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Quantum Theory of the Optical Kerr Effect
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A quantum theory of the optical Kerr eBect is developed using the density-matrix formalism. The classical
theory of Bloembergen and Lallemand for liquids can be deduced from the result obtained quantum
mechanically in the present study with certain approximations. The anisotropic term in the optical Kerr
e8ect is shown to arise quantum mechanically from both the population change due to the high-frequency
Stark effect and the change in the unperturbed matrix element due to the radiation field.

I. INTRODUCTION

ECENTLY, many anomalies in the stimulated
Raman scattering, such as anomalous gain, fre-

quency broadening, and angular distribution, were ex-
plained in terms of the intensity-induced increase in
refractive index and the resulting self-focusing effect. ' '
The self-focusing eBect was shown to come from the
Kerr eGect induced by an electric Geld with optical
frequencies (optical Kerr effect) except in media with
small Kerr effect, where the electrostriction is domin-
ant. '' Although the term "Kerr e8ect" is usually
taken to mean that an isotropic medium becomes
birefringent as an electric field is applied, in the present
paper we use this term in a wide sense, i.e., we mean
the intensity-dependent change in refractive index (the
change due to electrostriction is excluded). The optical
Kerr eflect (OKE) was presented in classical formula-
tions first by Buckingham7 and then by Bloembergen
and Lallernand. ' After the development of lasers,
several authors observed OKE experimentally. "
The theory of the static Kerr eGect was investigated

from both the classical'~" and the quantum-mechani-
cal'3—"point of view many years ago. It was shown
that the anisotropic' and the Voigt" terms exist in non-
polar molecules, while in addition the polar" term exists

in polar molecules. The anisotropic term corresponds to
the change in the distribution function for the molecule.
The Voigt term, by which we mean the purely elec-
tronic contribution to the Kerr eGect, is much smaller
than the anisotropic term in the static Kerr e6ect.""
"Voigt" is used in this paper with this meaning because
Voigt" originally considered the change in refractive
index due to the level shift induced by the static field.
The permanent dipole moment cannot follow the change
with optical frequency, so that only the anisotropic and
Voigt terms have to be considered in OKE for both
nonpolar and polar molecules. The Voigt term must be
taken into account, because any two-quantum reso-
nance, such as the vibrational Raman resonance or the
electronic resonance, will make it large. The purpose of
the present paper is to show the results of a quantum-
mechanical treatment of OKE corresponding to both the
anisotropic and Voigt terms. The classical theory of
Sloembergen and Lallemand is examined in the light
of quantum theory. The quantum-mechanical origin
of the anisotropic term is investigated by taking all
orders of perturbation of suitable density matrices.

II. GENERAL FORMULATION FOR THE
OPTICAL KERR POLARIZATION

Since molecules in gases, liquids, and some solids
more or less have freedom in their spatial motions, they
orient randomly in space. Thus only statistical char-
acteristics of molecules are important in dealing with
OKE. Such characteristics can be evaluated by means
of a suitable hermitian density matrix. The change in
the density matrix p with time is given by the Liouville
equation in the interaction representation,
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ih(dp/Bt) = LH,p7.

In Eq. (1), p and the perturbation Hamiltonian H are
defined in terms of the corresponding Schrodinger
operators p8 and Bq as

p= exp(ih 'Hpt)ps exp( —ih 'Hst),
and

H= exp(ih 'Hot)Hq exp( —zh 'H, t),

where Ho is the unperturbed Hamiltonian of the
molecule. The formal solution of Eq. (1) can be written
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U=exp —ik ' Hd/ =1 U«&,j (4)

t

U(t& = (ziz)
—' chl

P((O) L(Pcus iud t+.P-cusicut)-

where (B")*=B" and similar equations hold for p",
E", and P".

Now we take the representation where the un-
perturbed Hamiltonian Ho is diagonal. Since the un-
perturbed states of the molecule in gases can be spe-
ci6ed by the electronic and/or vibrational quantum
number I, the rotational quantum number j, and the
magnetic quantum number 8$ the Schrodinger equation
for the unperturbed molecule is written as

Bel nj m)=E;
l njm). (12)

&&LB(&I)B(&z)" B(«)] (5)

where U~ is the Hermitian adjoint operator to U;
Unperturbed molecules are assumed to be in thermal
equlibrium at temperature T:

p'= exp( —B()/kT) .
In the electric-dipole approximation, H takes the form

B=—er E,
where or and E are the dipole-moment operator and the
macroscopic electric 6eld, respectively. By iteration the
density matrix of the 3th order in E, p

('& can be expressed
in terms of the (l—1)th-order matrix p" ') by the
equation

zh((&p(t&/Bz) = LB p(' '&] (g)

The expectation value for the polarization of the
molecule is given by

P= Xl-(Tr(erp)/Trp),

where S is the number of molecules per cm3 and I. is
the local-field correction. 1/Trp in Zq. (9) can be ex-
I&anded as a power series of E as

1 1 Trp('& Trp('& (Trp('&)s
+ + " (1o)

Trp Trps (Trps)s (Trps)s (Trps)s

Equation (3) can be evaluated most conveniently by
utilizing the following complex representation. The
Fourier components of B, p, E, and P at frequency (o

can be divided into two parts:

B((o)—Bcuo icu t+B cuoicut— —

p((O) pete tilt i+p cusucut

E((o) —1(Ecue ccu t+ E cue—t)cut—

The energy-level separations speci6ed by the quantum
number e are usually much larger than kT, and those
speci6ed by quantum numbers j and m are much
smaller than kT." In this sense we may, therefore,
divide all the levels into "high" and "low" energy levels.
This division was erst introduced by Van Vleck."
The terms "excited state" and "ground state" are used
throughout the present paper instead of Van Vleck's
"high" and "low" levels. Thus the ground state does
not involve any vibrationally excited levels. In liquids,
molecular interactions such as association cause
hindered rotation, which may partially lift the spatial
degeneracy and more or less alter the physical meanings
of j and m. '" The permanent dipole moment cannot
follow the changes with optical frequency, so that r is
assumed to have no matrix element diagonal in e, i.e.,

(njmlrln'j'm')=(n'j'm'lrlnjm)
=(1 S„„-)(njmlrlnjm) (1.3)

OKE is a response of the molecule to the third and
higher odd powers of the electric field. The optical
Kerr polarization at co8' due to the presence of the fields
at ao8, coy, and e2 ls expI'essed by

P"tt'= X:E"ttE"'E"t*+higher odd-order terms, (14)

I
(os—(oz

I
» l(oi —(oz I u

(os'=(oa+(oi —tost

and X is the fourth-rank Kerr susceptibility tensor. In
Eq. (14) the refractive index at (os is assumed to change
under the inhuence of the Gelds at a)g and co2. Thus the
incident electric field E should be expressed as

E—L (e +cud(O s +cedetQcdle ccdt t+ eZ+cute deut t)

+complex conjugate. (15)

In Eq. (15) the polarization vectors of E"t and. E"'
are assumed to be parallel and are denoted by ez,that
of E"s is denoted by e8. In an isotropic medium the
zth ( artesian component of P"s ls wl'Itteli ass

p.cus =df g.cusjV. cut+.cuH'+Q Q cus+.culg cdze

+C +.cds+.culg. cuze {16)

where 2', 8', and C' are scalar susceptibilities and can
be obtained from I by simple tensor contraction. The
third-order term in Eq. (9) can be written as

Tr(erp ('&"')
,'P"s'= ÃI.'—

Trp'

Tr(&rp (I)~ tt) Tr(p (z) (~ t-~ z))-

(»p')'

'SRotational energy separations sometimes become compar-
able to or even larger than kT; but because of the selection rule
hj=0& j., at most the separations between the alternate levels
have to be smaller than kT.

» J. H. Vatt Vleck, Phys. Rev. 29, '/27 (1927); 2'ho Theory of
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where use is made of the fact that because of Eq. (13),
traces of odd-order density matrices do not contribute to
P"s'. In Eq. (17) the local-f(eld correction is given by
L'= L"SL—"lL"2, Where L"=-0( 0"+2) and 0" iS the dieleC-

tric constant at or.

For the sake of simplicity we use hereafter the new
notation a, b, c, , and A, 8, C, . in place of jm,

spectively, whenever these can be used without any
confusion. For example, with this new notation, Eq.
(13) can be rewritten as

rAB rBA (1 t)nn')rAB y
(13')

or simply r„,,„b=r„b„,=0. The trace usually means
the sum of the matrix elements which are diagonal in
all the quantum numbers. When traces are considered
with respect to the matrix elements diagonal in j and
m alone or in m alone, they are denoted by Tr;„or Tr .

III. CALCULATION OF THE OPTICAL
KERR POLARIZATION

To derive the expression for the third-order response
we must Grst calculate the second-order density matrix.
With the relation V~A~ ——V~A* the second-order matrix
can be obtained from Eq. (3) as

pAa'"= UAB"'pa'+Zc UAc"'pc'Uac"'*
+PA'UaA"'* (Ig)

where pA'=exp( —EA/kT) and similar equations hold
for p&' and p&'. Now p&2& is divided into two parts such
that we may assign a clea,r physical meaning to each:

and
2+~SQ~H'—

PAB(2) (ns—n2) =p
452

pg

MAa+M2 —MS

pAC rca &Ac &ca PA
XI + +

(MCB MS MCB+M2 MBA M2+MS

/rAc ~ca ~Ac 2'ca

xI +-, (23)
EG)CA+MS MCA M2

where ra= ea —r, r. =ss r& M—,b
k——'(E —E„b), and

Mc, 0=k '(Ec—E„b). Now we assume the conditions,
which will be veri6ed later,

"l "2 MB'I "S—M2l'IM

Then Eq. (22) can be written as

g2yA~Ly~ bL+n) ].+co2+

pA „b(2)'(nl-n2) —p
0 4I2

(24)

Pnb —PA

Mnb Ml+M2—
(25)

In Eq. (25), M is the mean value of Ml and M2, and both
au&A and co& „b are approximated by the common center
frequency eu„.„which is independent of the j's and m's.
This approximation is valid if co is far from resonance
and the terms such as (MCA —Ml) are independent of
the j's and m's. Expanding exp( —AMb, /kT) in a power
series in kMb, /kT and retaining to the first-order term,
we obtain

pAB(2) pA, nb(2)'+pAB(2)"

pA b(2)'= UA nb(2)pnb0+PAOUnb A(2)0

(19)

(2o)

Pnb PA Mab Pnb +PA
X . (26)

A(Mnb Ml+M—2) Mnb —Ml+M2 2kT

and

pAB
2

(UAB (2)pa0+pAOUBA (2)0)(1 b,)
+Pc UAC ' pc'Uac('). * (21)

Note that here p
&2~' contains only matrix elements which

are diagonal in quantum number e. Substituting Kqs.
(5), (7), and (15) into (20) we obtain

g2yA ~Ly~ be(2) $+G) $W p bo

0
(2) ' (n l—n 2) —p

C 4h2 -ab j+2

PA'
xI + +

(Mcnb Ml MC nb+M2 Mbn+Ml M2

xI
~MCA+Ml MCA —M2—

Electric and 3fagnetic SNsceptibilities (Oxford University Press,
London, 1932).

'I'The quantum theory of a hindered rotator is given by H.
Eyring, J. Walter, and G. K. KimbaH, Quantum Chemistry I'John
Wiley R Sons, Inc., ¹wYork, 1948), Chap. 18.

2Mn" n fob(pnb +pA )
(27)

where
n n —

COgb —ZFgb
b=

Mnb 21 nb (01+M2

2kr

(28)

In liquids, strong molecular interactions cause the
energy-level broadening, so that the rotational structure
cannot generally be resolved except in some simple
diatomic molecules. Considering this fact we may
assume that M bi', b '((1. (M, b should be taken at most

To introduce the damping factor phenomenologically
into Eq. (25), we replace M, b by M, b iF,&, wh—ere the
diagonal and nondiagonal elements of I' represent the
inverses of the longitudinal and transverse relaxation
times, respectively. Thus the 6rst factor on the right
side of Eq. (26) can be written as

~2yA ~Ly ~ bL+a) I

pA b(2)'(nl —n2) —Q
4'



as the alternate energy separations because of the selec-
tion rule 6j=0, ~1.) Assuming further that I', (, is
independent of g and b and is replaced by 7 ', we may
write Eq. (28) as

With this new notation Eq. (27) can be written as

p~'+p»(' f.(~~,n("E"'E"'*
~(2)'(o) X

—~2) —. X {35)

f,(,= 1/L1 —ir((si —(si)) Inserting Eqs. (34) and (35) into Eq. (33), we obtain

&sp~'fa(p(x, e("Pes,~"sE"sE"'E"'*

A, b
f.(=(s (/((s. (—(si+(sa) for jW j'. (30)

for liquids. For gases the rotational level is narrow, i.e., Tr(«p(3)'~s')
(s,(,1',(, '»1, so that f, (, can be written as

{36)

We shaH refer to the Kerr polarization due to p(3)'"s'

as the anisotropic Kerr polarization or the ai6sotropic
term. The physical meaning of the word "anisotropic"
will soon become clear in the following. By using the
expression for p(')'"s', which can be obtained from Eq.
(32), the first term in the brackets in Eq. (17) can be
written, after relabeling the indices, as

~21 p~ ap A
(2) ' (es g—cu g)@coS

Tr(erp(')'"s') = P
A,B,c 2hX, (33)

Opn. n2 —COS2

where r=—ar and co„„is the center frequency, as before.
From Eq. (16) it is immediately seen that for the special
cases of ss(jel, and ssJ sr, , the vector e is parallel to ss. We
shall consider expbcitly only these two cases of polariza-
tion and set r equal to ezra. Other cases of polarization
can be deduced from these. Now we introduce the fol-
lowing abbreviations:

2& ~Aa ~a, nc +n n,
2 L L

&A, n, c =awe, x
h((0„„'—(0')

2& ~As ~a,nc nn2 2 8 8

p~, ."s=p .,~"=2
k((0 ~

'—(ss')
(34)

In order that the magnitude of f,(, should be of the
order of unity, the frequency ~~—~ should be at most
I",(, or (s,&, as is easily seen from Eqs. (29) and (30).The
condition of Eq. (24) is thus verified.

To calculate the Kerr polarization we must obtain
the third-order density matrix which appears in the
first term on the right side of Eq. (17). From Eq. (8)
the density matrix p(')"s' can be calculated by

zk(()p(3)~s/()l) —p+~s p(s)'(ai wm)g+-. pfr~s p(s)" (rug cup)]-

+L/~1 p(R) (~s &a)j+LIf alQ (&) ((us+oil) j (31)

For a while we consider only the 6rst term on the right
side of Eq. (31) and denote a portion of p(')"s', which

corresponds to p(2)'("&—"», by p("'"s'. Then from Eq.
(31) we obtain

ik(()p(s) ~s /()l) —L+~s p(&)'(~i—~s)7

In deriving Eq. (36) it shouM be noted that —',(pg'+ p (,')
and ps' contribute the same amount to the trace. {This
can easily be found by relabeling the indices. )

Next we consider the second term in the brackets in

Eq (17)..EL"s Tr(er(')" s)/Trp' is just the linear optical
polarization at ~q and can be written as

Tr(«p " ) E~ sspa l4~" E"
gL,~S gL, (s) 8

Trpo 2Qg pg'
(37)

Substitution of Eqs. (35), (36), and (37) into (17) yield~

the expression for the anisotropic Kerr polarization
p AS ~

anis ~

ssÃL'E" sE"'E"' l Trp'fn"P" s
. ~s=-

4kT k Trp'

Trpo fa" Trpb" s)
(38)

Trp' Trpo

where n and P are diagonal matrices in ii, and f is

the matrix given by Eq. (28). Note that, as is seen

from Eq. (35), the matrices o. and f always have the

same matrix indices in j and m. This formula for

P;,"s' is quite general and is applicable to both liquids

and gases. In deriving Eq. (38) the following approxima-
tions are used: (1) exp( —(s,(/kT)~1 —(s,(/k T; and (2)
coA~ ~„„,regardless of j and m.

We shall now derive the classical theory of Bloem-

bergen and LaHemand' for liquids from the quantum-
mechanical result, Eq. (38), by applying certain ap-
proximations to it. First we assume that f,(, is given by
Eq. (29). Then f,(,- is independent of j and m and can
be placed outside the trace sign in Eq. (38). Secondly,
we assume that all molecules are in the ground state,
because excited electronic or vibrational energies are
usually much higher than kT. Of course, this assumption
is not valid when molecules are considerably excited, as
in intense stimulated Raman scattering which we there-

for exclude. Then the trace in Eq. (38) should be ex-

tended only over j and m. Because of this, Eq. (38)
becomes rotationally invariant, and Niessen's sum

rules" for the product of four operators can be used.

Using these sum rules we can rewrite Eq. (38) in terms

"K. F.Nicssen, Phys. Rev. 34, 253 (1929).
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of the coordinates x, y, and s 6xed in the molecule.
Niessen originally derived these sum rules for a gas
under a static perturbation, but they might hold also
for liquids because their derivation is based only on the
"principle of spectroscopic stability. ""They should
hold also for a system under periodic perturbation when
the center-frequency approximation, i.e., so~~ +„„,is
valid. The essential points of these rules were sum-
marized by Serber. lr By using Zqs. (14) and (15) in
Serber's paper, the 6rst term in the brackets in Kq. (38)
is rewritten, when coordinate axes are taken as the
principal axes of the molecule, as

r~ n' p')-X;w'(r~ 'p');;"-
Tr; po » ~P&~

n "n,"8+c.p.

foI' raiiez, , and

(n,"n„"&+n„"n. &)+c.p.-
(39)

15

for e8J e~, where E; is the number of possible values of
m (for gases E;=2j+1), and c.p. denotes all other terms
obtained by performing the cyclic permutation of x, y,
and 2. In the above equations, o.„o,„, and o,, are the
principal optical polarizabilities of the molecule and
are given by

(41)

and similar forms, where g denotes the ground state,
For both cases of the polarization, i.e., es~~&r. and
eat sz, the second term in the brackets in Eq. (38) is
rewritten as

Tr~'e p Try~0

f(."+'p)(." +'p)
(42)

where we have used the principle of spectroscopic
stability, and the usual sum rules for the product of two
operators just as Van Vleck" used them for the cal-
culation of the static polarizabiHty. Combining Eqs.
(29), (38), (39), (40), and (42), we obtain P;,"~'~~ and
P, ;,"~'I, which are the P, ;,~~"s for the cases of es~~sz

~' See Ref. 19 for a detailed discussion on this subject.

(
Tr, pon"P"8 I n,"n,"8+Cp.

Tr, po 15

2(n."n„"8+n„"n."')+cp.
(4o)

and eq f el„respectively, as

&&L( *"—.")( *"'—."')+cp j (43)

'O' Panis I g&s Panis ll ~ (44)

These equations coincide exactly with the classical
theory of Bloembergen and Lallemand' for liquids.
From the above derivation it can be seen that the
Bloembergen-Lallemand equation is valid for the case
where all molecules are in the ground state and their
rotational energies are much smaller than both kT and
Al', &. These assumptions are usually well met for
liquids. For gases, however, the simple expressions given
in Zq. (43) in terms of principal polarizabilities do not
generally hold if MI/~2 (because f,I, depends on a and

b). The sense of the word "anisotropic" will be clear
from Eq. (43). P,„;," ' is nonvanishing only for aniso-

tropic molecules.
Now we will consider the second, third, and fourth

terms in the right side of Eq. (31). We examine
the orders of magnitude of p( )'("' "')—.'p(2) ("8 "')

p (2) '(~I—~o2) ~ p(2) (co8+~oi) and p (2) '(coi—F2) ~

p
(2)"(~oI-~2) By

comparing Kq. (22) with Eq. (23) it can be seen that
p(')'("I "» is larger than p("("8 "» roughly by a factor of
l~»+~2 —~sl/uT=10' when 1~2—»I ls
resonance, because other factors such as p"s and r's
are of the same order of magnitude for both Eqs. (22)
and (23). p&2&&"~~» and p&»" &"&»I canbediscussed in
a similar manner, with the conclusion that they are
smaller than p(') ("' "') by a factor of 10 '-10 '
In calculating the Kerr polarization with Eqs. (17)
and (31), the quantities pI" I"8 "" pI2'I"~+"" and
p(')" ("&—"» contr&bute to the Voigt term because only
electrons can follow the change with optical frequency.
These density matrices have no relation to any mole-
cular character, while p("', at the low-frequency co&—cv2,

as discussed above, has a molecular contribution, i.e.,
the anisotropic term arises from p(')'("I "». Thus the
Voigt term for the nonresonant condition is smaller,
roughly by two orders of magnitude, than the aniso-
tropic term. The resonant Voigt term appears, for ex-
ample, in stimulated Raman scattering, where in Eq.
(23) M2, los, alld %II~ collespolld 'to the Incldent-

IBser~ Stokes-shlf ted bght and RamaIl-active vibra-
tional frequencies, respectively, with the relation

co2—~8—coII~= 0. The ratio of the resonant (with vibra-
tional levels) and nonresonant contributions to the

Voigt term may be estimated from the results of the
three-wave-mixing experiment (generation of fre-
quency col+a&.—&os) by Maker and Terhune. ' They
found that the resonant term for the case of three-wave
mixing is larger than the nonresonant term by a factor
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Fn. 1. The transition
schemes of the third-order
optical Kerr eGect. The
solid and dashed saw-toothed
lines represent the aniso-
tropic and the Voigt terms,
respectively.
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FrG. 2. The transition
schemes of the fifth-order
OKE. The solid saw-toothed
line represents the correction
to the anisotropic term. The
lines involving one or two
dashed saw-teeth make much
smaller contributions to
OKE.
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of 4—20 for typical liquids. Thus one may conclude that
the anisotropic term will be larger, roughly by one order
of magnitude, than the Voigt term at the vibrational
Raman resonance. The Voigt term will be more greatly
enha, need when there occurs a two-quantum resonance
in the electronic levels, such as the interband resonance
in solids. It should be mentioned that using one of
Niessen's sum rules for the product of four operators,
the Voigt term can be shown to be temperature-
independent if all molecules are again assumed to
be in the ground state.

In Fig. 1 are illustrated the transition schemes giving
rise to both the anisotropic and Voigt terms. The solid
and dashed saw-toothed lines represent the transitions
corresponding to the anisotropic and Voigt terms, re-
spectively. Note that, for the anisotropic term, the
molecule initially in the ground state returns to the
ground state through a virtual transition accompariied
by virtual emission of the photon or2.

IV. QUANTUM-MECHANICAL ORIGIN OF
THE ANISOTROPIC TERM

In this section we shall investigate the quantum-
mechanical origin of the anisotropic term. To simplify
the calculation we consider the case of or~=or2—=or and
E &=8"2=8 . As can be seen from Eq. (37), the effect
of a perturbation due to the radiation 6eld on the linear
susceptibility may be classihed quantum mechanically
into three kinds of effects: the energy shift in the
denominator (in P"8), the population change due to the
energy shift, and the change in the matrix element. The
anisotropic term was shown in Eqs. (43) and (44) to be
temperature-dependent through (k T) '. Since the
energy shift in the denominator does not give rise to any
temperature-dependent change in the susceptibility, it
should not be taken as the origin of the anisotropic
term. This shift contributes to the Voigt term, as Voigt
himself" originally considered. We shall next consider
the population change due to the energy shift. To
investigate the population change, a11 even orders of the
density matrices should be taken into account. The
second-order density matrix was considered in the
Sec. III.

The fourth-order density-matrix p &4~ diagonal in n can

be written as

PA, nb =
. A. nb P, eb +D7 P + jd, nb

+go U~c"'pc'& b c"'*
+/&"'p'fI'"tjA b+p~'& b 8"". (45)

e4r~n'rJ ...'r. z'rs, .b'i&"
i

4

P~ „b( )' ( —)=
D, c,g 4A4

2n" n 2'„t4)„

or&r i I or Q) vs (4)vs —or

P~ P~b P~c
X — + + , (46)

-Or a bOr ac Or bcOr bo OrcaOrcb-

where or„-.„and or„(4)„are the center frequencies, as
before. By expanding the p"s as a power series in the
~;;./kT's and retaining to the second-order term, the
term in the square brackets in Eq. (46) can be written
as

(p~'+p. '+bp-')/3!I'&'. (47)

The fifth-order Kerr polarization can be calculated
with Eqs. (8), (9), and (46). By relabeling the indices in
the trace as in the calculation of Eq. (36), one 6nds that
the contribution of b'(p~'+p„b'+p„, ') to the trace is
equivalent to that of p~'. A similar equivalence holds
also for higher-order corrections to the Kerr effect.
By using Eq. (34) we obtain

p~'a~ ."~'., b" i&"i'
P~ b""'" '=2

4)&2 ty2Z'2
(48)

The transition schemes for the 6fth-order ORE are
given in Fig. 2. The solid saw-toothed line represents the
contribution of Eq. (48) to the correction to the aniso-

Through considerations similar to those at the end of
Sec. III, we can see that the largest contribution to
p~ „b&4& is from the first, third, and fifth terms on the
right side of Eq. (45) whose intermediate quantum
number e" is also equal to e. The density matrix cor-
responding to these terms, p~ b"', can be calculated
from Eqs. (4), (5), and (45) as
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tropic term. When the molecule returns virtually only
once to the ground state, a density matrix proportional
to (kT) ' is obtained and is much smaller than
pA „b&4i'&" "' in Eq (.48). No virtual return to the
ground state corresponds to the correction to the Voigt
term. Generally, the 2lth-order density matrix of the
largest magnitude at zero frequency can be written as

p (2l) 'l (o)-co)
f S

5' 5" ~ ~ 5(&-&)

PA'&A. » "&»»-" ' &»"-"» IE"Is'

2'X l!(kT) '

(49)

The transition scheme corresponding to this den-

sity matrix involves / virtual returns to the ground
state in every other intermediate transition with /

virtual emissions of the photon co. The infinite sum of

pz» '~" " yields

PA, ffb =PA, ffb +Z PA, ff
l=j

=PA'Lexp(~ IE"I'/2k&)3A. .b (50)

Trp' exp(n"L"'I E"
I
'/2kT) Trp'p" s

X . (51)
Trp Trp

Now we divide P~"~ into two parts in order to in-

vestigate the physical meaning of PK &:

PK =PK1 +PK2

We shall neglect all transition schemes other than those
involved in Eq. (50), because they give a much smaller

e8ect on the Kerr polarization than p~ „~'&" "' does.
Thus the general expression for the Kerr polarization
P~"~ at coq due to the linear perturbation at co~ on the
density matrix in Eq. (50) can be written in a niatrix
form as

Trp' exp(rr"I."'
I
E"I'/2kT) p~s

P~"~=mal" 8"
Trp

and

Pxi"'=~s-&L sg 8

pA PA' exp(~» I-"'IE"
I
'/2k7') pAA"'

X
Trpo

2A pA exp(42AA"I. "
I

E"
I

/2kT) TrpoP~s-
(53)

Trp' Trp'

In Eq. (53) only diagonal parts of n" and P" are taken.
The transition scheme for Pz&"~ corresponds to vlltual
returns to levels in the ground state with the same values
of j and m as those in the initial state. The diagonal
element of 2141"IE"I', which appears in Eq. (53), is
written as

ssr Lr ALof, IE I

2

B A(of„off —of )
(54)

This expression turns out to be the second-order Stark
effect at level A due to the radiation 6eld at frequency
o&.22 Thus inspection of Eq. (53) reveals that PK1"s
arises from the equilibrium population change due to
the second-order high-frequency Stark effect. On the
other hand, PK2"s in Eq. (52) is considered to arise
from the change in the unperturbed matrix element due
to the radiation field because PK2"& has no connection
with Stark effects, either in the denominator (in p"s)
or in the exponential function in Eq. (37).

The existence of "low" levels makes PK2"s tempera-
ture-dependent. We conclude that both the population
change due to the high-frequency Stark eGect and the
change in the matrix element are the quantum-mechan-
ical origin of the anisotropic term and correspond classic-
ally to the change of the distribution function for the
molecule.
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