dimensional polymers containing many atoms in the elementary cell with all neighbors
interacting, taking overlap explicitly into account. This formalism, which corresponds essentially to the
formulation given by Roothaan for closed-shell molecules, has been developed with the aid of Hermitian
complex matrices. The special cases of nearest™-neighbor approximation and of a linear chain are then
derived from the general expression obtained. Finally, formulas are given, again in complex-matrix formula-
tion, for the dependence of the energy levels and wave functions of the polymer on the wave number k.

I. INTRODUCTION

HK tight-blndlI1g approxlmatlon for R crystal has
been well known for a long time. ' It is usually

formulated for cases where there is only one, or only a
few, atoms within the elementary cell. The method has
been used mostly for metals, ' alld only rarely for or-
ganic Rnd lnorganlc polymers. SoIIM work hRS beell done
on the calculation of the energy-band structure of a
linear organic polymer by Kouteckg and Zahradnik. s

The extension of their method to the case of many
atoms in the elementary cell and of many interactions
between them has been developed by two of us and by
Apped for the calculation of the energy-band structure of
periodic deoxyribonucleic acid rnodels4' and of some
other polymers of biological interest. '

In the present paper we develop a general self-
consistent fteld -(SCF) tight-binding linear-combination-
of-atomic-orbitals (LCAO) formalism (corresponding
essentially to Roothaan's formalismr for molecules)
for inlnite three-dimensional polymers, taking into
account all neighbor interactions and not neglecting
overlap integrals. To be able to apply it to cases with
many atoms within the elementary cell and many types
of interactions between them, we have formulated our
problem with the aid of complex matrices.

The general scheme presented here includes as simph-
6ed cases the previously publisheds' semi-empirical

*Permanent address: Central Research Institute for Chemistry
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x-electron treatments in the Hiickel and Pariser-Parr-
Pople approximation of one- and three-dimensional
polymers.

To fuKll our task we 6rst show how an inlnite cyclic
matrix can be brought to a block-diagonal form. This
result is then applied to solve the eigenvalue equation
(referred in general to a nonorthogonal orbital basis)
of the polymer. Finally, we reformulate the matrices of
the eigenvalue equation so as to 6nd the form they take
in the self-consistent scheme.

The results presented, of course, do not elimiIlate
possible reservations as regards the applicability of the
current theory to a priori calculations.

II. GENERAL FORMULATION OF
THE PROBLEM

A. Block Diagonslization of the Hypermatrix
of the Polymer

j.. Let us suppose that we have a three-dimensional
polymer containing together e orbitals in the elementary
cell of one or more atoms. For the sake of simplicity,
let the number of elementary cells in the direction of
each crystal axis be equal to an odd number: X~——X2
=Es——2E+ i. Further, we suppose that E-+co and the
Born—von Karman periodic boundary condition holds.

Let us suppose then that there is an interaction be-
tween orbitals belonging to di6erent elementary cells.
We can then describe, in the one-electron approxima-
tion, the delocalized crystal orbitals of the polymer, with
the aid of the LCAO approximation, in the form

9"=Z Z & o'&X"
g~l

where y=(pt, ps, ps); ti=(qt, qs, qs); p; and q;=
O, ' ' ' p; f=1, ' ' prt, and Qs ts a shorthand notatton for
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Here the letter g in the indices of the constants C«»
refers to the orbital within an elementary cell and the
boldface letter q to the diGerent elementary cells. The
indices y and f indicate within the fth band the level
characterized by the vector p. The notation x«means
the gth atomic orbital of the cell characterized by the
lattice vector

R,=qiai+qqaq+qqaq, q;= —f~", P, ,&, {2)

where a~, a2, aa are the three basis vectors of the crystal.
Let us denote by

xq=x"qq"=(x"" x"".x'") (3a)

the row vector of the e atomic orbitals of the cell char-
acterized by the vector q. From the row vectors gq

one can build up the hyper-row-vector containing the
atomic orbitals of the chain of the cells characterized by
thc two coIQpoIMnts gI and $2'.

gqgqq —('gq)qq( iq) @qlq2qq ~ ~ gqlqq+) (3b)

which have n(2K+I) components. From the hyper-
row-vectors X&1&2 one can also build up hyper-row-
vectors containing the atomic orbitals of the cells
arranged in the plane characterized by the vector
component qj.

yqg —(gqg( —N) . . . gqgqq. . . gq)iq)
7

which have e(2K+I)' componen. ts. In the last step,
from the hyper-row-vectors K&~ one can buiM, up a
hyper-row-vector containing all atomic orbitals of the
whole crystal:

x= (x' ' xq~ x") (Bd)

which have n(2/+1)q components. Using this nota-
tion, we can express the set of crystal orbitals in matrix
form Rs

N N

q=zC= Z xqC„= 2 2 xq "C...,
q1=N q& N

of tbc onc-clcctlon cGcctlvc HRIMltonlan Hogg Rnd pcl-
form a Ritz variational procedure for the coeKcients
in Eq. (1a), we obtain finally for the whole polymer the
matrix equation

FC»= q(y, f)SC». (4a)

The hypermatrix F of dimension qq(21V+I)' has the
submatrices F~q of dimension n consisting of inter-
actions between the orbitals belonging to the elementary
cells characterized by the lattice vectors R~ and Rq, re-
spectively. The f,gth element F~r«of the matrix
Fpq is then given by

F»"=(x"I&.nI x"&

The overlap matrix S can be written in a block form
similar to the matrix F, and

~„"=&x"lx"&.

3. In consequence of the Born—von Karman boundary
condition and the three-dimensional translational sym-
metry of the polymer, the matrices F and S are
cydic hypermatrices. Therefore it can be shown" that
with the aid of a unitary hypermatrix U, both F and
S can be transformed to a block-diagonal form. To do
this, let us deine the submatrices U~q of the hyper-
matrix U as

= (2gy1) q/' expL2qriy q/{2K+1)~I, (~)

whei'e I is a unit matrix of order I, snd yq is a scalar
product of the vectors y and q having three integer
components. Then it can be proved that U is unitary
LU Ut= I; I is a unit matrix of order e(2K+1)'j and
the hypermatrices F'= UtFU and S'= UtSU have
R block-diagonal form. Thc dlRgonal blocks RI'c matrices
of order qq only. Therefore, if instead of (4a), we write

UtF U UtC»= q(y, f) U'SU UtC», (4b)

or with the notation

p'q/= @C» {Ic)

Here C is a square matrix of order N(25+I)' for~ed
from the coefficients C«pf', and onc can build up the
column vectors C» and row vectors C«of C by the
same method as in the case of the row vector X. Here
and. hereafter the subscripts denote the row indices and
the superscripts denote the column indices of a matrix,
written with Latin letters. In this manner Cqg or Fpf
arc always low vcctorsq Rnd CP~~ fol cxaIQplcq ls a
column. vector. Cq„Cq, q„and Cq are rectangular sub-
matrices of C with n(2K+I)', n(2Ã+I), and I rows,
respectively, and with qq(2A +1)' columns.

2. If ere form the expectation value

&q "Iff.«I v "&

F'D»= «(y,f)S'D» (9)

and take into account the block-disgonal form of F'
and S', respectively, we arrive at the much simpler
matrix equation

F (y)aqy) =,{y,f)S (y)dr{y).

Here the matrices

F'(y) =P expI 2~qy q/(2m+I) jp(q) (11a)

S'(y) =2 expI 2~qy q/(2&+ 1)jS(q) (12a)

which form the diagonal blocks of F' and S', respec-
tively, are only N&&qq matrices, and the vectors d~(y)
have only e components. The elements of F(q) and

o See, for instance, P.-O. Lowdin, J.Appl. Phys. 33, 251 (I962).
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S(q) are defined by

~r'(q) = &x"
I &.«I &"& (13)

~r'(q) = (x"
I x"), (14)

respectively, where @or stands for the fth atomic orbital
(AO) of that elementary cell where we put the origin
of the coordinate system, and y« for the gth AO of the
elementary cell which can be characterized by R~ in
the same coordinate system.

According to the detailed calculations, if we take
into account that S~~, and introduce the wave
vector k, we can write the matrices P'(p) and S'(p)
in the following form:

in a real form4:

(Re[S'(k)] —Im[S'(k)] (Re[V(k)] —Im[V(k) j)
!

EIm[S'(k)] Re[S'(k)j &1m[V(k)] Re[V(k)] )
(Re[V(k)j —Im[V(k) j) (Se(k)

(1m[V(k)] Re[V(k)] l & 0

where the elements of the last matrix on the right-
hand side are the doubly degenerate real eigenvalues.
To calculate the matrices Re[S'(k)] and Im[S'(k)]
we have only to take into account Eq. (12b). Then we
can write down immediately

F'(k) =P e'"'n»F(q), (11b) Re[S'(k)]=P cos(kR, )S(q) (12c)

S'(k) =P e'"'R»S(q), (12b) Im[S'(k)]=+ sin(kR )S(q). (12d)

and we can rewrite (10a) as

F (k)'dr(k) e=(kf) S, (k)'dr(k) . (10b)

In Eqs. (11b) and (12b), P»+" is a shorthand no-
tation for

g ~00 Q ~00 g ~00
j. q 3

and the wave vector k is

k= krbt+ksbs+ksbs,

where br etc. are the basis vectors of the reciprocal
space (by definition a; b;=2s-3;,). The components k;
of k can be expressed by

k;= (27r) (a;,k,+a;„Jr„+a;,k,), j=1,2, 3 (16)

where k, k„, and k, are the rectangular coordinates of
k,"and a;„a,„,and a;. are the rectangular coordinates
of the basis vector a;.

3. As is well known, " we can eliminate from Eq.
(10b) the overlap matrix S'(k). To do this, we first
diagonalize it. Taking into account that S'(k) is a com-

plex Hermitian matrix, we can rewrite its eigenvalue

S'(k)V(k) =V(k) Ss(k) (17a)

[where V(k) is a unitary matrix containing in its
columns the normalized eigenvectors of S'(k), and

Ss(k) is a real diagonal matrix containing the eigen-
values of S'(k)], or

(Re[S (k)]+'i Im[S'(k)]}(Re[V(k)]+i Im[V(k)]}
= (Re[V(k)j+i Im[V(k)]}Ss(k) (17b)

"The 6rst Brillouin zones of a crystal with a speci6c symmetry
are usually given in terms of the Cartesian coordinates of k. On
the other hand, we can characterize the elementary cells most
easily with the aid of the lattice vectors R& expressed in terms of
the unit vectors a1, al, and a&, which are not necessarily orthogonal.
We need therefore the transformation (16)."P.-O. Lowdin, J. Chem. Phys. 18, 365 (1950).

After the diagonalization of S'(k) we can rewrite
(10b) as

V'(k) F'(k) V(k) V'(k) d'(k)
= e(k,f)Ss(k)Vt(k) dr(k) . (10c)

The second step is to write (10c) in the form"

Ss(k)
—"'Vt(k)F'(k) V(k) Ss(k)—'"Ss(k)"'

XVt(k)dr(k) = e(k,f)S»(k)"'Vt(k)dr(k)

and introduce the notation

Pe(k) = Ss(k)
—tlsVt(k)P'(k)V(k)se(k)-res (18s)

br(k) =S,(k)'"Vt(k)dr(k) . (19)

Thus we obtain the simple matrix eigenvalue problem
for the determination of the energy bands of the three-
dimensional polymer:

Fp(k)bf(k) = e(k,f)br(k) . (20a)

For the purpose of the later calculations, it is advan-
tageous to separate the real and imaginary parts of the
matrices. We obtain from (18a)

Re[ps(k)] = S»(k)
—'~'(Re[Vs(k) j

X (Re[F'(k)] Re[V(k)]
—Im[F'(k)] Im[V(k)]}
+Im[Vr(k)]{Re[P'(k)] Im[V(k)]
+Im[F'(k)] Re[V(k) j})Ss(k) "' (18b)

1m[ps(k) j=Ss(k) ~ (Re[V (k)]

X (Re[F'(k)] Im[V(k)]
+Im[F'(k)]Re[V(k)]}
—Im[Vr(k)](Re[F'(k)] Re[V(k)]
—Im[F'(k)] 1m[V(k)]})S»(k) ' ', (18c)

"Since S0(k) is real and diagonal, the matrix S(,(k) '" is
also real and diagonal, and its nonzero elements are [S»(t) 'I'j~r
= ESor'(lt)3 "'.
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where Vr(k) denotes the transpose of the matrix V(k),
and where, from Eq. (11b), we find

Re[F'(k)]=+ cos(k R,)F(q),

and

and n* denotes the number of molecular orbitals
(MOs) which would be filled by the n, electrons coming
from one elementary cell. Substituting into (22b)
and (22c) the I CAO MOs and forming the charge-bond
order matrix of the three-dimensional polymer

Im[F'(k))=g sin(k R )F(q). (11d)
P 2 P P Crh(Crh)t (23)

F '(q) =& '(q)+T [PG(0,j;«,g)], (24a)
where(Re[F0(k)] —Im [FO(k)] Re[br(k)]~

! ! ~ (q="(1)~;(1). (1»,
(Im[F,(k)] Re[F (k)] 1m[br(k)]) and

Re[b~(k)] G-"(o,j'; «g) = &x"(1)x"(2)
I r» 'I x"(2)x"(1))= e(k,f) (20b)(Im [bi'(k) ]

(24b)

—-'&x' (1)x"(2)Ir 2 'Ix"(2)x"(1)) (24c)

we obtain, after simple calculations, the expression
Having calculated the matrices Re Fo k and

Im [F0(k)] we can rewrite (20a) in a real form

B. SCF LCAO Formalism

1. The Hamiltonian of the whole polymer may be
written

n

Tr[PG(0 f; «,g)]=K 2 Pi 6"(o,f; «,g)
t j=1

(24d)

ne (2N+1) ~.(2&+i)' 1
&o'( )+k

Jll, P=l 7 ~y

~o(~)=-l~.+2 2 &(«,j;~),
q j 1

(21)

~r'(«) =&x"(1)I &0'(1)

+P P P'(r h 1)—&(r h 1)]Ig«(1)), (22a)

where the Greek letters p, v refer to the electrons, e,
denotes the number of electrons within the elementary
cell explicitly taken. into account, and V'(«, j;ii) means
the core potential acting on the p,th electron due to the
jth atom of the elementary cell characterized by R»;
finally, m is the number of atoms in the elementary cell.
After carrying out a Roothaan~-type procedure, "we
obtain a hypermatrix in the form of (5) for the deter-
mination of the diferent one-electron energy levels of
the polymer. However, it is not necessary to give all
the elements of this hypermatrix, because, applying
the unitary transformation described in the previous
section, we obtain again the transformed hypermatrix
in a block-diagonal form in which the nonzero sub-
matrices F'(p) may be expressed with the aid of the
submatrices F(q) of the hypermatrix F [see Eqs. (11a)
and (13)].The elements of F(q) we can specify in this
case~ as

Further, the elements of the column vectors 6'&(0,f; q', g)
are defined by the expression (24c).

2. To write down in detail the elements of the matrices
F(q), however, we now have to take into account that
in (24a) we have the expression of the matrix P which
contains the original hypervectors O'". Taking into
account that according to Eq. (8) O'"= UtC'" and
therefore

Qrh —UDrh, (25)

and considering further the definition (7) of the sub-
matrices of U and the definition (23) of the hyper-
matrix P, after a simple calculation we obtain

P, '=2(2&V+1) 'g g d"(r)fd"(r)]t

Xexp[2s.ir(t —s)/(21V+1)], (26)

where the vectors d"(r) can be obtained from Eq. (10a).
In the case of S—+ we can go over again from the
discrete-level system to the continuous-band descrip-
tion and, using the same notation as in Eqs. (10b)-
(12b), (15), and (16), obtain the final result

1/2 1/2 1/2

Pt8= 2 P d"(k)
—1/2 —P/2 —1/2

Xfd"(k)]te'~i t I&dk, (27a)
where

"It should be mentioned that we can sum over the bands which
correspond to the 6lled levels of the monomer, as we did in the
derivation of the expression (26), only if the bands do not overlap.
In the case of organic polymers, however, this is usually the case,

'4 It is assumed, here and in what follows, that our system is a
closed-shell system.

where' dk is a shorthand notation for dk~dk2dka. In
J(r&; i ) p(ii) = &q'"(~)

I r» 'I y'"(i))q (ii), (22b) this case the form (24a) of the elements of the matrices

&(r» ~) v(~)=&a'"(~) I»" 'I v(~))s'"(i), (22c)
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F(q) remains unchanged, but we have to sum in (24d)
over a!l the three components of t from —cc to + co.
Further, we have to keep in mind that in this case P
and G(0,f; q, g) are infinite matrices and that the num-

ber of different H(q) and G(0,f; q, g) matrices is also
in6nite.

3. In connection with the overlap problem we have to
notice that in the SCF case in Eq. (24a) we have de-
fined the elements of the matrices F(q) in terms of the
vectors d"(k) according to Eq. (27a). Therefore, taking
into account the identity d"(k)=V(k)S&(k) 'tsb"(k)
Lsee Eq. (19)],we can substitute in Kq. (27a)

d"(k) [d"(k)]t=V(k) S,(k)
—"'

Xb"(k)Lb"(k)]sS,(k)
—'tsVt(k) . (28)

By forming the real and imaginary parts of matrix
F'(k) Lwhich we have to substitute into (18b) and (18c)
in the SCF case], seemingly we have to take into
account Eqs. (24a), (27a) and (28) in addition to Kq.
(11b). We should observe, however, that the second
term in Eq. (24a) corresponds to Coulomb and ex-

change integrals, which are real quantities. Therefore
they also have to remain real after the transformations
(25) and (28), respectively. Thus the matrices F(q)
are real matrices, and therefore Eqs. (11c) and (11d)
hold also in the SCF case.

III. NEAREST-NEIGHBOR APPROXIMATION

i. In the case of the nearest-neighbor approximation
we have to sum, in Eq. (11b) of F(k) and Eq. (12b) of
S'(k), respectively, only over the nearest neighbors:

(n.n. )

Fr'(q) = (x"(1)I
—k&i

(n.n.) &o Z~ —V"(p,j;1) Ix"(1))
u i 1 r1—

(n.n. )
+ 2 2 ~st"G-"(0,f;q,g)

s, t i,j=l
for t—s, s—q, q —tW (s.n.), (31a)

where (s.n.) is an abbreviation for second neighbors.
Here in the one-electron integral we have sepa-
rated the core potential V'(p, j; 1) into the two terms—(Z/Iri —R;I)+Vc c (p j'1) of which the first term
gives the interaction of the electron having the posi-
tion vector r& with the jth nucleus in the elementary
cell characterized by the lattice vector R~ (the nucleus
has the position vector R» and its nuclear charge is Z;},
while the second term is the interaction of the electron
with the core electrons of the jth atom in the elemen-
tary cell determined by R,. Further, we have to keep
in mind that in this case the in6nite matrices G (0,f; q, g)
have only a finite number of nonzero submatrices, and
the number of different nonzero H(q) and G(0,f; q, g)
matrices is also 6nite.

IV. ANALYSIS OF THE ELEMENTS OF MATRIX
F(q) IN THE NEAREST-NEIGHBOR AP-
PROXIMATION FOR A LINEAR CHAIN

i. To simplify the analysis of the elements of the
matrix F(q), we rewrite (27) and (31a) for the case of
a linear chain. We obtain then for the charge-bond order
matrix within the elementary cell:

F'(k)= P e'~.R,F(q) (29a)
P, =P'=- Q d"(e)I d"(~)]tde, (27b)

(n.n. )
S'(k) = P e'" R~S(q), (30a)

where the upper index (n.n.) of the sums indicates that
the summations should be extended only for the ele-

mentary cell and its nearest neighbors. The summations
(29a) and (30a) also contain, of course, the matrices

F(0) and S(0), respectively, corresponding to the Astra
elementary-cell interactions and overlaps, respectively.
Further, in this case the approximate form of S'(k)
given by Kq. (30a) should be used also in Eqs. (17a)—
(19) and (28). If we also want to take into account the
second or third neighbors, etc., we have to extend the
summations in (29a) and (30a) to these neighbors as
well.

2. In the nearest-neighbor approximation we can
also simplify the matrix elements Fr'(q) by extending
the summations in (24d) only to nearest neighbors. (The
other terms give contributions quickly decreasing with
distance. ) Introducing this further approximation,
according to (21), (24a), (24b), and (24d) we have

Q d "(~)Pd" (~)]'e+'"d~ (27c).
With these expressions we can write (31a) in the fol-
lowing form:

Fr'(v) = &x"(1)I
—l A

Ass gj Zj Zp
+ +

Iri—R
I Iri—R+I Iri—R;—I

V'. '.(0 j.1) Vc.c.(1 j.1) Vc.c.( 1 j.1)

X
I x"(1))+

st= —1 i j=l
]—s,s —q, q —t Q2

. (31b)

where x=2srks (the vector k is simply k=kibi in this
case) and the bond order matrix between the nearest-
neighbor elementary cells is
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where now q is only a scalar integer. We have introduced
the notation RP, R;+, and R; for the position vector of
the jth nucleus in the elementary cell where we have
put the origin of our coordinate system, and in the
right (+) and left (—) neighboring cell, respectively.
For a linear chain, Eqs. (29a) and (30a) also become
simpler:

and
F'(~) =F(0)+e'"F(1)+e '"F(—1)

S'(~) =S(0)+e'"S(1)+e '"S(—1), (30b)

respectively.
2. It is advantageous at this stage to subdivide the e

atomic orbitals of the elementary cell into subsets of
orbitals provided by the different atoms of the ele-
mentary cell. If we have e atoms in the elementary
cell and we denote by ns; the number of orbitals pro-
vided by the jth atom, we can write

n=P m;.
j=1

Further, we can now rewrite, for a scalar integer q only,
the row vector (3a) characterizing the qth elementary
cell in the form

with subvectors

(32a)

QJ= (xB~ ~ ~ ~ vs~ ~ ~ ~ vQP+jbK (32b)

1 no ms' mo

+ Z

Making this further subdivision of our basis, we can
indicate also in the elements of matrices F, P, and G
the diferent atoms and their diferent orbitals. Thus an
element of F(q) will have the form

3. Introducing this notation we can classify the
elements of F(q) as follows:

(i) F; &'~(0), intra-atomic diagonal term;
(ii) F; &'~(0), n&p, intra-atomic off-diagonal terms

(interaction terms between different AO's centered on
the same atom);

(iii) F; &'&(0), j&j', interaction terms between AO's
centered on di8erent atoms j and j' of the same kind
within the same elementary cell;

(iv) F; 'e(0), j//, interaction terms between AO's
centered on atoms of different kinds within the same
elementary cell;

(v) F; &'e(+1), interaction terms between AO's cen-
tered on atoms of the same kind belonging to neighbor-
ing cells; and Anally

(vi) F;,'~(+1),j0 l, interaction terms between AO's

centered on atoms of di6erent kinds belonging to
neighboring elementary cells.

In the interatomic cases (iii), (iv), (v), and (vi),
we can distinguish further between matrix elements cor-
responding to chemical bonds of the polymer and much
smaller matrix elements which correspond to inter-
actions between orbitals which do not form a chemical
bond with each other.

4. If we substitute into (33) the expression (34) and
the expression of K~ given in (31b), we can derive the
expression for the diferent elements of F(q) in terms
of a number of integrals. To do this, however, we need
to specify the potentials V"(P,j; 1) (P= 0, &1) occur-
ring in (31b).If we suppose in the Grst rough approxima-
tion that the exchange between the core electrons and
the valence electrons is negligible, and if we also neglect
exchange sects between the core electrons, we obtain
the very simple expression

n.c

V"(Pj;1)= 2 (x"' (2) lr» 'I x"' (2)), (33)

XG,„„~(o,j,o;q, l,P), (33)

and in the expressions (27b) and (27c) of the charge-
bond order matrix the column vector d"(~) has the
elements d„~"(~). Furthermore,

G,„,'"'(0,j,n, q, l,P)
=(x" (1)x'""(2)

I
'Ix"'(2)x'"(1))

—xa(x ' (1)x'"~(2)lr»—'I x&'~(2)x'"'(1)). (34)

Here we have used the symbolic notation K1 for the
integrand of the 6rst term of (31b). Further, the indices

j, l, e, and I refer to the atoms and the Greek indices
n, P, y, and 5 to the orbitals of these atoms. For example,
F; "'(q) is an interaction matrix element between the
ath AO of the jth atom in the elementary cell char-
acterized by 0 and the Pth AO of the /th atom in the
elementary cell characterized by q.

where m,' denotes the number of orbitals of core elec-
trons in the jth atom.

After doing this, we shall have one-electron integrals
due to the kinetic-energy operator and to the potentials
of the nuclei in K1, and two-electron integrals due to the
core-electron potentials V" (P,j; 1) [Eq. (35)j and the
Coulomb and exchange terms in Eq. (34). The kinetic-
energy integrals will be either one-center integrals
[in the cases (i) and (ii)$ or two-center integrals [in the
cases (iii)—(vi)$. Using Slater-type orbitals, all these
can be evaluated analytically. For the nuclear-interac-
tion one-electron integrals we obtain one-center, two-
center, and three-center integrals. [The last have the
form

(x" (1)l~./Ir~ —R "llx'"(1)),

where joe, j/l and e&l if both P and q are zero. 7
The evaluation of the one-center and both the homo-
and heteronuclear two-center nuclear-interaction inte-
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grals is we11 known in the case of Slater-type orbitals, '6

and methods have also been developed for the calculation
of three-center integrals of these types. '~

The integrals corresponding to the interaction be-
tween the valence electrons and the core electrons, if
we use Kq. (48) for V"(P,j; 1), will again be one-
center, two-center, and three-center integrals, the last
having the general form

where jWN, j/l, and tt// if both P and s are zero. In
the case of Slater-type orbitals the calculations of one-
center and homonuclear two-center integrals is well
known, "and there are also methods for the evaluation
of the heteronuclear two-center" as well as of the three-
center integrals. '~'0

Finally, we have a great number of diGerent two-
electron integrals coming from the Coulomb and the
exchange terms in (34).Here we have one-, two-, three-,
and four-center integrals. In the case of the four-center
integrals, j, e, e, and l are generally aQ di8erent num-
bers in Eq. (34). Also in this case, the calculation of the
one-center and of the homo- and heteronuclear Coulomb,
exchange, and hybrid-type two-center integrals with
Slater-type orbitals is well known, ""and recently
methods have been developed for calculating the three-
and four-center integrals. "*"

To perform an actual SCF LCAO calculation for the
determination of the energy-band structure of a linear
chain without neglecting any of these integrals is an
enormous task, but with the aid of large computers it is
not impossible. If, however, we want to neglect some
terms to simplify the matter, we have to study in de-
tail the dependence of these integrals on the distances
occurring in the nearest-neighbor approximatiom, and
on the form of the valence-shell orbitals that are ex-
plicitly taken into account. (It is clear, for instance, that
completely diferent situations arise if we take into
account only rr orbitals, or only o orbitals, or both. )
Unfortunately, this cannot be done in the general case,
but only for a given linear chain.

V. CONCLUDING REMARKS

1. The general formalism developed in the present
paper is applicable to numerical calculations, at least on
large computers. Calculations of this kind are in prog-
ress, and in further papers we shall present numerical
examples referring especially to the inQuence of the
various terms classi6ed in 3 of Sec. III on the band
structure of polymers.

'6 See, for instance, S. Fraga, Can. J. Chem. 42, 2509 (1964).
~' F. K. Harris and H. H. Michels, J. Chem. Phys, 43, 5165

(1NS).
~8 H. Preuss, IN@graltcfelN fN r Qucnteechemie (Springer-

Verlag, Berlin, 1957), Vol. I."H. Preuss, Itttegrettofetrt fN'r Qgoltettettemie (Springer-Verlsg,
3erlin, 195'E), Vol. GI.

-"' E. Scrocco snd O. Sslvetti (unpublished).

Here, as a 6nal remark, we wish to give only some
formulas which are particularly useful for the analysis of
the shapes of the bands which are obtained from Eq.
(10b), namely, the derivatives of the eigenvalues and of
the eigenvectors of the matrix F'(k) with respect to the
components of k.

For the sake of simplicity we shall consider explicitly
only the dependence on one parameter k&. Let us re-
write Eq. (10b) in the form

F'(k) d(k) = S'(k) d(k) e(k), (36)

where d(k) is a square matrix formed from the complex
eigenvectors df(k), and the diagonal matrix e(k) has as
clclIlcIlts tllc dlffclcllt e(k,f) clgcIlvalllcs. Dlffcrcntlatlng
this equation and multiplying on the left by dt(k),
we obtain

where use has been made of the condition

N'(k) S'(k) INk) =I (3g)

and of Eq. (36). Taking the diagonal elements of Kq.
(3'I), we find immediately

t)e(k, f) —ctF(k) t)S'(k)-
= (df(k)j I —e(k,f) dr(k) . (39)

Bkg Bkg Bky

Actually, sometimes the complex matrices we consider
in the present paper may have degenerate eigenvalues.
As is customary, we must then apply the usual tech-
niques of degenerate perturbation theory.

Since the complex matrices F and S have, in the case
of a linear chain in the nearest-neighbor approxima-
tion, the simple form A(tt) =A(0)+A(1)e'"+A(—1)e—'"
(A=F or S) and the matrices S(p) and F(p) do not de-
pend on ~, we can write simply

8A(tt)/Btt= —sinter)A(1)+A( —1)$
+I' cosKPA(1) —A(—1)j, (A=F or S), (40)

which can be substituted into Eq. (39).
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