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Infrared Absorption due to Substitutional Impurity in Cubic Crystals
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The explicit expressions have been obtained for the absorption line-shape function due to one-phonon
processes in some models of cubic crystals with impurities. All of them show pronounced resonance peaks in
the low-frequency region for heavy impurities. Similar resonances also occur for light impurities when the
force constants are reduced. An estimate is made of the change in force constant in the case of Li6 and Li' in
KBr, based on the experimental data of Sievers and Takeno.

INTRODUCTION

'HERE has been considerable interest in recent
years in the optical absorption of crystals with

impurities in the far infrared, because of the direct
link between the absorption line shape and the structure
of the phonon spectrum in the impure crystal. Crystals
with charged impurities and ionic crystals with sub-
stitutional impurities have been studied bothexperi-
mentally' ' and theoretically. ~' The theoretical work
in this area has mostly been with the so-called mass
defect approximation in which the difference between
the mass of the impurity and that of the normal atom
it replaces is the only parameter characterizing the
perturbation due to the impurity. A more realistic
model of the impurity would naturally have to take
into account the change in the force constants as-
sociated with the impurity besides the change in mass.
There is an intimate relationship between the solu-
tion of phonon scattering from such an impurity' ~

and the solution of the problem of infrared absorption.
The object of this paper is to exploit the relationship
and obtain exact expressions for the absorption line
shape in certain solvable models of impure crystals.

THEORY

where the element of the electrical conductivity tensor
0'op(or) 1s given by

t'I
~-p(~) =—Z ~-p e-

au Iml
gsts1 T+6T

X 8(—T)((J,(0),Jp( ))) dr, (3)

and the current operator 1' (t) is given by

J.(t)=P etitr, ,(t).
1

The double bracket (( )) stands for thermal averag-

ing of the commutator and co is the frequency of the
radiation.

In terms of the retarded Green's function deined by

F p(l, l', t) = —i(mrmp) "s((itt, (0),u, p(t)))e(—t), (5)

If the charge of the Ith atom is et, the electric field

of the incident radiation generates a current density
of the form8

J (t)=Re+ o p(or)Epe*'"'+"
P

The Hamiltonian of a monatomic crystal in the and its Fourier transform
harmonic approximation is given by

Pl, aB=P +s P 4 p ttr, N, p,
l, a 2~1 1,n;a, P

F.p(1,1'; co) = '- eF.t(l,pl', t)dt,

where Latin letters refer to the lattice sites and Greek
letters refer to the Cartesian components of the dis-
placements of the atoms. mt is the mass of the Ith
atom and 4 ~' are the elements of the force constant
matrix.

' A. J. Sievers, Phys. Rev. Letters 13, 310 (1964); A. J. Sievers
and S. Takeno, Phys, Rev. 140, A1030 (1965).' J. F. Angress, A. R. Goodwin, and S. D. Smith, Proc. Roy.
Soc. (London) A287, 64 (1965).' R. J.Elliott and P. G. Dawber, Proc. Phys. Soc. (London) Sl,
453 (1963).' R. J. Klliott, J. Phys. Chem. Solids Suppl. 1, 459 (1965).' S. Takeno, Progr. Theoret. Phys. (Kyoto) 33, 363 (1965).

6 J.Callaway, J.Math. Phys. 5, f83 (1964).
~ M. YussouG and J. Mahanty, Proc. Phys. Soc. (London) SS,

1223 (1963).

the conductivity tensor becomes

$81 eget. F p(l, l'; to)-. (-)=—Z —3. +r. „.' ' . P)
to t mr r, t' (mrmt)'t ico+s

The equation of motion of F p(1,1', t) is given by

d2

Fp(l I' t)—
dP

j11

= —&(—t) -2 F-,(i,i;t)
(mrm& )'t' t, v (mtmr )'t'

' D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [English transl. :
Soviet Phys. —Usp. 3, 320 (1960)j.
987



988 K. PAT NAl K AND J. MAHANTY

or, in a matrix form,

where

and

—F(/,)= —b(—t) D—FD,

0=M-»~2+M-»2

M=the mass matrix.

(9)

(10)

Taking the Fourier transform of Eq. (9), we obtain

Substitutional Impurity in a Diatomic
Simple Cubic Lattice

This model is similar to that of Mitani and Takeno. "
The lattice consists of atoms having two types of
masses M» and 3f2 with charges e and —e situated
alternately at even and odd sites, respectively, with
interactions similar to those in the previous case. The
impurity whose mass and nearest-neighbor force con-
stants are Ml+hM, and 7+Ay, respectively, is
situated at the origin. Thus,

where

F(pp) = —I+ Ip)2(l ppp —D)—'
= —I+lp2M'/'GM'/',

G= (M pp2 —e)-'.

(12)

(13)

dl —( 1)ll+l2+l)d

Ep=Eo& p,

2/21= M1pl)+l2+l), even+M2pl)+/~le, ndd )

(17)

G is the Green's-function matrix whose elements have
been discussed by Lifshitz, ' and Montroll and Potts. '

The power absorption per unit volume as a function
of the frequency is given by

B( )=(2 E-(~)~-(~))

and

B(lp) = ,'e2p)Ep2 Im—p (—1) s&'+"'( Mppp—e)11~ '. (18)

But the diatomic cubic lattice can be treated as a
monatomic cubic lattice by the 3E* transformation, "

=(P E cos&A&(Re+ o //(p))E//e'"'+e)))
a P

-'2elel E,E/lpp ImG s(I,I', lp) .

(M ~&p2—e)= S'(M/d2 —e)S-', (19)

where S' and S ' are diagonal matrices having elements

(14) Sl, 1 = 511 [(Mlldp —6y) '/'S'il, ,eve

+ (Mpp) 6p) bsl, , o—dd7, (20)
In this, ( )l means the time average, and use has
been made of Eqs. (7) and (12).

This is an exact expression for the line-shape func-
tion in a harmonic lattice when the absorption is due
to a one-phonon process. We shall use it in some specific
cases in which the explicit form of the Green's function
of the impure crystal can be evaluated easily.

~ 1,1' ~11'[(M2P) 67) '44even,
+ (Mlp)2 —6y) '"821~, dd7, (21)

and
M*lpp= [(M,lpp —6y) (Mplp2 —6y) 71/2+ 6y. (22)

Hence the G-reen's-function matrix occurring in Kq.
(18) can be written as

Charged Impurity in Monatomic Cubic Lattices (Mp)2 —e)—'= S-'(M*&p2—e) 'S' (23)

We shall consider here the absorption due to a charged
impurity in a monatomic cubic lattice with nearest-
neighbor central and noncentral forces, of the type
considered by Montroll and Potts. "We shall assume
that the nearest-neighbor central and noncentral force
constants are the same in the normal crystal and that
the mass and force constants associated with the im-

purity atom are different from those characterizing
the normal atom. Then,

Ep ——Ep8~p, e» ——e8),0,
(1~)

el. ——eel, p, 2121=M(1—/i , )+1p(M+~)8 p, l

and B(p)) becomes

~mls, even

B(lp) =-', e2Ep2lp Im P
—(M1pp2 6y)1/2 (M2p)2 6y)1/2

)(' (M2P)2 e) 111'[M2P—)2 6y)1/2)Zl', even

—(Mlp)2 —6y)'/28 l.. .dd7. (24)

Evaluation of the Perturbed Green's Functions

The perturbed and unperturbed Green's functions
are related by the equation

and
B(p)) =-', e2Epppp ImG(0, 0; p)) (16)

G=G' —G'PG=(I+O'P) 'G' (25)

where GP is the unperturbed Green's function matrix,
where d is the charge of the impurity, and G(0,0; pp) is a„d P ls the perturbation
the (0,0)th element of the perturbed Green's function.

9 I. M. I.ifshitz, Nuovo Cimento Suppl. 3, 716 (1956).
'0 E. W. Montroll and R. B. Potts, Phys. Rev. I00, 525 (1955).

'1 Y. Mitani and S. Takeno, Progr. Theoret. Phys. (Kyoto) BB,
779 (1965)."E.W. Montroll and R. B. Potts, Phys. Rev. 102, 72 (1956).
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p
0

P= 0

p p o ~

0 0
0 0 (26)

~ ~ ~
E

Similarly the Green's-function matrix can be written as

g gn gas

g» gss gos (27)

The perturbation matrix has a simple form, as its
effect is restricted to the impurity site and its nearest
neighbors. In scalar lattice models, i.e., mo es in
which the phonons are unpolarized, the nonvanishing

f the perturbation matrix constitute a
submatrix whose dimension is 7 for simple cubic, or
bcc, and 13 for fcc lattices.

We can write the perturbation matrix in the following
partitioned form:

refer to simp e cu ic, cc,1 b' bcc and fcc lattices, respectively

Fs is the S-type (totally symmetric) factor in t e

determinant
I I+gpl.

The explicit forms of Ii s are

1)
F =I 1+ I 1+a~v(3—Ea) Esgos+ —

I88 ) s
2y)

)hM
+2VI — (3—Es)

&iv

E, Sp)
X I 1+— Igoa+—,(34)

3 &i

1
F = 1+ 1+Shy(1—Ea) I Eagos+SB

g~

(AM
+8&i — I(1-E.)

where each of the submatrices of Go has the same
dimension as that of p. Making use of these two equa-
tions, Eq. (25) can be written in the form

1 hy-
X 1+Es Igos+-

v) gv v-
(35)

G Go+AGo

00000
0 0 ~ . ~

p 0 ~ ~ ~

~ ~ ~

where
—gp(&+ gp)-'
—g»p(1+gp)-'
—god(l+ gp)

—'

(2g)
1

F = 1+ 1+-'Ay(3 Ep) Epgop+-SIP 3

AM
+4y — (3—Ep)

In the case of the charged impurity we need only the
(0,0)th element of G, i.e.,

G(0,0; ) =I (1-gp(l+gp)-') g3.,'
The element of the matrix on the right-hand side

of Eq. (30) can be obtained by group theoretic tech-
.' I h b bown" that the (0,0)th element

allis contained in the block corresponding to the total y

is block diagonalized into the irreducible representa-

G(0 0; co) for the cubic lattices in the scalar mode is

Here,
M

Es= 3 072

27
(3&)

M
EB=1 —0)

Sy

M
Ep= 3——

GD
2

(38)

(39)

E
X 1+ Ig..+ . (36)

3 y) 12' y

1 ( Es hy 1
G,(0,0;~)=

I
1+ —g»+—,(»)

F k 3 y 6j

and

M'(2s.)' co —oo (ir) —so
(4o)

1 dy 1
G~(0,0; oo) = 1+E~ goa+—

~SB—
(32)

Gp(0,0; (o)=
1 Ep Ay) 1

1+ Igop+
3 ~) (33)

Here and in what follows the subscripts S, 8, and Ii

' K. Patnaik and J. Mahanty, Technical R pe ortwo. s Depart-
ment of Physics, Indian Institute of Technology, Kanpur, n ia,
1965 (unpublished}.

0 has the value 1 for simple cubic, & fo—' for bcc and ~~ for

(lr) is the corresponding dispersion

to (33) in Eq. (16), one obtains the line-shape function

due to a charged impurity in the three cubic lattices.
e to sum overFor the diatomic cubic lattice, we ave o

1' in E . (24). Here the perturbation matrix is
ut diverssimilar to that in the simple cubic lattice, u

b a multiplicative factor P foro ~ ~

l even and P;lya
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Moo)2 —6y) "'
i

~

Mico' —6yl
(41)

even, and P ' if P;l; odd and+;i odd. P is given by given by
6y(M 1+M2)

+m =
3fyM2

(M1+M2= &$7rcoeoEO2~ h(cd2 —oo '),
i M'1M2

(42)

where the maximum frequency of the crystal co is

Substitution of the first term of Eq. (28) in Eq. (24)
gives the power absorption in the perfect crystal,

(Mr+ M2) 1
+per Ceet(O)) = e+O)e ~O

~

/Im
i M1M2 ) oo'—co

'—2'2

This absorption line corresponds to the wave vector
k=0, and is well known.

The second term of Eq. (28) is the contribution of
the impurity to power absorption. When AG' is
substituted in Eq. (24), the summation over 1' can
be carried out easily, because it occurs in the exponential
in the integrand of the integrals for the elements of Go.
The structure of the A matrix is such that it has non-
vanishing elements only up to the column whose
index corresponds to the last lattice site affected by
the impurity. This enables us to write Eq. (24) as

1 {(Mi+M2)co2—12y+2a} {(Mi+M2)co'—127—2a}
Brmpurity(CO) = 2OOe EO Im- ei(1+6')rA, +

4a a—6y 1,6' a+6'
(M2 —Mi)co' (M2 —Mi)co'

XQ Ai, z+ e' rAi cubi+ P e' ' Ai gi (43)
a+6' i.c ' a—6y i, iv

where ck' runs over all the affected lattice sites. Here a is given by

a= DMico2 —6y)(M co2—6y)lii2

The summation over I can be performed by making use of the partitioned form of A, and then we obtain

1 {(Mi+M2)co2 —12y+2a}
&zmpurity(~) =—22ooe2Zo2 Im- Lp+(I+gep+)-lj, ei|r(2+6')

4a ( -6~)'

(44)

{(Mz+M2)oo2 —12'—2a} (M2 —Mi)coo
2 Lp*(l+&*p*) 'j~,~+ 2 (e'"+e'"')Lp*(1+0'p*) 'j, ~ (43)

Qf a'—36y2(a+6')'

Here the asterisk refers to the lattice obtained by the M* transformation.
In order to sum over 4 and 4' in the above expression we adopt the following procedure: Since the submatrices

p* and g* have the symmetry of the point group of the crystal, the matrix pe(l+g*p*) ' can be block diagonalized
by a unitary matrix V into diagonal submatrices belonging to the different irreducible representations of the
point group that occur in the reducible representation generated by the affected lattice sites. Of these, only the
totally symmetric or S part contributes to the above sum and becomes infrared active. The sums involving the
other irreducible representation vanish. Hence,

where
+ImPurity(O)) 2Coe +O~ ™(Q/PS) i

6y (AM oo2 i Ay p oo2 Ay hy (a+1)2+~-
M1M2(oo2 —com2)' 'i Mi coo2 i y 'Ecooo 7

(46)

F *= 1 1 — — --3 '' ——— —1 IO

Qp( ~) oo2
—

(oo2 1) co2 |~1/2

I 1+
i

3(a)'"
i

—
I

—1
I

I(0) (48)
Mi J coo' 'Ecooo crj coo2 j
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Ymx, z I. Results for various infrared impurity lines in KBr.

KBr.'Li'Br
KBr.'LizBr
KBr'.Ag' Br

Observed
resonance
frequency

(ctn i)

17.9
16.3
33.5

0.158
0.144
0.296

nv/v
Calculatedb

—0.994—0 995—0.594

& Reference 1.
b Sievers and Takeno (Ref. 1) have also estimated the impurity force

constants for Li impurity in KBr,on the basis of asimplewubic-lattice model.
Their estimate is in reasonable agreement with ours even though their
model is somewhat unrealistic.

Here ~0 is the lowest frequency of the optical branch,
given by

and

o=Ms/M. t',

I(0)=2ygs~, (50)

g *=(M*t0s—e)oo '=—p (51)
E & M*cos M*—ao'(k)

$0 ~

40-

)a
so ~

Ol

LLI

Ol

P RO

to.
~3

, ~KBriL4 Br

JCBrtt. g Br

~4

tOS g

.6

g1 =go,o,o;y1,0,0 =F1,0,0;o,o,o &

g2 g+1,0,0;P1,0,0

g11 g+1)0,0; 0,+1,0 ~

(56)

(57)

CONCLUSION

Since extensive tables of Green's functions for these
lattice models are now available, ~" it is easy to plot
the line-shape function. In both the cases we have con-
sidered, a pronounced resonance peak appears in the
low-frequency region for large hM/M. This is essentially
the Srout-Visscher resonance arising out of peaking
in the density of states in the low-frequency region
in the impure crystal. But resonances also appear for
lighter defects if the force constants are adequately
diminished.

This analysis can be itted to some experimental
data that have been obtained by Sievers' and sub-

sequently analyzed by Sievers and Takeno on the far-
infrared spectrum of KSr with Li and Ag impurities.
For KBr, 0=2 and the reststrahlen wavelength is

and the dispersion relation is given by

M*te'(k) =6p —2y(coskt+ cosks+cosks) . (52)

In obtaining the above expression the following rela-
tions between the Green's functions were used:

6ygt* ——1—age*, (53)

agt*+y (gs*+4gt t*+gs*) =0, (54)
where

Fto. i. B(cu) is plotted in units of e'Bo'3y/3E&M ~co~' against
co/co~ for KBr.'Li'Br, KBr'.Li'Br, and KBr.'Ag" Br.

88.3p,. Table I gives the experimental data on the
resonances and our values for the parameter hy/y
for the few impurities for which data exist. The value
of the parameter hp/p is obtained by adjusting it until
the following equation is satis6ed:

'8*=0

The absorption line shapes of KBr with Li', Li', and
Ag'" impurities are plotted against co/co„ in Fig. 1.
The estimates of the perturbation parameters obtained
here are in reasonable agreement with those obtained
by Sievers and Takeno. It must be mentioned, how-
ever, that as in other aspects of lattice dynamics, the
proper choice of the lattice model is the most di8icult
aspect of this problem. The line-shape analysis on
the basis of the above approach is more in the nature
of a phenomenological description of the situation than
a detailed quantitative treatment. It may be noticed
that discrete frequencies associated with localized modes
outside the bands will absorb giving a 8-function line
shape, arising out of the pole of G(0,0) in Eqs. (16)
and (24) outside the band. This line will be broadened
due to anharmonic effects.
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