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Shape of the E-Aggregate Bands in KC1 and KBr. II. Analysis
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A theory for the broad optical-absorption bands of defects in solids is developed and applied to the F and
F-aggregate bands in the alkali halides. An analysis of the data for these bands is carried out by fitting their
temperature-dependent moments with the predictions of the theory. In this way parameters are evaluated
which indicate the complexity of the interactions between the defect and phonons, and which measure the
effect of phonons of different symmetries and different frequencies. It is found that the data for KCl can be
fitted only if linear and bilinear terms in the interaction Hamiltonian are considered and if vibrations of
many symmetries and frequencies are included. The consequence of the Jahn-Teller effect for the shape
and structure of some of the bands receives special attention.

INTRODUCTION

HE Ii band, the main optical-absorption band
associated with the F center in the alkali halides,

is typical of broad structureless bands. It is a bell-
shaped curve which narrows and shifts to shorter wave-
lengths as the temperature is lowered. Konitzer and
Markham' made careful measurements of the Ii band
in KCl and found that: (1) The integrated area under
the band is independent of temperature, (2) the shape
is slightly asymmetrical, but approximately Gaussian,
(3) the shape is independent of temperature when
normalized to a fixed position, height, and half-width,

(4) the half-width can be approximated by 0.163 coth'"
(142.0'/2T) eV, and (5) the peak position can be ap-
proximated by L2.340—0.027 coth (142.0'/2T)j eV.
Similar results have been found for the F band in most
of the other alkali halides and for many other defect
centers in many hosts. '

There is general agreement that the finite width of
these absorption bands is largely a result of the motion
of the lattice ions around the defect, but there is a lack
of agreement as to the exact nature of this motion.
Ideally, one should be able to calculate from first prin-
ciples the details and consequences of the vibrational
modes that involve the defect. Progress has been made
in this direction, but in most cases one is forced to work
backwards by comparing the results of experiments
such as the determination of band shape with the pre-
dictions of theories based on various simplified treat-
ments of the lattice vibrations and their interaction
with the defect center. In this way a judgment of the
validity of the theories can usually be made.

Most theories of this kind assume the validity of the
Born-Oppenheimer, Condon, and harmonic approxi-
mations. ' At least three additional assumptions are us-

I J. D. Konitzer and J. J. Markham, J. Chem. Phys. 32, 843
(196O).

Reviews discussing these and related topics are found in C. C.
Klick and J. H. Schulman, in Solid State Physzcs, edited by F.
Seitz and D. Turnbull (Academic Press Inc. , New York, 1957),
Vol. 5, p. 97; J. H. Schulman and W. D. Compton, Color Centers
in Solids (The Macmillan Company, New York, 1962), p. 69.

'Reviews discussing these approximations and related topics
are found in J. J. Markham, Rev. Mod. Phys. 31, 956 (1963);
and D. I . Dexter, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1958),Vol. 6, p. 353.
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ually made before a complete theory is developed. These
involve a description of the types, i.e., symmetries, of
lattice vibrations which interact with the defect, the
nature of the interaction energies, and the frequencies
of the vibrations. The simplest theories assume that
vibrations of only one symmetry and one frequency
are involved and use the simplest possible form of in-
teraction energy. These assumptions are often expressed
by the use of a configuration-coordinate diagram com-
posed of two displaced but otherwise identical parabolic
curves corresponding to the electronic ground and ex-
cited states. The details of transitions between these
states in the presence of vibrations of the lattice co-
ordinate can then be calculated either "exactly" using
a quantum-mechanical de cription of the vibrational
states or approximately using various classical a sump-
tions. In this way the shape of an absorption (or emis-
sion) band and its dependence upon temperature and
other variables can be determined. The analysis of the
shape of the F band by Konitzer and Markham as well

as many other measurements made on this and other
bands is based upon such a simple approach.

When enough detailed measurements are made, how-

ever, one often finds some property of an absorption
or emission band which cannot be explained by the
simple theory; then some of the assumptions made
above must be relaxed. For example: To explain the
change in the shape of the Ii band due to an applied
stress, Schnatterly4 modified the simple assumptior. s by
including vibrations of at least two diRerent sym-
Inetries; to explain the skewed shape of the Ii band
Russell and Klick' allowed the second derivatives of the
two curves of the configuration-coordinate diagram to
diRer; and to explain the temperature dependence of
the half-width of the E&' band, Karo, McCombie, and
Murray' used a large number of vibrations with a dis-
tribution of frequencies.

The first two assumptions of the simple theory could
be eliminated by including vibrations of all types allowed

by the point-symmetry group of the defect and by allow-

4 S. E. Schnatterly, Phys. Rev. 140, A1364 (1965).' G. A. Russell and C. C. Klick, Phys. Rev. 101, 1473 (1956).' A. M. Karo, C. W. McCombie, and A. M. Murray, Phys. Rev.
119, 504 (1960); an important erratum is found in Phys. Rev.
121, 1864 (1961).
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irig interaction energies of a very general form. In the
language of configuration-coordinate diagrams this cor-
responds to adding a new dimension to the diagram for
each type of vibration and to allowing the ground- and
excited-state sheets to differ in curvature and have any
other nonparabolic distortions. There has been a lasting
controversy concerning the third assumption, which in-

volves the frequency range covered by the lattice vi-
brations which interact strongly with the F center. Two
extreme possibilities are either that a single localized
vibration with a well-defined frequency is involved, or
that a distribution of frequencies essentially the same
as that found in the unperturbed lattice is involved.
We feel that most of the evidence supports the latter
view. Some of this evidence is presented below:

(1) Calculations show that localized modes can be
expected only when the number of normal lattice vi-
brations with the same frequency is small' or when,
for some reason, the localized vibrations are weakly
coupled to the rest of the lattice. Experiments verify
this; for instance localized modes are found at very low

frequencies, ' or at very high frequencies, ' or in special
places within the normal phonon spectrum where the
density of phonon states is low, " or they involve vi-
brations within molecularlike defects which are loosely
coupled to the lattice. "Because of these restrictions it
appears that the localized-mode assumption cannot be
used with the P band since the frequency (3.0X10"
for KC1) which must be used with this assumption to
fit the data of Konitzer and Markham' satisfies none of
these conditions.

(2) Optical Raman experiments of Worlock and
Porto" on the F center show that vibrations with a
broad spread of frequencies interact with the F center.
No evidence is found for a localized mode.

(3) Pierce" has found that the many peaks observed
in the absorption bands of some of the closely related
F-aggregate centers cannot be explained by the exci-
tation of a single vibrational mode with a well-defined

frequency but can be by a model involving interactions
with many of the vibrations of the unperturbed lattice.

(4) Spin-lattice-relaxation measurements on the Ii

center by Feldman et a/. "have been explained using
the assumption that a Debye distribution of phonons
causes the relaxation. Subsequent calculations of ours
show that the data cannot be fitted by an alternative
model involving a localized mode of a well-defined

frequency.

' P. G. Dawber and R. J.Elliot, Proc, Roy. Soc. {London) A273,
222 (1963).' A. J. Sievers, Phys. Rev. Letters 13, 310 (1964).' G. Schaefer, J. Phys. Chem. Solids 12, 233 (1960).

"M. Wagner and %.E. Bron, Phys. Rev. 139, A223 (1965)."J.Rolfe, F. R. Lipsett, and %'. J. King, Phys. Rev. 123, 447
(1961).

~ J. M. Worlock and S. P. S. Porto, Phys. Rev. Letters 15, 697
(1965).

'3 C. B. Pierce, Phys. Rev. 135, A83 (1964)."D.W. Feldman, R. W. Warren, and J. G. Castle, Jr., Phys.
Rev. 135, A470 (1964).

(5) Calculations carried out by McCombie, Matthew,
and Murray" of the vibrational modes in a small KCl
crystal before and after the introduction of an F center
indicate that no localized mode is introduced with the
Ii center and that the change in the modes is relatively
minor, consisting of an accentuation of the low-fre-
quency and a reduction of the high-frequency vibrations
in much the same manner predicted for a massive-
impurity ion by Dawber and Elliot. ~

From the arguments presented above it is clear that
a "good" theory for the band shape of an optical tran-
sition of a defect center should be a fully quantum-
mechanical treatment, should include realistic inter-
actions between the defect and phonons, and should
include phonons of many different symmetries and a
wide frequency range. The development of such a
theory is one of the purposes of this paper. We have
drawn heavily upon previous works including especially
those of Lax," Markham'~ Silsbee' and Longuet-
Higgins, Opik, Pryce, and Sack."A very recent review

by Maradudin" covers some of the points discussed by
us. We refer the reader to these authors for a more
complete treatment of many of the details raised in
this article. Our second purpose is to apply the theory
we have developed to the data measured by Konitzer
and Markham' for the Ii band and by us for the ag-
gregate bands (presented in the preceding paper, here-
after called I). Our ultimate aim is to answer the follow-

ing questions for the Ii and F-aggregate centers: (1)
How complex are the defect-phonon interactions'? (2)
Are the effects of phonons of different symmetries evi-
dent in the shape of the bands 7 (3) Can the frequency
spread of the phonon spectrum be deduced, and how

does it compare with the spectrum of the unperturbed
latticeP (4) Can the differences in shape, width, fine

structure, etc., among the aggregate bands be under-

stood in terms of the differences in the defect-phonon
interactions'

THEORY

We will base our analysis upon the following assump-
tions:

(1) When the defect is in its ground state, the modes
of vibration of the surrounding lattice can be approxi-
mated by harmonic oscillators of different symmetry
types, indexed by k, and different frequencies co;. The
number of symmetry types is equal to the total number
of basis functions belonging to all of the irreducible

"C.W. McCombie, J. A. D. Matthew, and A. M. Murray, J.
Appl. Phys. Suppl. 33, 359 (1962).

'6 M. Lax, J. Chem. Phys. 20, 1752 (1952)."J.J. Markham, Rev. Mod. Phys, 31, 956 (1963).' R. H. Silsbee, Phys. Rev. 128, 1726 (1962).
"H. C. Longuet-Higgins, U. Opik, M. H. L. Pryce, and R. A.

Sack, Proc. Roy. Soc. (London) A244, 1 (1958).
20 A. A. Maradudin, in Solid State I'hysics, edited by F. Seitz

and D. Turnbull (Academic Press Inc. , New York, 1966), Uol. 18,
p. 273.
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representations of the point-symmetry group of the
defect.

(2) The defect has only a small effect upon the pho-
nons of the unperturbed lattice; they change in the way
described for the Ii center by McCombie, Matthew,
and Murray, "i.e., by an enhancement in the amplitude
of the phonons in one frequency range at the expense
of those in another. The altered distribution of ampli-
tude or strain at the defect versus frequency is assumed
to be identical with that of a Debye distribution whose
Debye temperature O~~ is the same for vibrations of all
symmetry types. The presence of the defect can be
accounted for by allowing en to differ from 0'arr, the
specific-heat Debye temperature. The magnitude of the
inequality indicates the strength of the perturbation
and reQects upon the validity of the approximation.
This Debye approximation is admittedly crude, but
the sensitivity of experiments to the exact distribution
is very low.

(3) When the defect is excited electronicaily, its
interaction with its neighbors is changed. This is a
short-range interaction, extending only as far as the
electronic wave functions do. The change in the inter-
action is directly related to the total strain at the defect.
It can be expressed in terms of the vibrational norma1.
coordinates x&; of the defect crystal appropriate to the
electronic ground state. One finds that if the change in
the interaction is assumed to be limited to the nearest
neighbors, it can be expressed by the interaction Hamil-
tonian H' given by B'=E1'(P; te;xs~) or, when expressed
in a power series, by

+Cs'(P re;xs;)s+ ], (1)

separated from each other. "It does not apply to elec-
tronically degenerate states, "but such a situation will
be discussed later along with the Jahn-Teller effect.
The Condon approximation takes two possible forms:
In one the dipole-matrix element for the electronic
transition is assumed to be independent of the vi-
brational coordinates24; in the other it is the oscillator
strength, which differs from the matrix element by a
frequency factor, which is assumed to be independent. "
Konitzer and Markham' used the latter approach for
the Ii center and we will do so for the aggregate centers
because if the former assumption were correct or if the
oscillator strength depended upon the vibrational coor-
dinates, the moments of the band would display, among
others, the following characteristics': The zeroth mo-
ment of the band would depend upon temperature; the
Grst moment would increase with temperature; and the
second moment would increase with temperature less
rapidly than linearly at high temperatures. None of
these characteristics were observed in the measurements
of the aggregate centers reported in paper I.

The assumptions (1)—(4) are about the simplest ones
we can make and still retain the features of a complex
interaction involving vibrations of many symmetries
and many frequencies. Similar assumptions have been
used to describe various other properties of defects in
solids such as phonon scattering, " nuclear" and elec-
tronic' spin-lattice relaxation, zero-phonon-line strength
and width, " and Mossbauer effects."They are often
quite successful in predicting at least the temperature
dependence of the phenomena being investigated. The
approximations made should be most appropriate for
those materials like KC1 which have a phonon density
of states similar to a Debye distribution.

MOMENTS CALCULATIONS

where a sum is taken over all symmetry types k and
all frequencies co;. Expressions very similar to H' have
been used by Silsbee" and Yen et a/."for other purposes.
The parameters A', 8', etc. , have resulted from an in-
tegration over the electronic coordinates. They are re-
lated to certain familar characteristics of con6guration-
coordinate diagrams —2 ' to the horizontal displacement
of the two parabolas, 8' to their difference in curvature,
and C', etc., to nonparabolic distortions. In Eq. (1) we
have neglected cross terms between normal modes of
different symmetry types. Ultimately, in our analysis
all terms in the Hamiltonian higher than second order
will be neglected; thus only the second-order cross terms
are of concern. They will be discussed later in this paper.

(4) The Born-Oppenheimer and Condon approxi-
mations are applicable. These approximations merit
further discussion. The Born-Oppenheimer approxi-
mation is valid only when electronic states are well

"W. M. Ven, W. C. Scott, and A. L. Schawlow, Phys. Rev.
136, A271 (1964).

Ke will use two different analytical techniques with
these assumptions to discuss band shapes. The first,
especially useful for a broad band, involves the calcu-
lation of its moments. Lax" and Markham'" have pre-
sented general discussions of such calculations. Silsbee"
uses moment calculations as well as many of the as-
sumptions presented above to discuss the broadening
of zero-phonon lines. His paper can be used as an ex-
ample of the techniques employed by us. The advantage
of moment calculations is that although transition oc-
curs between ground and excited states whose vibra-

" D. L. Dexter, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1958), Vol. 6,
p, 365."C. H. Henry, S.K. Schnatterly, and C. P. Slichter, Phys. Rev.
137, A583 (1965).

'4 Reference 22, p. 36."C. T. Walker and R. 0. Pohl, Phys. Rev. 131, 1433 (1963)."M.J. Weber, Phys. Rev. 130, 1 {1963)."D.B. Fitchen, R. H. Silsbee, T. A. Fulton, and E. L. Wolf,
Phys. Rev. Letters 11, 275 (1963).

~' V. A. Bryukhanov, N. N. Delyagin, and Yu. M. Kagan, Zh.
Eksperim. i Teor. Fiz. 46, 825 (1964l LEnglish trsnsj. : Soviet
Phys. —JETP 19, 563 (1964)j.
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where Aa&~=ko'~ and eq, which is proportional to the
strain at the defect due to all vibrations of symmetry k,
is given by

g/,
—(g~~n) —1/2 P ~.1/2(//~. t+. //~, ) (3)

a~;~ and aI,; are the creation and destruction operators
for the mode of symmetry k and frequency or;. The
summations are made over all SI, of the normal modes
of symmetry type k and then over all of the sy. nmetry
types. The moments can now be calculated by inserting
these expressions for II' into the relations given by
Lax and Silsbee. For vibrations of a given symmetry
one 6nds the following:

3 27
M g

——ho&n —8U+ DU'+ — (4)
4 16

3 27
~2—~p=~, = (~n)' —A'U+ (8'+3A—C) U'

4 16

405
+ (C'+28D+2AE) U'+, (5)

64

Ma —3&2M'g+ 23IIp

3 9 3 27=cV3——(Aa&D)' —A'+ (8'+ —AC) U+——
5 5 2 8

9 16 10
X A'8+ —(C'+ BD+ AE) U'— —

10 9 9

27 9
+ (8'+9ABC+ A'—D+ )U'+— , etc. (6)

8 2

When a bar appears over the various moments, e.g.,
M2, it indicates that this moment is calculated by
using the value of the 6rst moment 3f~ as a reference
point. U is the normalized total energy of a Debye
solid. It depends parametrically upon 0& and is a func-
tion of temperature. It is given by

tional parts differ because of II', it is not necessary to
determine the excited-state vibrational wave functions.
Instead, the moments can be derived from the ground-
state vibrational wave functions and II' alone and can
ultimately be given in terms of the Debye temperature
O~n and the parameters appearing in O'. To put these
latter parameters in dimensionless form we rewrite II'
as follows:

8'= Ao&q P [A/, e/, +8/, e/, '+C/, e/, '+ ], (2)

Examples of this function are shown in Fig. 6 of paper
I, where all of the curves are proportional to U and
have the different Q~ values given there. Tabulated
values of C[U(T) Ij a—re available in, the literature";
in the reference cited C=(9/8)RO~D. If a single mode
whose frequency is given by ra, =kO, /k were coupled
to the defect instead of a Debye distribution of modes
these formulas for the moments would be relatively
unchanged. Some of the constants would differ, espe-
cially in the formulas for the higher moments, and the
function U(T) would be replaced by cothO', /2T. U(T)
and cotho', /2T are experimentally indistinguishable if
Q~D

—4 Q~,/3
In calculating Eqs. (4)—(6) we have neglected to sum

H' over k, the different symmetry types. Gold and KeiP'
have shown that ordinarily such a sum in B' leads to
moments which are sums of the partial moments for
each symmetry type given by Eqs. (4)—(6). When this
sum is taken, the number of coupling param. eters in the
moments formulas is very large —a complete set for
each symmetry.

If the experimental data were extensive enough and
the coupling parameters converged rapidly enough (in
the sense A/, )8/, )C/„etc.), these parameters could,
in principle, be uniquely determined. If, on the other
hand, only a few of the moments could be measured,
for instance the 6rst three, and if we assumed that
0=CI,=DI„etc., then only 6ve relations among the A &

and 8/, could be determined by 6tting Eqs. (4)—(6) to
the data, namely the values of P/8&, P&A&', P/8/, ',
PzA/, 'Bz, and P/8/, '. If vibrations of only one sym-
metry were involved, the A and 8 coeBRcients would
now be overdetermined, but the symmetry of most de-
fects is such that many symmetries are involved so that
these five relations are not enough to uniquely deter-
mine all the A's and 8's.

The problems are reduced somewhat because, al-
though all modes have nonzero 8 values, most have
zero A values. Those modes with a nonzero A value can
be determined by syirunetry arguments. This point has
been discussed by Henry et al.23 If the syrnmetrized
product of the representation appropriate to either the
electronic ground or excited state contains the repre-
sentation to which a certain vibration belongs, then
A/0 for this vibration. Accordingly, we find that of
the eight modes interacting with the M center only one,
the totally symmetric one, has a nonzero A; of the
twenty modes interacting with the F center six (one
from the totally symmetric representation, two from
the E, representation, and three from the T2, repre-
sentation) have a nonzero A, etc. In view of this
qualitative distinction between those vibrations which
do and those which do not have a zero A value, we shall
attempt to treat the data as if vibrations of only two

or~ p

/dacoth(Puu/2kT)Cko. (7)

2~ American Institute of Physics Handbook, edited by D. R. Gray
(McGraw-Hill Book Company, Inc. , New York, 1963), Sec. 4,
p. 58.

'0 A. Gold and T. H. Keil, Phys. Status Solidi 13, 175 (1966).
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types existed, one an "even" vibration with Ag~ and
8g values which are sums of the 2' and 8 values for
all of the "even" modes, and the other an "odd" vi-
bration with Ap=0 and a Bp value which is a sum of
the 8 values for all of the "odd" modes. This procedure
is strictly valid only if one even and one odd mode
dominate the interaction, but the precision of the meas-
urements is too low to decide differently. It is a unique
property of the third moment that it contains a term
proportional to Q~AI2BI„which equals As'B~ in our
approximation. The large size of this term makes possi-
ble a separate determination of Bg and Bp. For some
of the bands our data are so limited that we are unable
to distinguish between BJ; and Bp. In this case we fit
the data with a single 8 parameter which is the sum
of Bg and Bp.

PERTURBATION CALCULATIONS

The second analytical technique that we shall em-

ploy, which is especially useful if fine structure in bands
is to be investigated, involves a determination of the
vibrational wave functions associated with the elec-
tronic excited state in terms of the vibrational wave
function associated with the electronic ground state and
B' by means of a perturbation approach. Ideally, once
these wave functions are found, a complete reconstruc-
tion of all of the details of a band can bemade. Usually,
because of the complexity involved, we are limited to
small perturbations of the vibrational wave functions,
to calculations which are appropriate to O'K, and to
vibrations of only one symmetry.

We will write the total vibrational wave function
associated with the electronic ground state C,"' " "'

=g;y;"', where q, "*' is the wave function. describing
the normal coordinate x;, m; is the quantum number of
this mode, and the product is taken over all lV modes
of the lattice. These modes are normalized and orthog-
onal. At O'K the only state occupied is C,'=g, q,'.
The total vibrational wave function associated with the
electronic excited state, C,"' "» ", can be formally ex-

paned in terms of the q,"' of the electronic ground
state. For example, the vibrational ground state is

where S is a normalization constant. The strength of
the zero-phonon line at O'K, given by the square of the
overlap integral of C,' and C,P, is equal to S'. In this
expansion products of the form q, "&p; /q y, where
all of the subscripts are the same, are to be replaced by
y,"+ /p and signify that the ith mode is in the e+m
vibrational state.

The wave functions C, are solutions to IIC,=EC,
using the unperturbed vibrational Hamiltonian H while

C, are solutions using H+H'. By substituting into this

equation, Eqs. (2) and (3) for H', and Eq. (8) for C,',
we obtain an infinite set of recursion relations involving

the J coeKcients and the parameters in H'. These can
be solved easily when Lt' is especially simple. For ex-

ample, if B=C=D=O, etc., Eq. (2) simplifies to
H'=ha)nA(E(vn) "' Q (o'"(a t+a) and it can be
shown that the parameters in Eq. (8) above are given

by J;=—A (~&/X(ug)'", Je=J;J,/(2!)'", J;,i= J;J,Ji/
(3~) t etc. , and S'=exp( —3A'/2). For small A, S'=1
—3A'/2. The exponential decrease in S' as A' increases

can be attributed to the (m!)'" factor appearing in the
denominator of the J coefficients. Once the J coeS.cients
are determined, the strength of transitions between any
two vibrational states of the electronic ground and
excited states can be evaluated by calculating the over-

lap integrals. The over-all band shape can be then de-

termined by taking into consideration all such terms.
Visscher" has performed calculations to determine the
line shape expected for a related situation —the Moss-
bauer line of a defect with similar coupling parameters,
coupled to a Debye distribution of phonons. We have
calculated the line shape expected at O'K, using the
somewhat more realistic phonon spectrum for Kcl calcu-

lated by Karo and Hardy" and a value of 1.7 for A'.
Kith this value of 3', the line shape is similar to that
of the E2 band. A comparison, shown in Fig. 3, will be
referred to later in the discussion of the zero-phonon

line.
Another simple case of special interest to us occurs

when all of the coeS.cients in B' are zero except B.
Then Eq. (2) simplifies to H'= AB/E[P;a&;"'(a, t+a,)]',
and all of the J coefficients in Eq. (8) with an odd
number of subscripts are zero. If 8 is small it can be
shown that S', the zero-phonon-line strength at O'K, is

given by S = 1 B /2, that J@= B—(a&;u )'~2/&(—co~+~).
and that all higher-order J coeKcients are negligible.

As 8' approaches the value 1, this approximate ex-

pression for S' no longer holds both because the higher-
order J coeKcients rapidly increase in magnitude and,
in addition, because the J@ coeKcients themselves be-
come more complicated, including terms in 8', etc.
Thus, when A and 8 are small, S' depends on each of
them in qualitatively the same way, i.e., as 1—3A'/2
and 1—B'/2, but when B-+ 1 a difference shows up
that is caused by the more complicated nature of the

J(B) coefficients. Approximate calculations carried out

by us show that this difference causes S' and, therefore,
the zero-phonon-line strength to approach zero much

more rapidly than exponentially as 8' increases in the
neighborhood of one.

As an example of the rapid drop in S' when I3' is ap-
proximately ]., consider the case of a defect governed

by a single vibrational mode. A simple configurational-
coordinate diagram is applicable, and 8 is proportional

' W. M. Visscher, Ann. Phys. (N. Y.) 9, 194 (1960)."A. M. Karo and J. R. Hardy, Phys. Rev. 129, 2024 (1963).
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TABLE I. Coupling parameters, Debye temperatures, and zero-phonon line strengths for the aggregate bands in KCl.

Band
Derived from moments

O~D( K) A2 Bp

Derived from peak position and width
JIWo'(eV) 0 '(oK) a" a' S"

Pa
RI
Rg
3/I
SI
E2

189

210

21

2.6

+0.13 —0.6

—0.7

0.163
0,086
0.054
0.058
0.062
0.058

189
190
217
197
217
164

24
6.7
2.0
2.1
2.7
4.1

—0.7
~ ~ ~

+o.5—0.5

—0.9

10—16

4X10-'
5X10 '
2X10 '
2X10-'
2X10 '

a The values of eD, O~g&', and HW'o' for the F band are those of Konitzer and Markham.

to the difference in curvature between the excited- and
ground-state curves. One easily sees that when 8 is
negative and su%.ciently large the curvature of the
upper state is reversed so that no bound vibrational
state exists. S'=0 for this situation. The critical value
ofB ls g.

The calculation of the J coefficients and S' becomes
even more complicated in more realistic situations, i.e.,
when both the A and 0 parameters are nonzero, when
several A and 8 parameters corresponding to different
symmetries are involved, or when the C, D, etc. terms
in H' must also be considered. It appears that under
these conditions the conclusions of the last few para-
graphs are still applicable, i.e., if any of the parameters
in H' other than A is approximately equal to 1 or
more, S2 will be very small.

SPIN-ORBIT AND JAHN-TELLER EFFECTS

Much of the work done on broad absorption bands
due to defects has concentrated on the Ii center. This is
unfortunate, because due to its high symmetry, the Ii

center is in some ways more complicated than most
other centers. Its first excited state, for instance, is
orbitally degenerate. The degeneracy can be removed
and transitions involving this state can be split by
perturbations of various kinds which are not important
for nondegenerate states. Spin-orbit coupling, the Jahn-
Teller effect, and random crystalline strains are three
examples of such perturbations. Spin-orbit coupling, an
important source of broadening for the Ii band in heavy
alkali halides like the cesium salts, has only a small
effect in the lighter salts like KC1.33 Moran has shown'4

that the Jahn-Teller splitting of the P band is also
large for the cesium halides due to distortions of E,
and Tg, symmetry. If spin-orbit coupling is small, as in
KC1, the Jahn-Teller splitting is reduced somewhat since
then only T~, modes cause a splitting —the E, modes
contributing to a normal broadened line shape.

I onguet-Higgins et a/. "have discussed the line broad-
ening expected from transitions between states, one of
which is a Jahn-Teller split multiplet. They show that
in absorption a splitting or gross broadening develops
when the degenerate state is the upper one, but that

"D.V. Smith, Phys. Rev. 137, A574 (1965).
'4 P. R. Moran, Phys. Rev. 137, A1016 (1965).

only a mild distortion of the line shape occurs when the
situation is reversed. Thus, transitions from the doublet
ground state of the E center, for instance, will not be
broadened or split unless the excited state is also a
multiplet.

Henry, Schnatterly, and Slichter" have included spin-
orbit and Jahn-Teller effects in a moments analysis.
Within the approximations of their theory the moments
of an absorption band which terminates on a degenerate
state can be separated into a part solely due to spin-orbit
coupling (which is insignificant for Ii centers in KCl)
and the rest, solely due to lattice distortions. The part
due to lattice distortions is essentially the same as that
calculated above by us except that all coupling param-
eters other than the A's were assumed to be equal to
zero. The Jahn-Teller (JT) effect manifests itself in the
nonzero A values for the E, and T2, vibrations. If these
A values are large, the second moment and half-width
of the line, which according to Eq. (5) depend upon
P&AI,', should be large. Schnatterly" has shown that
these vibrations are important for the Ii center. Thus
in a family of related centers like the Ii and F-aggregate
centers one would expect those bands whose transitions
terminate on degenerate levels tobe significantly broader
than the rest.

There is a certain amount of evidence demonstrating
this. Table I lists the half-widths at O'K for the I" and
various aggregate bands. Those bands that correspond
to transitions terminating on nondegenerate excited
states, i.e., M, and (according to Silsbee") Nq, N2, and
E2, have equal half-widths within 10%, indicating ap-
proximately equal coupling to the phonons. The Ej
band, which has a doubly degenerate excited state, "
and the P band, with its triply degenerate excited state,
are broader by about 50 and 150%, respectively. Other
evidence involves the A center, 37 an Ii center whose
symmetry has been lowered and description modified
by the presence of an adjacent foreign alkali ion. Under
these conditions the triply degenerate excited state of
the Ii center splits into a doubly degenerate and a
nondegenerate state corresponding to the Fg and I'g
bands, respectively. The Ii& band, unaffected by the JT

"S. E. Schnatterly, Phys. Rev. 140, A1364 (1965)."R.H. Silsbee, Phys. Rev. 138, A180 (1965).
I'I K. Kojima, N. Nishimaki, and T. Kojima, J. Phys. Soc.

Japan 18, 250 (1963).
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effect, has a half-width of about 60% of the F band
but the F~ band, still degenerate, has a half-width ap-
proximately equal to the F bands.

When the moments analysis of Henry et a/. is ex-
tended to include the bilinear coupling parameters 8
we find that because the electronic excited state is de-
generate, a situation which we have previously ignored
occurs, i.e., cross terms between modes of different sym-
metries appear in II'.30 These cross terms can occur be-
tween vibrations belonging either to the same repre-
sentation or to different representations. To each we
must associate a new 8 parameter whose existence will
show up as the following modification to the moments
given in Eqs. (4)—(6):iV i is not changed, 3II2 is modified
by having the new 8' parameters added to the old 8'
term which appears as a coefficient of U', andM3 is mod-
i6ed byhaving the new 8' added to the old 8' term which
is a coeKcient of U and by important changes to the A'8
coeKcient of U'. To this coeKcient must be added terms
like AI,A,B» where A~ and A; are the linear coupling
parameters for modes of symmetry k and j and 8» is
the bilinear cross-coupling parameter between these
modes. An important feature of these terms involves
the sign of A~A, relative to A,' or AI,'. For important
cases, e.g., when k and j are vibrations from the same
two-dimensional representation, A, = —Aq so that A,AI,
= —A,'. Because of this sign reversal and if B~, is large
enough, the coefficient of U' in M3 may exhibit a difer-
ent sign for those bands whose transitions terminate
upon a degenerate electronic state compared with those
which do not.

These complicated discussions are applicable to the
F band. The data, however, are insufhcient to separate
the cross-coupling 8 parameters from the quadratic
ones. In the initial fit of the moments data we shall
assume that the cross-coupling 8 parameters are zero
and later discuss the possibility that this is not the case.

A situation not covered by Henry et a/. for which the
Jahn-Teller effect is important occurs in absorption for
a defect like the R center whose electronic ground state
is degenerate. This situation, treated by Longuet-Hig-
gins et a/. , will be discussed with the aid of the con6gu-
ration-coordinate diagram shown in Fig. 1. The two
solid curves labeled A and B correspond to degenerate
electronic states; the coordinate plotted is one of a pair
of degenerate vibrational modes. If the other mode were
also plotted, the energy diagram (in lowest order) would
become a figure of revolution about the vertical aixs.
The depth of the trough in the lower sheet is propor-
tional to the strength of the electron-lattice coupling.
An important feature of the analysis of Longuet-Higgins
et a/. is that for a strong Jahn-Teller effect (the limit
which is of interest to us for discussions of the E2
band"), the lowest-energy vibrational wave functions
tend to be concentrated in the vicinity of the trough
and have energy levels which are not uniformly spaced
but vary approximately as n(x+1), like those of a ro-
tating dumbbell. Because of this property of the ground
state the harmonic-lattice approximation made above
is violated and the moments analysis and perturbation
calculations do not apply unaltered to the various R-
center transitions. For most purposes, however, the
trough of Fig. 1 can be replaced by a parabola of revolu-
tion, indicated by curve C, whose lowest vibrational
wave functions approximate to a fair degree those of the
trough. The major diRerences occur on the axis of the
figure, but this part of the wave function has little im-
portance when transition probabilities are calculated
by performing overlap integrals. A general feature of
curve C is that its curvature is less than that of A
or 3, a property which will be recalled later when we
discuss the zero-phonon line of the E2 band. In our dis-
cussion of the moments of the R bands this replacement
approximation necessitated by the Jahn-Teller effect in
the ground state will be made.

The considerations raised by the Jahn-Teller effect
are very complex; the approximations we have had to
make because of it place serious limitations upon our
attempts to analyze the data. We are indeed fortunate,
therefore, to have good measurements of the M band
which is a singlet-to-singlet transition and is, therefore,
complicated by none of these considerations.

MOMENTS ANALYSIS OF THE DATA

0
A Degenerate Vibrational Coordinate

FIG. i. Con6guration-coordinate diagram for a system dis-
playing the Jahn-Teller effect in the electronic ground state.

In what follows, the data for the 6rst three moments
of the M band given in Figs. 2—4 of paper I will be
fitted by various combinations of the function U given
in Eq. (7) and its higher powers. First- and second-
moment data for the Ii center are reported by Konitzer
and Markham. ' Third-moment data for the F center
can be extracted from the works of Konitzer and Mark-
ham and of Schnatterly, "and are prestened in Fig. 2
of this paper. These moment data will also be fitted by
the U function and its higher powers. From the co-
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FIG. 2. Third moment of the Ii band in KCl versus temperature.
The experimental curve is constructed from the data of Konitzer
and Markham and Schnatterly.

eKcients of these terms and the formulas for the mo-
ments given in Eqs. (4)—(6) we will attempt to extract
unique values for 0'n and the coupling parameters A,
8E, and 80 for these bands. We were unable to measure
the moments of the remaining bands, but since to a first
approximation (exactly for a Gaussian band) the peak
position equals the first moment and the half-width
equals 2.36 times the square root of the second moment,
the data of Figs. 5 and 6 of paper I will be treated as
if they were also first- and second-moment data so
that approximate information about the coupling pa-
rameters for these bands can also be obtained. Because
of the lack of moments information, only the A param-
eter and a single B parameter equal to Bz+Bo will be
used to describe them. Hereafter, when we refer to a
figure presented in paper I we will prefix the figure
number with a I, for example, Fig. IS.

38 I. S. Jacobs, Phys. Rev. 93, 993 (1954).
G. K. White, Phil. Mag. 6, 1425 (1961),
S. Mipo~prp, p,nd H, Q, Drickam|:r, J, Chem. Phys. 33, 290

{t9N),

First Moment

According to Eq. (4) the shift in the first moment of
a band due to temperature is given by AM&=4IE~&
X (Bo+B~)(U—1), but due to anharmonicities in the
crystal that were neglected in our moments analysis,
the crystal expands with increasing temperature so as
to contribute an additional temperature-dependent shift
to the first moment. Jacobs" has discussed this shift
for the F center. To calculate Bo+B~ we must first
subtract from the over-all shift that part due solely to
the expansion of the crystal. This can be done if two
quantities are known: the thermal-expansion properties
of the crystal and the shift in the band due to hydro-
static compression at a constant temperature. Accord-
ingly, we have used the thermal-expansion data for
KCl of White" and the pressure data for the Ii, M,
R2, and $2 bands in KC1 of Minomura and Drickamer, ~

and of Jacobs."No pressure data are available for the
other bands. The results for the M band are shown in
Fig. I2. The dashed line indicates the expected shift in
M& due solely to the expansion of the lattice. The solid
line has been 6t to the circled experimental points by
the addition to the dashed curve of another term pro-
portional to U with Bo+B~ —1.—0—and On = 210'K.

Konitzer and Markham did not report directly upon
the temperature dependence of 3II~ for the Ii band, but
this information can be obtained from their data. When
the appropriate corrections are made for thermal ex-
pansion, we find that B~+Bo=—0.6 and 0'n=190'K.
The same 6tting procedure was used with the peak-
position data of Fig. IS (including the M- and F-band
data of Konitzer and Markham). The "thermal-
expansion" function shown in Fig. I4 describes the
frequency shift expected for all of the bands accord-
ing to a simple model of Jacobs if the shift were due
solely to the expansion of the crystal. The pressure
data eliminate the need for Jacobs's model and allow
one to construct an "expansion-only" curve for each
band which di6ers from the expansion function shown

by a multiplicative constant. When this is done, one
finds that the data for each band can be fitted by a
sum of the appropriate expansion-only curve and a term
proportional to the U function with 0+~'= 200'K. Typi-
cal combination curves of this kind are represented in
Fig. IS by the solid lines. From the fit we conclude
that O~D'=200'K for all of the bands. From the co-
efficients of U for each band we have calculated the
8' values listed in Table I.

These values are called 8' instead of 8 because they
have been calculated from the peak position of the band,
not its first moment. When a prime is added to any
parameter, as in (~3D', its signifies that the parameter
has been derived from other than moments data and
has little theoretical signi6cance unless other infor-
mation is available to relate the parameter to its un-
primed counterpart. The di6erence between 8 and 8'
depends upon the skew of the band. For a Gaussian
band 8=8', for the M band we can show that 8=8'
—0.5, i.e., from the first-moment data B=BO+Bz
= —1.0 while from the peak-position data 8'= —0.5;
in the same way we can show that for the F band
B=B'+0.1. Other bands which display a skew like
any of these bands will have a similar relation between
8 and 8'. Certain evidence suggests that the skew
of the R~ band is like the M bands, so that B(E2)=0,
and that the E2 band is approximately Gaussian, so
that B(X2)= —1. Since no pressure data are available
for the R& and Ã& bands our only comment is that if
these bands behave under pressure like the others, their
8 values lie in the range —0.5&8&—1.

Second Moment

In Fig. I6 the half-width data for all of the bands are
6tted by the solid lines which represent the function
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HWO'X U(0'D'), where HS'0' and O'D' are separately
chosen for each band to give the best fit at low and
intermediate temperatures. These values are tabulated
in Table I. The values of A' listed in Table I are calcu-
lated from the HWO' values [Eq. (5)j for the second
moment, and the assumption that all bands are Gauss-
ian and all B parameters are zero. Because of these
latter approximations the desired A' may differ from
A" by an amount which we estimate to be of the order
of 25%. A systematic deviation of the data from the
curves is noticeable in Fig. I6 for several of the bands
at high temperatures, but since the uncertainties and
scatter in the data are also large at these temperatures,
the highest temperature data are shown for only the M
band. The deviation from the U function is even more
evident for the M band in the plot of its second moment
shown in Fig. I3.To fit these data, 0& was chosen equal
to 210'K and a sum of U and U' was taken. The best
6t is M2 ——7.2X 10 '(4U/5+ U'/5) eV'. Since, according
to Eq. (5) of the moment analysis,

M = (h(vg&)'[43A'U+27/16(BOP+BE') U']

we Gnd A'= 2.6 and B02+Bz'——0 45 for the M band.
Equation (5) also suggests that if Bo+Bz is approxi-

mately —0.6 for the F band as indicated by its first
moment, its contribution to the second moment must
be an insignificant part of the large M~ observed. Be-
cause of this no U' function should be needed to fit the
second moment. In confirmation of this, we can fit the
second-moment data of Konitzer and Markham for the
Ii band by using a U function alone with O~~ ——189'K
and A'= 21.

It should be noted that the 0+3 and 0+D' values used
to fit, respectively, the second-moment and half-width
data of the M band differ by about 5%.The O~n' values
shown in Fig. I6 for the other bands are likely to differ
from the desired O~ by about the same amount. The
observed spread among the OD' values, however, is
several times this much. This probably reRects a real
difference among the centers in the way and extent
to which each modifies the phonon spectrum of the
unperturbed lattice. The observed order OD'(X2)
(O~n'(M)(0'D'(R2) = O~srr ——225'K is what one would

expect from the theory of McCombie, Matthew, and
Murray" and the pressure measurements of Minomura
and Drickamer40 and of Jacobs" which indicate that
the X2 center is the "softest" and the E2 the "hardest"
of these centers and that the R2 center is about as
"hard" as a normal lattice site.

Third Moment

According to Eq. (6) of the moments analysis,

M3 ——(4)n)'[3/5A'+9/5 (Bo'+B ') U+27/8A'BsU'
+27/8(B~'+ B,3) U~j.

The third-moment data for the M band are compared
in Fig. I4 with four curves which correspond to this ex-

pression with those values used for A' and. O~~ which
were determined. by M&, i.e., A'= 2.6 and. OD ——210'K.
The (B~,BO) values for these curves are (0,—1.0),
(0,—0.67) (—1.0,0), and (—0.67,0).The fit is poor when
Bo=0 but fair when Bg =0. Superficially the fit could be
further improved by modifying the values of A' or O~D,

by allowing the coupling parameters C, D, etc. of

Eq. (2) to assume nonzero values, or by including in

3I3 still higher powers of U. In view of the low precision
of the experimental measurements of the third moment,
such a procedure would be misleading.

It is a general property of the expressions for the
moments that the lower moments can be expressed
adequately in terms of a few parameters and the func-
tion U alone while the higher moments place more
emphasis on the higher-order coupling parameters and
require in addition to U many of its higher powers. If
C, D, etc., do play an important part in explaining the
moments, several difficulties arise. Among these are:
One of our original assumptions was that the unper-
turbed lattice was approximately harmonic, i.e., that
no C, D, etc. , terms were present in H. If such terms
are important in H', they probably are in H also so
that the original assumptions are violated. A second
problem has to do with the cross terms in H', some of
which were neglected. This assumption is invalid if the
C and higher parameters cannot be ignored.

For these reasons and because of the limited validity
of some of the other approximations we have made, no
attempt will be made to achieve a better fit of the third-
moment data for the 3f band. The conclusions drawn
are that some coupling parameters other than A are
large; that Bo is one of them and is equal to about
—0.7; and that B~ is small. These conclusions are in
approximate agreement with the results drawn for the
M band from the first and second moments. The con-
clusions with respect to B~ and Bo seem quite reasonable
on theoretical grounds. Negative B values are expected
as a result of the more diffuse nature of the electronic
excited state. The magnitude of Bo is expected to exceed
that of Bz if only on the basis of the large number (7)
of symmetry modes contributing to it compared to the
single mode contributing to B~.

Figure 2 shows a similar plot of the third moment
of the F band versus temperature. The dashed experi-
mental curve was constructed for the F band from three
mes, surements of other experimenters: (1) the value of
M3 measured at 80'K by Schnatterly" labeled S on
Fig. 2; (2) the observation of Konitzer and Markham'
that the shape of the Ii band does not change between
10 and 300'K; and (3) the relation given by Konitzer
and Markham for the half-width of the Ii band versus
temperature. The accuracy of this curve is probably
poor. As an example of this, we have made a crude
third-moment determination of the F band from the
publishing curve, No. 7, of Konitzer and Markham and
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find. disagreement by about a factor of 2 with Schnat-
terly's value.

This discrepancy is illustrative of the precision attain-
able in moment measurements, i.e., Konitzer and Mark-
ham, and Schnatterly diRer by about 1% in Mi, 10%
in 3f2, and factor of 2 in 3I3. The F band is especially
difficult because of problems associated with the over-
lapping E band. In spite of these discrepanices the
experimental curve of Fig. 2 is assumed to be quali-
tatively correct.

The solid theoretical curve of Fig. 2 is constructed
using the parameters 32=21 and O~D=189'K deter-
mined above from M2. The values chosen for BE and
Bs to fit the curve, l.e., B@=+0.13 and Bs= —0.6 aie
such that Be+By= —0.5, in agreement with the first-
moment measurements, and such that Bss+B~'=0.4,
a value too small to be apparent in the second-moment
data. If the values of 80 and BE used in the theoretical
curve were interchanged, the new curve would be shif ted
completely off of the g1aph of Flg. 2. Thus, as in the
case of the M band, a reasonably good fit to all of the
available data occurs if unique values are chosen for
O~~, 3', 80, and BE and all other parameters are set
equal to zero. The entirely different dependence of M3
for the F and M bands can be traced to the large posi-
tive term in Ms (for the F band) which contains the
product A'BE. This term dominates the other terms in
M3 for the Ii band because 3' is so large. The positive
value indicated for BE is unusual; it may result some-
how from the contributions to BE of those modes which
are involved in. the Jahn-Teller eRect. An alternate
explanation for the positive A2BE term may be found
in the discussion presented above of the bilinear cross-
coupling parameters B,~. They are not zero for the Ii

band, but cause new coefficients to be added to 3'BE
of the form A,AgB, I,. If these terms dominate in the
third moment, 3;A~ as well as 8;I, may be negative
giving a positive coeKcient A,AqB, I, which would ex-

plain the observed sign. The data is unable to resolve
these possibilities. In any case, the Jahn-Teller effect
appears to be intimately involved in the explanation
of the third moment of the F band.

Zero-Phonon Line

Among the aggregate bands, the R2 band is anomalous
because of its structure and the unusual shift of its
peak position with temperature, which is shown in Fig.
I5. Both of these features suggest a low value of 8.
We would like to make third-moment determinations
to confirm this, but because of the strong overlap of
the different bands we cannot do so. We choose instead
to make an arbitrary assumption about the coupling
parameters, calculate a theoretical line shape, and com-

pare it with the observed shape to see if it agrees well

enough to confirm the choice of parameters. If the A' s
and 8's are completely unknown this is an extremely

long process. Keil4' has outlined a procedure for espe-
dally simple cases, i.e., for either A =0 or 8=0 and for
vibrations of only one symmetry and one frequency.
We chose to perform the calculations at T=O', assume
that all 8=0, explore values of 2' near the value of
2.0 suggested by the half-width of the E2 band, assume
that vibrations of only one symmetry are important,
and use the phonon distribution calculated for KCl by
Karo and Hardy" instead of a Debye distribution. Karo
and. Hardy's function differs from the Debye distribu-
tion by the absence of a discontinuity at ~z and by the
presence of structure at lower frequencies. The appli-
cation to the E2 band of this distribution function, which
is appropriate for the unperturbed lattice, is provision-
ally justified by the good agreement of the OD' value
(21'I'K) found for the Es band from the half-width
data and Osrr(225'K).

The calculation of the band shape is performed by
the perturbation method discussed in the theory section
above. The value of A2 used to derive the curves shown
in Fig. 3 is 1.7. The contributions to the band shape
due to one-phonon, two-phonon, etc. transitions are
shown in Fig, 3 by the dashed lines. The sum of these
is the solid line which is to be compared with the experi-
mental broken line of Fitchen et al.'7 The areas under
the solid and broken curves have been adjusted to be
approximately the same. The calculated fractional
strength of the zero-phonon line is 0.08 while the ob-
served value is 0.02. When selection rules which govern
the zero-phonon line are considered, " the calculated
value must be reduced into somewhat better agreement
with the observed value. The selection rule we refer
to forbids the R2 band transition to occur for certain
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polarizations of light unless phonons are also created
(or destroyed). Our theory has ignored such selection
rules and thus predicts a zero-phonon line which is too
large.

The crude agreement of the calculated shape of the
R2 band and the strength of its zero-phonon line with
observed values are taken as evidence supporting the
assumption that 8=0.Nonzero 8 values tend to reduce
the zero-phonon line and smear out the structure of the
band. Part of the deviations observed between the ex-
perimental and theoretical curves of Fig. 3 may be due
to deficiencies in Karo and Hardy's calculations. A
check of their distribution function can be carried out
for KBr (but not KC1) by comparing it with the results
of neutron-diffraction experiments of Woods et al.~ The
comparison shows deviations of about the magnitude
seen in Fig. 3. Any remaining deviations can be blamed
on the approximations made by us that the phonon
spectrum has the frequency spread of the unperturbed
lattice, and that the Jahn-Teller effect in the ground
state can be adequately handled by the replacement
approximation we have introduced.

Attempts can obviously be made to match the peaks
and bumps in the theoretical and experimental curves
of Fig. 3. This is equivalent to the efforts of Pierce"
to match the experimental R2 band absorption peaks
with singular points in the dispersion curves calculated
by Karo and Hardy, except that our procedure ex-
cludes from consideration many of these points which
do not show up as peaks in the theoretical density-of-
states curve. Neither procedure gives a very convincing
match, illustrating the need for more reliable density-of-
states curves.

The reasonable agreement of Fig. 3 does not rule out
a small value for 8. Other observations, for example,
of the thermal broadening of the zero-phonon line'~ also
suggest that 8, although small, is not zero. Therefore,
the results of theories which ignore 8, such as that of
Fitchen et alt. '~ dealing with the temperature-dependent
strength of the zero-phonon line, should be in only
approximate agreement with their data. Specifically,
their experimental O~' value of 170'K for the R~ band
is probably no more significant than our value of 217'E.
since both determinations assume that 8=0 (and ignore
the Jahn-Teller effect).

Table I shows estimated values of 5", the strength
of the zero-phonon line at O'K, for the various bands
calculated from A' when all 8's are assumed equal to
zero. The values of 5" imply that the zero-phonon line
should be seen for all of the bands except the F and,
possibly, the Ri band. The fact that, to the contrary,
none are observed for the Rj, M, E~, or E2 bands is
consistent with the values of 8 implied by the moments

~ A. D. B. Woods, B. N. Brockhouse, R. A. Cowley, and W.
Cochran, Phys. Rev. 131, 1025 (1963).

data and the arguments presented in the theory section
which conclude that no zero-phonon line should be
evident for such large 8 values.

We believe that the unique nature of the R2 band,
which is related to its low 8 value, derives from the
properties of its degenerate ground state. As explained
above, the degeneracy of the electronic ground state
causes its vibrational wave functions to be unusually
spread out. If the vibrational wave functions for the
electronic excited state are also quite extended, which
appears to be the normal situation judging from the
negative sign of 8 for all of the other bands, 8 will be
small for the R2 band and the overlap integral contribut-
ing to the zero-phonon strength of the R2 band will
be large.

CONCLUSIONS

The shape of the aggregate bands is governed by
interactions with phonons of a wide band of frequencies.
Their distribution can, for most purposes, be adequately
approximated by a Debye distribution whose character-
istic frequency is close to that of the unperturbed crys-
tal, but varies slightly from band to band. This vari-
ation is of the nature expected from the theory of Mc-
Combie, Matthew, and Murray and from experimental
determinations of the "softness" of the different centers.

The characteristics of the bands are dominated by
the influence of the linear coupling parameter A. The
Ii and Rj bands, which involve electronically degenerate
terminal states, have larger A values than the other
bands due to the Jahn-Teller effect. Except for the Rp

band, all of the bands have bilinear coupling parameters
8 in the range —0.5&8&—1.0. Values of this magni-
tude are sufFiciently large to strongly affect the shape
of the bands and the frequency shift of the bands with
temperature, and to cause a reduction in the strength
of the zero-phonon lines to the extent that they cannot
be observed.

For the R~ band 8=0. Because of this a large zero-
phonon line and other structure which is probably re-
lated to peaks in the density of phonon states can be
observed. This unusually low value of 8 is probably
associated with modi6cation of the ground state brought
about by the Jahn-Teller effect.

In those cases where the experimental information is
most complete, i.e., the F and M bands, it is necessary
to include vibrational modes of at least two different
symmetries, "odd" and "even, " to fit the data. For
these bands it is found that.

) Bp/8@
~
)1.
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