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A quantum theory of the optical Kerr effect is developed using the density-matrix formalism. The classical
theory of Bloembergen and Lallemand for liquids can be deduced from the result obtained quantum
mechanically in the present study with certain approximations. The anisotropic term in the optical Kerr
effect is shown to arise quantum mechanically from both the population change due to the high-frequency
Stark effect and the change in the unperturbed matrix element due to the radiation field.

I. INTRODUCTION

ECENTLY, many anomalies in the stimulated
Raman scattering, such as anomalous gain, fre-
quency broadening, and angular distribution, were ex-
plained in terms of the intensity-induced increase in
refractive index and the resulting self-focusing effect.'
The self-focusing effect was shown to come from the
Kerr effect induced by an electric field with optical
frequencies (optical Kerr effect) except in media with
small Kerr effect, where the electrostriction is domin-
ant.®® Although the term “Kerr effect” is usually
taken to mean that an isotropic medium becomes
birefringent as an electric field is applied, in the present
paper we use this term in a wide sense, i.e., we mean
the intensity-dependent change in refractive index (the
change due to electrostriction is excluded). The optical
Kerr effect (OKE) was presented in classical formula-
tions first by Buckingham? and then by Bloembergen
and Lallemand.® After the development of lasers,
several authors observed OKE experimentally.?:?
The theory of the static Kerr effect was investigated
from both the classical® and the quantum-mechani-
cal®17 point of view many years ago. It was shown
that the anisotropic'® and the Voigt!! terms exist in non-
polar molecules, while in addition the polar'? term exists
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in polar molecules. The anisotropic term corresponds to
the change in the distribution function for the molecule.
The Voigt term, by which we mean the purely elec-
tronic contribution to the Kerr effect, is much smaller
than the anisotropic term in the static Kerr effect.!®:16
“Voigt” is used in this paper with this meaning because
Voigt!! originally considered the change in refractive
index due to the level shift induced by the static field.
The permanent dipole moment cannot follow the change
with optical frequency, so that only the anisotropic and
Voigt terms have to be considered in OKE for both
nonpolar and polar molecules. The Voigt term must be
taken into account, because any two-quantum reso-
nance, such as the vibrational Raman resonance or the
electronic resonance, will make it large. The purpose of
the present paper is to show the results of a quantum-
mechanical treatment of OKE corresponding to both the
anisotropic and Voigt terms. The classical theory of
Bloembergen and Lallemand is examined in the light
of quantum theory. The quantum-mechanical origin
of the anisotropic term is investigated by taking all
orders of perturbation of suitable density matrices.

II. GENERAL FORMULATION FOR THE
OPTICAL KERR POLARIZATION

Since molecules in gases, liquids, and some solids
more or less have freedom in their spatial motions, they
orient randomly in space. Thus only statistical char-
acteristics of molecules are important in dealing with
OKE. Such characteristics can be evaluated by means
of a suitable hermitian density matrix. The change in
the density matrix p with time is given by the Liouville
equation in the interaction representation,

ih(9p/3t)=[H,p]. (1)

In Eq. (1), p and the perturbation Hamiltonian H are
defined in terms of the corresponding Schrodinger
operators pg and Hg as

p=exp(ii ' H)ps exp(—ihHt) ,
and (2)
H=exp(ihHo)Hg exp(—ihHyt),
where H, is the unperturbed Hamiltonian of the
molecule. The formal solution of Eq. (1) can be written
980
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as
p=Up'Ut, 3)

¢ ]
U=exp<—ih‘1] Hdt)=1+z Uuw, (4)
0

=1

and
t t1 ti—1
U(l)=(1:h)~l/ dlf1/ dig- / dh
0 0 0

X[H(H (%) --H)], (5)

where Ut is the Hermitian adjoint operator to U.
Unperturbed molecules are assumed to be in thermal
equlibrium at temperature 7':

p*=exp(—Ho/kT). (6)
In the electric-dipole approximation, H takes the form
H=—er-E, (7

where er and E are the dipole-moment operator and the
macroscopic electric field, respectively. By iteration the
density matrix of the /th order in E, p® can be expressed
in terms of the (J—1)th-order matrix p®? by the
equation

in(0p®/0t)=[H,p*V]. ®)

The expectation value for the polarization of the
molecule is given by

P=NL(Tr(erp)/Trp), 9)

where NV is the number of molecules per cm?® and L is
the local-field correction, 1/Trp in Eq. (9) can be ex-
panded as a power series of E as

1 1 Trp® Trp® (Trp“’)zI
—_— ! .
Tro Trp® (Trp)? (Trpt)' (Trpt)?

Equation (3) can be evaluated most conveniently by
utilizing the following complex representation. The

Fourier components of H, p, E, and P at frequency w
can be divided into two parts:

H(w) — Hwe—'iw t+ H——weiwt ,
p(w) — pwe—iwt+p~ueiwt ,
E({.O) = %(Ewe—imt_l_ E——weiw t) ,

(10)

11)

and

P(w> — %(Pae—iwt_}_P—weiwt) s

where (H¢)*=H—* and similar equations hold for p*,
E«, and Pe.

Now we take the representation where the un-
perturbed Hamiltonian H, is diagonal. Since the un-
perturbed states of the molecule in gases can be spe-
cified by the electronic and/or vibrational quantum
number #, the rotational quantum number j, and the
magnetic quantum number m, the Schrodinger equation
for the unperturbed molecule is written as

Ho|njmy=E,;|njm). (12)
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The energy-level separations specified by the quantum
number # are usually much larger than k7, and those
specified by quantum numbers j and s are much
smaller than £7.18 In this sense we may, therefore,
divide all the levels into ‘“high” and “low” energy levels.
This division was first introduced by Van Vleck.!®
The terms “excited state” and “ground state”” are used
throughout the present paper instead of Van Vleck’s
“high” and “low” levels. Thus the ground state does
not involve any vibrationally excited levels. In liquids,
molecular interactions such as association cause
hindered rotation, which may partially lift the spatial
degeneracy and more or less alter the physical meanings
of 7 and m.? The permanent dipole moment cannot
follow the changes with optical frequency, so that r is
assumed to have no matrix element diagonal in #, ie.,

(njm|x|n' j'm’)=(n' j'm’ | x| njm)
= (1= 8uw){njm|x|n'j'm’). (13)

OKE is a response of the molecule to the third and
higher odd powers of the electric field. The optical
Kerr polarization at ws’ due to the presence of the fields
at wg, wy, and wy is expressed by

Pos’=x: E«sE«1E«2* 4 higher odd-order terms, (14)

where wi>ws, |ws—ws|>|wi—ws|, ws'=wstwi—ws,
and X is the fourth-rank Kerr susceptibility tensor. In
Eq. (14) the refractive index at wg is assumed to change
under the influence of the fields at w; and ws. Thus the
incident electric field E should be expressed as

E= %(cszse—int_i_ eLE(.ue—-iaut_'_ sLsze—iwgt)
+complex conjugate. (15)
In Eq. (15) the polarization vectors of E«t and E«
are assumed to be parallel and are denoted by er;that
of E«s is denoted by es. In an isotropic medium the
ith Cartesian component of P’ is written as®

Pi“’s,=AIE5“’SEijj"’2*+ B’ijsEilejwz*
+C,ij‘Sij1Eiw2* , (16)
where A’, B/, and C’ are scalar susceptibilities and can
be obtained from X by simple tensor contraction. The
third-order term in Eq. (9) can be written as

Tr(erp®«s’)
iPos'= NL’I:———-—————
Trp®

Tr(erpWes)Tr(p® wi—w2)
- ], an
(Trp)?

18 Rotational energy separations sometimes become compar-
able to or even larger than k7'; but because of the selection rule
Aj=0z1, at most the separations between the alternate levels
have to be smaller than 2T.

19 T, H, Van Vleck, Phys. Rev. 29, 727 (1927); The Theory of
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where use is made of the fact that because of Eq. (13),
traces of odd-order density matrices do not contribute to
P«s’. In Eq. (17) the local-field correction is given by
L'=[Lvs[1 Lz where Lo=%(e*+2) and ¢ is the dielec-
tric constant at w.

For the sake of simplicity we use hereafter the new
notation @, b, ¢, -+, and 4, B, C,--- in place of jm,
j'm’, j”m”, ... and njm, n’j’m’, n”j"m”, R
spectively, whenever these can be used without any
confusion. For example, with this new notation, Eq.
(13) can be rewritten as

rap=1p4=(1—0,n)r4p, (13)
or SImply Faq,no=Ttus,2s=0. The trace usually means
the sum of the matrix elements which are diagonal in
all the quantum numbers. When traces are considered
with respect to the matrix elements diagonal in § and
m alone or in m alone, they are denoted by Tr;j, or Trm.

III. CALCULATION OF THE OPTICAL
KERR POLARIZATION

To derive the expression for the third-order response
we must first calculate the second-order density matrix.
With the relation Upat=Uga™* the second-order matrix
can be obtained from Eq. (3) as

paBP=U48Ppp*+3 ¢ UscWpcUpecP*
+p4Upa ®*, (18)
where p°=exp(—E4/kT) and similar equations hold

for pg° and p¢®. Now p® is divided into two parts such
that we may assign a clear physical meaning to each:

paBP=p4 P +pa®", (19)
pa,n P =U4,n6Ppns’+pa’Uns, s P*, (20)
and

pas®"'=(Uas®pp"+p4°Upa ®@*)(1—d,n')
+2 ¢ UacWpclUpe® *  (21)

Note that here p®’ contains only matrix elements which
are diagonal in quantum number #z. Substituting Egs.
(5), (7), and (15) into (20) we obtain

eerchC,nbLE‘“sz*l_ 0

Pnd

P4 @ (@1mw2) = Z

c 452 Lwab* witws

pa°

1 1
X + .
We,nb— W1 We,nbTws/  Whetwi—ws

1 1
]
weatw1 wea—ws

Electric and M agnetic Susceptibilities (Oxford University Press,
London, 1932).

20 The quantum theory of a hindered rotator is given by H.
Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry 6], ohn
Wiley & Sons, Inc., New York, 1948), Chap. 18.
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and

eZEwSsz*l— PBO
PAB(Z) (ws—w2) = Z
c 472

LwAB-f'wz—ws

pa°

(f‘AchcBS | 1’A<;'37'CBL>J
wepTws

+
WeB— WS wpA—w2twg

racros® ractresS
X( : )] (29

weatws wea—w2

where ri=el-r, rS=eg't, wup=#""(Era—En), and
e np=H""YE¢—E,3). Now we assume the conditions,
which will be verified later,

w1,02,08, |@s—ws |, |Wnar | Dwi—ws. (24)
Then Eq. (22) can be written as
, ezfAchc,nbLE‘“E”*
PA,nbm (wl—w2)=z
c 452
an"n Pnbo—pAO
(25)
Wnral—w?  Wep—w1tws

In Eq. (25), w is the mean value of w; and we, and both
wea and we,,p are approximated by the common center
frequency wy, which is independent of the j’s and m’s.
This approximation is valid if w is far from resonance
and the terms such as (wga—w1) are independent of
the j’s and m’s. Expanding exp(— #ws,/kT) in a power
series in #wy,/kT and retaining to the first-order term,
we obtain

Wad

pnt’—pa® pnt’+pa®

2kT

(26)

wap—w1tws) B wap— w1t we

To introduce the damping factor phenomenologically
into Eq. (25), we replace wqp by wap—ilqs, where the
diagonal and nondiagonal elements of I' represent the
inverses of the longitudinal and transverse relaxation
times, respectively. Thus the first factor on the right
side of Eq. (26) can be written as

627'A CLrC,n bLEw 1Ew 2%

I nb@)’(m—«:z):Z

c 4%
2wn"n fab(Pnbo+PAo)
, (27)
wn“n2—w2 sz
where
Wab— iPab
fabE (28)

Wap— 1T gp—witwe

In liquids, strong molecular interactions cause the
energy-level broadening, so that the rotational structure
cannot generally be resolved except in some simple
diatomic molecules. Considering this fact we may
assume that wesl'es <1, (wap should be taken at most
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as the alternate energy separations because of the selec-
tion rule Aj=0, =1.) Assuming further that Ty is
independent of ¢ and b and is replaced by 771, we may
write Eq. (28) as

fab= 1/[1—i'r(w1—wg):|

for liquids. For gases the rotational level is narrow, i.e.,
wepl'as~>1, so that f,5 can be written as

fav=wap/ (Wap—w1twz) for j=j'.

(29)

(30)

In order that the magnitude of fqs should be of the
order of unity, the frequency wi—w, should be at most
T'ap OF was, as is easily seen from Egs. (29) and (30). The
condition of Eq. (24) is thus verified.

To calculate the Kerr polarization we must obtain
the third-order density matrix which appears in the
first term on the right side of Eq. (17). From Eq. (8)
the density matrix p®«s’ can be calculated by

iH(0p ®e5'/0f) = [Ho8,p@ o) T4 [o,p" (rme0)]
+[ wLp (2) (ws—wz)]+ [H—-wz’p (2) (ws+w1):| . (31)

For a while we consider only the first term on the right
side of Eq. (31) and denote a portion of p®s’, which
corresponds to p®’wie2) by p®’es’, Then from Eq.
(31) we obtain

i(3p® '8’/ 3t) = [He8,p@ wr-un) ], (32)
We shall refer to the Kerr polarization dueto p®'«s’
as the anisotropic Kerr polarization or the anisotropic
term. The physical meaning of the word “anisotropic”
will soon become clear in the following. By using the
expression for p®’¢s’ which can be obtained from Eq.
(32), the first term in the brackets in Eq. (17) can be
written, after relabeling the indices, as

Tr(erp®'o8)= ¥ ¥ 4BYB,ncPno,a P IOV ECS
r(erp® «§ )=
A,B,c 2%
an’n
wn'nz_wsz

where r=¢r and w,, is the center frequency, as before.
From Eq. (16) it is immediately seen that for the special
casesof eg||e, and es | ez, the vector eis parallel toes. We
shall consider explicitly only these two cases of polariza-
tion and set r equal to egrS. Other cases of polarization
can be deduced from these. Now we introduce the fol-
lowing abbreviations:
2¢* AB™7B nc w0 n
aA,ncw=anc,Aw= —_—,
B f(wnrnl—w?)

and
2% 4BS7B,nc5Wn'n

ﬁA.ncws=.3nc,Aw= (34)

B h(wn’nz_ “’52)
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With this new notation Eq. (27) can be written as

04°F0nt"  fapoia,np? EO1E?*

2 4kT

(2) (w1—w2) = (35)

PA,nb

Inserting Eqs. (34) and (35) into Eq. (33), we obtain
Tr(erp®’«s")
£304° f2004,n5"Bnb, 4 SESEo1 Eor*

=2 . (36)
Ab 8kT

In deriving Eq. (36) it should be noted that 3(04°+pas°)
and p4° contribute the same amount to the trace. (This
can easily be found by relabeling the indices.)

Next we consider the second term in the brackets in
Eq. (17). NL#s Tr(er™«s) /Trp is just the linear optical
polarization at wg and can be written as

7 Tr(etp M) > aespaBanvsEes
[ A ——1 8. .
Trp? 2> apa°

Substitution of Egs. (35), (36), and (37) into (17) yields
the expression for the anisotropic Kerr polarization
P anis®S’

(37)

b ws,_ssNL'E“’SE"”E“’"’*{TI‘pO a9pes
e 4T \ Trp
Trp0 fa

B Trp®

Trp06ws »
X ) (38)
Trp® /

where o and 8 are diagonal matrices in #, and f is
the matrix given by Eq. (28). Note that, as is seen
from Eq. (35), the matrices  and f always have the
same matrix indices in j and m. This formula for
P..i,*5" is quite general and is applicable to both hqulds
and gases. In deriving Eq. (38) the following approxima-
tions are used: (1) exp(—wab/kT)Nl war/kT; and (2)
WAB Wy, Tegardless of 7 and m.

We shall now derive the classical theory of Bloem-
bergen and Lallemand? for liquids from the quantum-
mechanical result, Eq. (38), by applying certain ap-
proximations to it. First we assume that fas is given by
Eq. (29). Then fo5 is mdependent of j and m and can
be placed outside the trace sign in Eq. (38). Secondly,
we assume that all molecules are in the ground state,
because excited electronic or vibrational energies are
usually much higher than k7. Of course, this assumption
is not valid when molecules are considerably excited, as
in intense stimulated Raman scattering which we there-
for exclude. Then the trace in Eq. (38) should be ex-
tended only over j and m. Because of this, Eq. (38)
becomes rotationally invariant, and Niessen’s sum
rules?! for the product of four operators can be used.
Using these sum rules we can rewrite Eq. (38) in terms

21 K, F. Niessen, Phys. Rev. 34, 253 (1929).
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of the coordinates x, y, and z fixed in the molecule.
Niessen originally derived these sum rules for a gas
under a static perturbation, but they might hold also
for liquids because their derivation is based only on the
“principle of spectroscopic stability.”? They should
hold also for a system under periodic perturbation when
the center-frequency approximation, i.e., w4p™~wun, 1S
valid. The essential points of these rules were sum-
marized by Serber.”” By using Egs. (14) and (15) in
Serber’s paper, the first term in the brackets in Eq. (38)
is rewritten, when coordinate axes are taken as the
principal axes of the molecule, as

(Trjmp"a‘”ﬂ”) i 2 P (TrmaeBes) ;"

Ttjmp’ 2PN
[:az"’a,"’s—i-c.p.
5
(az%ay s+oy a,25)+-c.p.
+ y Y :I (39)
15
for egller, and
<Trjmp"a‘“ﬁ‘°s)l 0%05+-c.p.
Trme® /15
2(azeyS+0y%a,28)+c.p.
Lt 1”5 (40)

for eg1 e1, where N, is the number of possible values of
m (for gases N;=24-1), and c.p. denotes all other terms
obtained by performing the cyclic permutation of x, v,
and z. In the above equations, o, a,, and a, are the
principal optical polarizabilities of the molecule and
are given by

262 gnXngWng

" Mwong?~?)

(41)

o=

and similar forms, where g denotes the ground state.
For both cases of the polarization, ie., &s|lez and
esl ez, the second term in the brackets in Eq. (38) is
rewritten as

Trjmp® fo Trimp®B°8  fez®+c.p.) (az*5+c.p.)
Tl‘jmpo 9

, (42)
Trjmp° (

where we have used the principle of spectroscopic
stability, and the usual sum rules for the product of two
operators just as Van Vleck!® used them for the cal-
culation of the static polarizability. Combining Egs.
(29), (38), (39), (40), and (42), we obtain Pani,8";; and
Puniss’s, which are the Pyni#5”’s for the cases of eg|jez,

22 See Ref. 19 for a detailed discussion on this subject.
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and eg.| e, respectively, as

| esNL/EesEEe
L0l —
ORI 1—ir(w1—ws) ]
X [(0z—0y®) (05— ay*8)+c.p.] (43)
and

€g" Panist,Lz -%SS' Paniswslll . (44)
These equations coincide exactly with the classical
theory of Bloembergen and Lallemand® for liquids.
From the above derivation it can be seen that the
Bloembergen-Lallemand equation is valid for the case
where all molecules are in the ground state and their
rotational energies are much smaller than both 27 and
#T.. These assumptions are usually well met for
liquids. For gases, however, the simple expressions given
in Eq. (43) in terms of principal polarizabilities do not
generally hold if 15w, (because fq» depends on ¢ and
). The sense of the word “anisotropic” will be clear
from Eq. (43). Paniss’ is nonvanishing only for aniso-
tropic molecules.

Now we will consider the second, third, and fourth
terms in the right side of Eq. (31). We examine
the orders of magnitude of p® (wimw2) .z p@ (0s—w2)
p(2)'(w1—w2)_;_p(2) (ws+w1), and p(2)'(w1—w2).;_p(2)"(w1~w2). By
comparing Eq. (22) with Eq. (23) it can be seen that
p @’ (wrmw2) jg Jarger than p @ @s—«2) roughly by a factor of
|waptws—ws|/kT=102 when |wy—wg| is far from
resonance, because other factors such as p”s and 7’s
are of the same order of magnitude for both Egs. (22)
and (23). p® (wsten gnd p@ " (wr—w2) can be discussed in
a similar manner, with the conclusion that they are
smaller than p®’@—e2 by a factor of 102-1073
In calculating the Kerr polarization with Eqgs. (17)
and (31), the quantities p® @s—u2)| p@(wsto)  and
p®” @i—w2) contribute to the Voigt term because only
electrons can follow the change with optical frequency.
These density matrices have no relation to any mole-
cular character, while p®’, at the low-frequency wi—ws,
as discussed above, has a molecular contribution, i.e.,
the anisotropic term arises from p®’ @), Thus the
Voigt term for the nonresonant condition is smaller,
roughly by two orders of magnitude, than the aniso-
tropic term. The resonant Voigt term appears, for ex-
ample, in stimulated Raman scattering, where in Eq.
(23) ws, wg, and wps correspond to the incident-
laser, Stokes-shifted light and Raman-active vibra-
tional frequencies, respectively, with the relation
wy—wg—wpa=0. The ratio of the resonant (with vibra-
tional levels) and nonresonant contributions to the
Voigt term may be estimated from the results of the
three-wave-mixing experiment (generation of fre-
quency witw:—wg) by Maker and Terhune.® They
found that the resonant term for the case of three-wave
mixing is larger than the nonresonant term by a factor
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Excited

. State
Fic. 1. The transition

schemes of the third-order
optical Kerr effect. The
solid and dashed saw-toothed
lines represent the aniso-
tropic and the Voigt terms,
respectively.

Ground
State

of 4-20 for typical liquids. Thus one may conclude that
the anisotropic term will be larger, roughly by one order
of magnitude, than the Voigt term at the vibrational
Raman resonance. The Voigt term will be more greatly
enhanced when there occurs a two-quantum resonance
in the electronic levels, such as the interband resonance
in solids. It should be mentioned that using one of
Niessen’s sum rules for the product of four operators,
the Voigt term can be shown to be temperature-
independent if all molecules are again assumed to
be in the ground state.

In Fig. 1 are illustrated the transition schemes giving
rise to both the anisotropic and Voigt terms. The solid
and dashed saw-toothed lines represent the transitions
corresponding to the anisotropic and Voigt terms, re-
spectively. Note that, for the anisotropic term, the
molecule initially in the ground state returns to the
ground state through a virtual transition accompanied
by virtual emission of the photon ws.

IV. QUANTUM-MECHANICAL ORIGIN OF
THE ANISOTROPIC TERM

In this section we shall investigate the quantum-
mechanical origin of the anisotropic term. To simplify
the calculation we consider the case of wi=ws=w and
Ev1=E«*:=F*, As can be seen from Eq. (37), the effect
of a perturbation due to the radiation field on the linear
susceptibility may be classified quantum mechanically
into three kinds of effects: the energy shift in the
denominator (in 8¢5), the population change due to the
energy shift, and the change in the matrix element. The
anisotropic term was shown in Eqs. (43) and (44) to be
temperature-dependent through (k7)~1. Since the
energy shift in the denominator does not give rise to any
temperature-dependent change in the susceptibility, it
should not be taken as the origin of the anisotropic
term. This shift contributes to the Voigt term, as Voigt
himself*! originally considered. We shall next consider
the population change due to the energy shift. To
investigate the population change, all even orders of the
density matrices should be taken into account. The
second-order density matrix was considered in the
Sec. III.

The fourth-order density-matrix p® diagonal in # can
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schemes of the fifth-order w, / wa f ws 1 Wy
OKE. The solid saw-toothed ARV
line represents the correction ( ) \
to the anisotropic term. The /\ /\ \
lines involving one or two KT
dashed saw-teeth make much w wp
smaller contributions to " wer
OKE. Y2 H\ fws\"®
Ground
F= State

be written as

4,0V =U 4,ns@pns?+[UPpU D]y 3
+2 ¢ Uac®pc®Unp,c®*
+[U(DPOU(3)T]A,nb+pA°Unb,A(4)*. (45)

Through considerations similar to those at the end of
Sec. II1, we can see that the largest contribution to
p4,n@ is from the first, third, and fifth terms on the
right side of Eq. (45) whose intermediate quantum
number " is also equal to #. The density matrix cor-
responding to these terms, p4,,s®’, can be calculated
from Egs. (4), (5), and (45) as

347ADL7D,nchnc,EL7E,nbLI Eul 4

4nt

P4 nb(4)’2(w—w)= Z
D,c,E

20pr11n 200,y

X

Wprr12— W2 Wy Wy 2— w2

PAO Pnbo Pnco
e R

WabWae WhHeWha WealWed
where wnn and w,), are the center frequencies, as
before. By expanding the p”s as a power series in the
wj/kT’s and retaining to the second-order term, the

term in the square brackets in Eq. (46) can be written
as

(04" pud+pnc)/3 k2T, (47)

The fifth-order Kerr polarization can be calculated
with Egs. (8), (9), and (46). By relabeling the indices in
the trace as in the calculation of Eq. (36), one finds that
the contribution of 1(p4%+pns’+pac’) to the trace is
equivalent to that of p4°. A similar equivalence holds
also for higher-order corrections to the Kerr effect.
By using Eq. (34) we obtain

PAoaA,ncwanc,nbw[ Ee ] 4

c 4X21k2T?

P4 @ 20—0) =

(48)

The transition schemes for the fifth-order OKE are
given in Fig. 2. The solid saw-toothed line represents the
contribution of Eq. (48) to the correction to the aniso-
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tropic term. When the molecule returns virtually only
once to the ground state, a density matrix proportional
to (kT)~! is obtained and is much smaller than
pa,np®'2@=) in Eq. (48). No virtual return to the
ground state corresponds to the correction to the Voigt
term. Generally, the 2/th-order density matrix of the
largest magnitude at zero frequency can be written as

P4 nb(ZZ)’l(w—w)

PAOaA,nb’wanb',nb"w' : 'anb”'“nbw‘E‘“I %

2XI(RT)?

b/ 7.0 bU-1)

(49)

The transition scheme corresponding to this den-
sity matrix involves I virtual returns to the ground
state in every other intermediate transition with /
virtual emissions of the photon w. The infinite sum of
p4,np % 1= yields

0
Ay TO=pg npdF2 pa,np@P @)
=1

=pa°Lexp(e”| E|%/2kT) ] a,nb. (50)

We shall neglect all transition schemes other than those
involved in Eq. (50), because they give a much smaller
effect on the Kerr polarization than p4 .4 @~ does.
Thus the general expression for the Kerr polarization
Px“s at wg due to the linear perturbation at wg on the
density matrix in Eq. (50) can be written in a matrix
form as

Trp® exp(avLe?| E©|2/2kT)B348
PK"’S=ssNL“’SE"’S[ P 2]

Trp?

Trp® exp(a“Le?| E*|2/2kT) Trp"Bs
- X ] (51)
Trp® Trp?
Now we divide Pg“s into two parts in order to in-

vestigate the physical meaning of Px®s:

Pros=Pg o5+ Pgoos (52)
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and
Pyios=egN LeSEeS
Y 4 pa® exp(aaa“Lo?| E¢|2/2kT)B44%5
X[ Trp®
__ZA pa® exp(aaa®Le?| E#|2/2kT) Trp"ﬂ“’s] . (53)
Trp® Trp®

In Eq. (53) only diagonal parts of a® and B¢ are taken.
The transition scheme for Px;“$ corresponds to virtual
returns to levels in the ground state with the same values
of j and m as those in the initial state. The diagonal
element of e“|E“|%, which appears in Eq. (53), is
written as

taaa®| E|2=3

B h(wnrn?—w?)

627'ABL1’BALwn'nl E“’! 2

(54)

This expression turns out to be the second-order Stark
effect at level 4 due to the radiation field at frequency
.28 Thus inspection of Eq. (53) reveals that Pg.s
arises from the equilibrium population change due to
the second-order high-frequency Stark effect. On the
other hand, Pg,¢s in Eq. (52) is considered to arise
from the change in the unperturbed matrix element due
to the radiation field because Pgs$ has no connection
with Stark effects, either in the denominator (in B¢s)
or in the exponential function in Eq. (37).

The existence of “low” levels makes Pxy®S tempera-
ture-dependent. We conclude that both the population
change due to the high-frequency Stark effect and the
change in the matrix element are the quantum-mechan-
ical origin of the anisotropic term and correspond classic-
ally to the change of the distribution function for the
molecule.
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