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Quantum Statistics of Nonlinear Optics*
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Physics Department, University of California, Berkeley, California
(Received 30 September 1966)

Nonlinear interaction of light with matter is described from the quantum-statistical point of view. The
cases of two-photon absorption, Raman transition, sum-frequency generation, parametric amplification,
and incoherent scattering are discussed. It is shown that the nonlinear optical sects depend strongly on the
statistical properties of the light fields. The rate of nonlinear absorption, generation, and amplification is
higher for chaotic than for coherent, and also higher for multimode than for single-mode pump fields. Meas-
urements of the statistics of the output fields may yield information about the statistics of the input fields
and the properties of the medium.

I. INTRODUCTION

'HE quantum statistical properties of light from
various sources have recently been extensively

investigated. ' ' However, the question whether inter-
action of light with matter would change statistical
properties of light fields has seldom been raised. The
purpose of this paper is to extend the quantum-
statistical description to the case of light fields after
interacting with a medium. Emphasis is on the effect
of nonlinear interaction of light with the medium.

It is usually assumed in the literature that statistical
properties of a light beam remain unchanged in travers-
ing a medium if the response of the medium to the light
fields is linear. This assumption is certainly a valid one
for a nonabsorbing medium, since the linear interaction
of light with the medium cannot disturb the probability
distribution of photons in their number states (if the
disturbance due to incoherent scattering can be
neglected. See Sec. III). Only their spatial distribution
is changed through the interaction. Let the vector
potential be written in the usual form'

A(r, t) = c P (27r tt/M~) 't'

X (al n„(r) exp(i~~t)+al„. tuA, .*(r) exp( —i~~t) ), (1)

where at and a are the creation and the annihilation
operators, respectively, for the kth mode. (The sub-
indices indicating the polarization of the fields are being
omitted. ) The spatial function u~(r) is a normalized
eigenfunction of the differential equation

[7'+(ap'eI, (r)/c']uI„(r) =0, (2)

where ez(r) is the linear dielectric constant at frequency
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~1,.4 From Sturm-Louivelle theory, the orthonormality
condition gives

(ape))'t2ug(r)u)*(r)d'r= bpt. (3)

Thus, the photon statistics of the fields is not changed
except that the spatial distribution, described by
uq(r), is now different from the vacuum case.

This is not quite true if the medium is lossy. An
obvious example is the case where originally there are
exactly eI, photons present in such a medium. After
the absorption has been switched on for a finite length
of time, the photon system has finite probabilities in
the occupation number states ~e~), ~

(e—1)~), ~
(I—2)s),

etc. The statistical properties of the photon system have
clearly been changed. Assume that the medium has an
electric-dipole transition between atomic states ~f2)
and

~
|t&) with frequency separation co», which coincides

with the photon frequency of the kth mode. The single-
photon absorption can be described by the interaction
Hamiltonian

x;„,=P (/c2;tc„E„& '(r, )+)*c2-;c„'E„'+(r,)). (5)

Here, c1;, c2;, ci, , and c2, are creation and annihilation
operators for the ith atom in states 1 and 2, respectively.
P is the electric-dipole matrix element for the transition.
The positive-frequency part of the electric field at the
ith atom is given by

EI.&+&(r,) = Et, & &(r,)"=i(27rkcvg)"'up*(r, )ajt. (6)

In the interaction representation, the equation of

4 In general the coherent linear response of a medium to the
fields can be described completely by a generalized linear dielectric
tensor a&(r); see Y. R. Shen, Phys. Rev. 133, A511 (1964). In this
paper, we shall assume that eq(r) is a scalar, and that all fields are
linearly polarized.
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Then, the Hamiltonian of the fields in the presence of
the linear nonabsorbing medium reduces to the familiar
form

~=E h~~(a~tax+ ,') . -



922 Y. R. SHEN

iABq/Bt = [Se;~k(t),p(t) ].

motion for the density matrix p of the composite system pr(to) = Ink)(nk I, then it is easily shown that

pr(to+») ={2L1—p»(ak —Ink l
')](nk'"k/rkk )"'

(7)

+(—1/h') [X;.~(to+t),

Iteration of p for small increment of t in the above
equation gives'

Bp(to+t)/Bt= (1/ih)[X; i(to+t),p(to)]

&«xp( —
o lnkl')

1
~k)) 2 (mkl

)([1—p5t(rrtk —
Ink I

')(nk' k/mk!)'t'

Xexp( ——:Ink I
')} — - Ink exP( —p»&

Lit~0

&t, (nk exp( —P») I;
)&pC; (t'),p(to)]]dt'+ . (8) qk'(«+t)= lnk exp( —pt))(nk exP(—pt) I

.

We now assume that the thermal equilibrium of the
atomic system is not disturbed by photon fields. The
density matrix can then be written as p(t) =pr(t)
Xg; pg, (0), where pr and p~; are density matrix
operators for the photon system and for the ith atom,
respectively. This is known as the irreversible approxi-
mation. ' We have, with the same approximation as
used in the ordinary time-dependent perturbation
calculation, "namely, A/I BC; &I )t))1/(linewidth),

Bp /Bt=Tr (Bp/Bt)

p[(ak akpr—2akprak +—prak ak) pig

+ (akak qr 2ak pk ak—+pk akak )poA'], (9)

where

P=2»l kl'-Iuk(r') I'g(»)/4t

= [vrcok
I p I

'g(oak)/h] d'r
I
uk(r) I

'N(r) .

Here g(») is the line shape function, X(r) is the density
of atoms at the position r, and p~~o and p~~o are the
thermal populations for the two atomic states. The
integration extends over the volume of the medium.
The constant P is related to the absorption coeKcient.
If pr(t) is known, statistical properties of the fields,
such as temporal and spatial coherence, can readily be
determined. From Eq. (9), one obtains

B(ak)/Bt= p(qigo po~')(ak—), -
B(aktak&/Bt= 2p(plA' pod'—)(ak ak)+—2pqoA' (10)

The last term in the above equation corresponds to
spontaneous emission.

Equation (9) governs the change of statistical prop-
erties of the photon system in the single-photon
absorption process. In particular, at zero temperature,
if initially the photon system is in a coherent state, '

' C. P. Slichter, Princip/es of Magnetic E'esonance (Harper and
Row Publishers Inc. , New York, 1963), p. 127.' F. Bloch, Phys. Rev. 102, 104 (1956).

See, for example, L. I. Shiff, Qguntlm Mechanics (McGraw-
Hill Book Company, Inc. , New York, 1955), p. 189.

This shows that a coherent photon system remains
coherent although the field amplitude decreases ex-
ponentially with time. More generally, if the initial
photon field can be described by the I' representation, '

pp(to) = d'nkI'(nk)
I
nk)(nk I,

one would get

p (to+ t) = d'n. &(n.) In exp( —pt) &

)& (nk exp( —Pt) I
. (12)

The statistical properties of the fields are being changed
in a rather trivial way, since it is simply a translation
of the distribution E(nk) in the nk space.

No such simple solution exists if the equilibrium tem-
perature of the atomic system is finite, since the spon-
taneous emission now comes into play. Consequently,
the coherent properties of a beam will be disturbed in
passing through the absorbing medium. The disturb-
ance is, of course, small if the spontaneous emission
process can be neglected in comparison with either the
stimulated absorption or emission. This is certainly
true for light beams in a medium at room temperature.

The same approach can be applied to the case of
multiphoton transitions. Again, since the photon dis-
tribution can be disturbed by the transitions, statistical
properties of the photon system are changed. The case
of two-photon transitions, which includes Raman
transitions, will be discussed in Sec. II. In general,
even if the medium is not lossy, statistical properties
of light are changed by nonlinear interaction of light
with a medium, although the disturbance might be
small for weak interaction. The nonlinear interaction
couples different photon modes and leads to energy
transfer between the modes. Photons in some modes
may be annihilated, while those in other modes created,
and hence the photon distribution is disturbed. Often-
times the rate of energy transfer between the modes
depends on the statistical properties of the light fields,
usually higher for chaotic than for coherent sources.

For investigation of properties of a medium, in-
coherent scattering has long been a useful tool. Statistics
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II. TWO-PHOTON ABSORPTION AND
RAMAN TRANSITIONS

The calculation for two-photon absorption is essen-
tially similar to that for single-photon absorption, except
that the mathematics becomes more complicated. Here,
an atom makes transition from the state i' t) to the
state

i It 2) by absorbing one photon in the kth mode and
another in the /th mode. The interaction Hamiltonian is

3.';~t=P (gc2;tct;E» '(r)Et' '(r~)+adjoint), (13)

' See, for example, D. Ter Haar, Rept. Progr. Phys. 24, 304
(1961).

9 The length of the box can be taken as the product of the light
velocity and the response time of the photon detector.

is particularly important in this case for analyzing the
results of experiments. In Sec. III, linear and nonlinear
incoherent scattering are discussed. As is expected, the
scattered radiation depends on the statistical nature
of both the incident beam and the fluctuations in the
medium. For nonlinear optics, one is perhaps more
interested in coherent scattering. We shall discuss in
Secs. IV and V two important cases, sum-frequency
generation and parametric ampli6cation, respectively.
In all cases, there are one or more pump fields present.
We shall not concern ourselves too much about how the
statistical properties of the pump modes change.
Instead, we are interested in finding the statistical prop-
erties of the generated modes, and the rate of genera-
tion as a function of the statistical nature of the pump
modes. Conversely, from the statistical properties of the
generated modes or the rate of generation, one could
obtain some information about the statistical nature
of the pump modes.

It must be noted that in our discussion of single-
photon absorption, we have assumed a bounded system
for the photon fields. This type of treatment is most
conveniently applied to the case of a cavity; photons
are neither coming into nor going out of the cavity. In
principle, the same treatment can be applied to prob-
lems of light propagation in a medium. In practice, it
is indeed successful in dealing with incoherent scattering
(see Sec. III), but for coherent scattering, it becomes
extremely dificult. Rigorously, the latter case should
perhaps be treated by the method of many-body trans-
port theory. However, imagine an inhnite medium and
a box of finite volume in which the photon fields are
quantized. This box of photons interacts with the
medium for a time t, as its center modes in the s direc-
tion from zt to st+et, where c is the light velocity in the
medium. The resultant change of statistical properties
of 6elds in the box can now be calculated using the
cavity treatment. A more general treatment of the
propagation problems is given in the Appendix. For
steady-state propagation, it is shown that the results are
essentially the same as in the cavity case with t replaced
by —s/c, as one would expect.

where g is the matrix element for the two-photon
transitions. ""Using the same procedure as in the case
of single-photon absorption, one can hand that the
density matrix pp for the photon system obeys the
equation

~p~/~t= P L(ax «aa«p~ 2aa—«p»aa «
+p»a» at at at)ptx +(aaatat, at p» 2a—» at p»a»at

+p»a»atat at )p~~ j& (14)
with

p"'=L2~'~.~tl v I
'g(~~+~t) 7

X1V(r) iuk(r) i'iut(r) i'.

The above equation governs the change of statistical
properties of the photon system in the two-photon
absorption process. The solution of Eq. (14) is di6.cult.
However, it is clear that if the absorption is large,
the statistical properties of the fields will be appreciably
disturbed. A coherent beam will no longer be coherent
after interacting with the medium.

From Eq. (14), we obtain

8(a»)/ttt= p (ptA p2A ) (a»at at)
+pt'&pm~'(att), (15a)

8(at,ta»)/ttt = rt(attat)/Bt,

2p"'(plA—
P2A )(at tat«'«)

+2Pt tpg~ ((a»tat, +attat+1)). (15b)

In Eq. (15) the last term, which is proportional to the
population p2~' in the excited state, arises because a
and a do not commute. It can be regarded as the
spontaneous emission term in the two-photon absorption
process. Assume that the two photon modes are in-
dependent initially. Then, as long as the photon dis-
tribution is not appreciably disturbed by the absorp-
tion, we can write

(a»'a~ate«)=(a~'a~)(attat) = (»t~)(«).

The average rate of two-photon absorption depends
on the average numbers of photons in the kth and the
1th modes. However, if k=l, one would 6nd

ct (a„)/ct I= —2P I't (p,~'—p2g') (a»ta»a»)

+4p'"P2~'(at),

tI(ak a»)/rtt 4p (Pld P2A. )(a» at: a»a»)

+4P p '(2( " .)+1) (16)

Here the absorption rate with p2~' ——0 is twice as much
as that of Eq. (15b) with k=t, since two photons in the
same mode are being absorbed simultaneously. With the
spontaneous-emission term being neglected, the average
absorption rate is now proportional to the second-order
correlation function (at,.tat, tat,,at, ), and therefore depends

' M. Goppert-Mayer, Ann. Physik 9, 273 (1931).' P. Lambropoulos, C. Kikuchi, and R. K. Osborn, Phys. Rev.
144, 1081 (1966).
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on the statistical nature of the fields. "It is two times
higher for chaotic than for coherent sources, since'

(ata'aa)„,.„,=2((ata))',
~ ~ ~0 coherent;= 8 g (17)

By carrying out similar calculations as in the single-
mode case, one would find at zero temperature

8(P a&,„ta„„)/c&t= 27 d'r
X V

X+(r) (g„(+)jv„(+)g&(—@(—&)

v= [I v I
'C(~~+~()/2t 'j (19)

assuming, for simplicity, that all fields are polarized in
the same direction. If co& ——cv&, Eq. (19)becomes

8( P a&,„ta&,„)/at= —4y d'r
X V

X+(r)(Ea(+ gs(+ Eu ga ) ~ (20)

Using Glauber's I' representation and the quasiprob-
ability distribution for the field amplitude BI„' we can
write for t= 0

(g~(+)E~(+)g~(—)g~(—))

d'8~W(8(, ) ~
8~(n, r)

~

'. (20a)

Then, if E(r)=constant, and W(8q))0, one would

have a higher initial absorption rate in the multimode
case than in the single-mode case since

Physically, a chaotic source has more irregularities in
its intensity distribution than a coherent source. In a
nonlinear response proportional to higher-order cor-
relation functions of at and u, the peaks in the irregulari-
ties are weighted more strongly than the valleys. Con-
sequently, the average nonlinear response from a source
of more irregularities appears to be greater. It must
be noted that if the absorption is appreciable, then
(a&,"a»a(ta()(t) in Eq. (15) also depends on higher-order
correlation functions of the initial field, as is seen by
iteration on Eq. (15). A similar discussion can be given
to the case where the fields contain many modes.

Assume that at each frequency there is a set of spatial
modes, and for simplicity the fields consist of only two
frequencies, ~~ and co~. The electric field at the position
r is now given by

E()=E.()+E (.),
(»)

4'+'(r) = E~( )(r) t= f(2' tt&o~)
"'P u, „*(r)a„„t.

The discussion on two-photon absorptions can be
applied with slight modification to Raman transitions
between localized states. Here, instead of two photons
being absorbed in a transition, one photon is now
emitted, while the other is absorbed. Thus, for Raman
transitions, the interaction Hamiltonian in Eq. (13)
should be changed into the form

3'.;«= Q {&)ac2;tc»E&( &(r,)E,(+) (r;)+adjoint}. (21)

In the single-mode case, the density matrix for the
photon system becomes

8pr/Bt = Pa[—(a& ta, a&,a,tp p 2ak—a,tp pa& ta,

+p»p'a& aea&a. )p)». +(aaa. aa asap» 2a& a p—»a&a.

+praka, ta&ta, )P2x'], (22)

where P~ has the same form as in Eq. (14). From the
above equation, we find the average rate of Stokes
photon generation or the pump photon absorption";

()(a,'a, )/Bt = —8(a„ta&,)/Bt

=2Pa(p)z —P2x )(a& a&a~ a8)

+2PR[(a» a»)pu. ' (a. a.)p—2A'] (23)

The first term in Eq. (23) corresponds to stimulated
Stokes emission, whereas the last term corresponds to
spontaneous emission. The latter appears as a noise
source and is responsible for the self-generation of the
Stokes field. If the pump field is of high intensity and is

not depleted appreciably in the Stokes generation, we

can treat a~ and a~~ as t." numbers in the approximation
and pr(t) = p&, (0)p, (t), where p& and p, are the density
matrices for the pump and the Stokes fields, respec-
tively. From Eq. (22), we get

aTr, [p,(t) ,ata3/a t

2'[(plA P2A )a&, ak P2A j
XTr,[p, (t)a,ta, ]+2Paa& ta&p»(0. (24)

The solution of the above equation gives

( .' .)(t)=T p (0)([T.(p.(0) .' .)+A/Bj
Xexp[B(a& t, a&,)t] A/B}, —

B(a~',a~) = [(p(~' p2~')a~'a~ p2~—'j2Pa, — (25)

A(a&t, a&) =2Paa& a&pw

By expanding exp(Bt) into power series, it is seen that

(a,ta, )(t) is a function of the r»th order correlation
functions of aI,t and a~. Therefore, the Stokes generation
must depend strongly on the statistical properties of
the pump field. In particular, for a coherent pump field

we have, assuming p~g'&&(p&. ~'—p~~')a&, a&„

( .' .)(t) = [( .'(o) .(o))+(1— '/ ')]
X exp[2'(p, „o—p,„o)(a„a„)t]—(1—p,„o/p, „o),

dr&a, (,r)~ /V) d'r
~

8&,(a,r) ~

'/V
"R.W. He]lwarth, Phys. Rev. 130, 1852 (1963).
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but foI' R c11ao'tlc pM11p 6cldq slncc

&( ")"( )")= !(( " ))",
we have

& .".)(I)=([& .'(0) .(0))+(I-.-/. ")7/
[I 2P-~(pi~' pt-~') &(yy'(tt)t]} (I—p2—~'/p)~')

Clearly, the average Stokes generation by chaotic pumps
is much more effective than that by coherent pumps.

The multimode case in Raman transitions is some-
what complicated. For simplicity, we assume a uniform
medium which 611s up the entire volume of quantiza-
tion. Assume also a set of spatial modes associated with
each frequency, or a band of frequencies with a band-
width much smaller than the Raman linewidth. Then,
if the pump 6eld is not highly depleted, wc can
show~ fol p2@ =0~

(3 Tr, [p,(t)E,(+)E,(—)7/()I

=2p~(Et(+)Et( )[Tr (p (—t)E (+)E (—))

+(&~/2) 2 l~"I']}, (26)

'Yyt=[yrlVa I)II2g(&0& & )/h] ~

assuming all fields to be polarized in the same direction.
In deriving Eq. (26), we have used the approximation

2 N,„*(r)u„(r) =S(r r'), —

Such a distribution gives

d'B)W(Bt) I By, l'"=I!&Ey(+)Ey,( ')".

Therefore, we would get

(E,(+)E,(—))(I)—[&E (+)E,(—))((j)+s]/
2p~&E~(+)E~( ))I]——s (29)

Equation (28) also leads to the conclusion that the
probability of having at least (1/E) part of the en-
sembles with a gain conc)ent 2yyy I Bt I

' larger than the
average gain 2yyt&Et(+)Ey, ( )) by a factor in% is 1—e '
=0.63) whcI'c E ls thc number of modes. Howcvcrq If
the 6eMs are nonstationary or there is phase correla-
tion between modes, the factor in% would be replaced
by a much larger value, of the order of S for full phase
correlation.

The statistical properties of the Stokes output in the
Raman transitions are dificult to describe quantita-
tively. Qualitatively, they depend strongly on the
initial statistical nature of both the pump and the
Stokes 6eld. If the pump is coherent and not appreciably
disturbed, then the statistical properties of the Stokes
output would be the same as those of a quantum
oscillator. '4 In particular, if initially there is no Stokes
input, the medium mould appear as a Stokes noise
generator.

where the summation is over modes at the frequency ~~.
This approximation is equivalent to relaxation of the
momentum matching condition in the Raman transi-
tions. "The solution of Kq. (26) gives

(E,(+)E,(—)}(rt) = [&E,(+)E (—)}(rO)+S(r)]

X&exP(2yytE„(+)Et& )t))—S(r), (27)

s(r) =(~./2) 2 l~.,(r) I'

If the quantity in the square brackets is independent of
r, then &E,(+)E,' ))(I) can be regarded as the average
Stokes intensity in the volume. Since the magnitude of
&exp(2yyyEt(+)Et( )I)) is usually larger for multimodes
than for a single mode, the average Stokes intensity
should be higher for the multimode case. In the quasi-
probability distribution, we have

&exp(2v~E"+'E" 'I)}= d'BtW(Bt) exp(2&a l Btl'I)

For stationary 6elds with large numbers of modes, '

W(B)t) =exp[—I
Bt

I
'/&Et(+)Et & ))7/yr

)(&Et(+)Et(—)) (2g)

"N. Ploembergen and Y. R. Shen, Phys. Rev. Letters 13, '720

(tw4).

III. INCOHERENT LINEAR AND NONLINEAR
SCATTEMNG

Rayleigh and Brillouin scattering are often regarded
as linear scattering processes. Nevertheless, they belong
to the class of nonlinear optics in the sense that ex-
citation al WRvcs ln 'the medium actually plRy the
equivalent role of light waves. Incoheren'. Rayleigh and
Brillouin scattering are most frequently discussed in
the classical language. " The transformation from
classical to quantum terms is, however, straightforward.

Consider scattering due to density fluctuations in
a dilute medium. The total Hamiltonian is

+0++tnt y

where Ko, given by Eq. (4), includes the coherent in-

teraction of light with the medium, and K;„~ describes
solely the incoherent part of the interaction. In first
order, with the trace taken over the atomic system,
Se; can be written as

3'-.t= —2 [Et(+)(r') y Et ' '(r')

+E..()(r;) p E.(-)(;)7, (30)

'4 J. P. Gordon& L. R. %alker, and W. H. Louisell, Phys. Rev.
130, 806 {1963).

"See, for example, L. D. Landau and E. M. Lifshitz, E/ee-
Irodynamics of Continuous Media (Pergamon Press, Inc., New
York, 1960), p. 377.
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where p is the atomic polarizability in the electric-
dipole approximation, ko is the pump mode, and k is
the mode of the scattered radiation. By assuming
running modes with

uo ——8o(1/L'eo)"' exp(ik r),

Eq. (30) takes the form

where in the Heisenberg representation

fo= —Q (2m. hell, "'oil„"'/eoL')8l, p* el o

Xexp[i(k —ko) r,],
the equation of motion is

dal, (t)/dt =ildpal, (t) (i/h)—fg*aoo(t) .

If the pump Geld is of high intensity, and is not dis-
turbed appreciably by the incoherent scattering, we
can treat a~ and a~, as c numbers. This is actually
equivalent to treating the pump field in the classical
limit. Then, Eq. (32) can be solved readily. In fact, the
problem reduces to the one of radiation by a prescribed
current distribution discussed by Glauber. ' The solu-
tion of Eq. (32) leads to the expression of an electric
field at a point x' for the scattered radiation,

E„t '(r, t)= —(1/c)BAt '(r, t)/Bt

of atoms N(r, t) is constant, the integral J'yd'r in

Eq. (33) would vanish if kook, and, consequently,
there is no scattering in the direction k&ko. Thus, in-
coherent scattering appears as a result of density
fluctuations. If we consider only one Fourier component
of the total density Quctuations,

N(r, t) =g, N, exp(iq r—iol, t),
then we obtain from Eq. (33) the 6rst-order correlation
fuIictlon

(E,.t+&(r tr) E„&-&(r,to)) = ~F(r) ~'gs'V(ao tal„)

X (N, (tg)N, (ts)*)h(ko—k+q)

Xexp[—i(»~~,)«,—t,)j
~(h,—h~q): S(k,—k~q). (3&)

For N(r, t)=constant, the scattered radiation in the
direction kWko+ko' vanishes. The Fourier transform of
(E„H & (r, tr)E„& ~(r, ts)) gives the power spectral density
of thc scRttcI'cd I'RdlRtlon. Hlghcl -ordcl col 1clRtlon
functions can also be obtained from Eq. (33), and,
hence the statistical properties of the scattered radiation
can be described completely.

It is, however, interesting to note that for this case,
an explicit expression of the density matrix for the
scattered radiation can be wntten down immediately,
following Glauber's treatment for the radiation by a
prescribed current distribution. ' If wc assume E' repre-
sentation for both the pump Geld and the density
fluctuations, such that

Xforay, (t') exp[ik —r—iol(t —t')]

+complex conjugate

((.J) (.o)")= d' of'( o)( o*)"( o)",

((N )"(N *)")= d'a ~(a )(~ )"(a ')"
(35)

The integration in the above equation can be carried then wc Gnd for thc scattered radiation
out explicitly. '6 At a point r suAiciently far from the
scattering region, the electric Geld is approximately
given by

E„&-&(r,t) =al„F(r, t) exp(iko r)

X d'r'cV(r', t) exp[i(ko —k) r'j, (33)

with

no(t) = (i/h) dt, r(rro„o,), (36)

F(r,t)= (kxip el„) x (k/~r —R~)(2gh»/e„Z. o)'ts

Xexp(ik r—iroot)

where V is the volume of interaction and R is the center
of V. The calculation now follows essentially the same
as the classical treatment. " Clearly, if the scattering
medium is uniform and stationary, so that the density

"E.Fermi, Rev. Mod. Phys. 4, 87 (1932).

5(rroo, lro) = —(2shoopo Mo /eoL )8o'p 8oo0'o.

This shows that statistical properties of the scattered
radiation are determined by those of incident radiation
and density Quctuations. Thus, measurements of
statistical properties of the scattered radiation could
yield information about the statistical properties of the
density fluctuations, if those of the incident radiation
are known. The analysis is particularly simple for
coherent incident radiation.
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Recently, the question whether intensities of scattered
radiation may be diferent for coherent and incoherent
incident radiation has arisen. "It is clear from Kq. (34)
that with our assumptions for linear incoherent scatter-
ing, the average scattering intensity is directly propor-
tional to the average number of photons in the pump
modes, and is independent of the coherent property of
the pump Geld.

The above calculation can be extended to the case of
incoherent nonlinear scattering, which has recently been
investigated by Terhune et al."Ke shall again consider
only nonlinear scattering due to density Quctuations,
in which two photons in the pump modes ko and ko'

are scattered into a single photon in the scattered mode
k. The corresponding interaction Hamiltonian can be
written as

X;„„=—P [E &+&(r;)

y&'i: Ek, &
—

&(r;) Ek, &
—

&(r,)+adjoint], (37)

where y( & is the second-order nonlinear polarizability. "
Following the same procedure as in the linear case, one
would find for the scattered radiation

E„& '(r, /) =ak, ak, F(r,i)[expi(ko+ko') Rj

d'r'1V(r', i) exp[i(ko+ko —k) rj

find the density matrix for the scattered radiation

pk(/) = d trko d rrko' d 0qPko'(oko)Pko'(oko')

&rk(t) =-
It

df &(trko, trkk~)o'o) q (4o)

F(o.'kk)&rko~, o'o) = —(87I k MkkMkk~Mk/ekoeko~ ekL )
~ A (2) A AXej, P ~ ekpekp'kp&kp'&q ~

From Kq. (39) it is seen that the scattering in-

tensity, (~E„&+i(r,t) ~'), for k&l is proportional to
(&kk,tak, )(ak, tak, ), but for k=l, it is proportional to
(ak,tak, tak, &kk, ), which from Eq. (17) is two times larger
for chaotic than for coherent fields.

In the actual experiments, the incident radiation may
contain many modes. However, as long as the diverg-
ence and the linewidth of the incident radiation are
small compared with the acceptance angle of the
photodetector and the linewidth of the scattered radia-
tion, conservation of energy and momentum as ex-
pressed in Kq. (39) can be relaxed. We therefore have
for the multimode case,

(I E-'+'(r ~) I
')=—

I
F(r) I

'(2~~1.'/k'~~ ')

X(Fk &+)jV k,
+&)Ek&—igk, &

—))(g ])
X(N,A, *)A(k,+k,'—k~q), (41)

where

Ek, & (R)=p (2rrh&oo/ek, l-')' 'a ,„kpex(ik oRk—ioIokt) .

GOPG00 Ir

X
/

exp[ik r—i(&oo+&oo')t]. (38)

If only one Fourier component of the density Quctua-
tions is taken into account, the Grst-order correlation
function of the scattered radiation is

(K..&+'(r, tk) E„& &(r,t&))= ~F(r) ~'8s'V

X (uk, tak, t&kk, ak, )p'p", *)A(ko+ ko' —k+q)
Xexp[—i(&do+too'+to, )(ii—t&)j, (39)

where F(r) is given in Kq. (38). Assuming Eq. (35) for
both the pump modes and the density Quctuations, we

T. V. George, L. Goldstein, L. Slama, and M. Yokoyama,
Phys. Rev. 137, A369 (1965); R. D. Watson and M. K. Clark,
Phys. Rev. Letters 14, 1057 (1965); R. C. C. I cite, R. S. Moore,
S. P. S. Porto, and J. E. Ripper, ibid. 14, 7 (1965); D. H. Wood-
ward, Appl. Opt. 2, 1205 (1963).

'8 R. W. Terhune, P. D. Maker, and C. M. Savage, Phys. Rev.
Letters 14, 681 (1965);P. D. Maker, in Proceedings of the Conference
on Physics of QNcntum E/ectronzcs, Puerto Rico, 1965, edited by
P. L. Kelley, B.Lax, and P. E. Tannenwald (McGraw-Hill Book
Company, Inc. , New York, 1966), p. 60.

~P J. A. Armstrong, N. Bloembergen, J. Ducuing, and P.
Pershan, Phys. Rev. 127, 1918 (1962).

and R is the center of the volume V. Then, if ko=ko',
from Eqs. (20a) and (28) we find for stationary fields, if
the number of modes is large, (Ek, &+&Ek,&+'Ek, & &8k, & &)

=2(gk, &+&Ek, &
—&)'. This shows that the scattering in-

tensity in the multimode case is two times higher than
in the single-mode case. The second-order incoherent
nonlinear scattering is closely related to the second-
order coherent scattering, which gives rise to sum-
frequency and second harmonic generation, as we shall
11ow discuss.

IV. SUM-FREQUENCY AND SECOND
HARMONIC GENERATION

The coherent sum-frequency generation can be
described by the same interaction Hamiltonian in.

Eq. (37) for incoherent nonlinear scattering. It was
shown in Sec. III that if there are no Quctuations in
the medium, scattered radiation can only appear in the
direction where the wave vectors of incident and
scattered radiation are matched. This corresponds to
coherent scattering. Thus, coherent sum-frequency
generation described by the Hamiltonian of Eq. (37)
aPPears in the direction ko+ko' —2k ~0,
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The calculation foBows essentially the same pattern
as for the case of incoherent nonlinear scattering. Again,
ln the HclsenbeI'g 1cpI'esentatl on~ thc equRtloQ of
ITlotlon lS

du)/dt= i —~&I~{t) (~—/tt) f~&I~,(t)&Ia;{t),

f = E—V(gm'A3(0«" 2&««""(o),I"/«I, «); «),I')I"
X6 p(":«I,4, . (42)

bcconMs

pa(t) = d'&Il, d'&)&),;d'P) I') 0(()&)0)I'«0 ((I~0 )I'I {p))

X I~k+P~&( ~+P) I, (46a)

@which, in the case of second-harmonic generation,
I'cduccs to

t))(t)= d «()od (IaoI)0((I~0)I»0 («&)0)

D(~a) =exPC (II&I~'—&~ o~~

XD(~~)t.(0)D '(~a),

t

nl= — dt fk«&)0&)&)«' &

A

where f). is given in Eq. (42) and I' representation is
assumed fol tlM pump 6elds,

p«, = d'~~go, ((II,) I ~~,)&a~, l,

p)„= d' ~, &~, (~~, ) I ~~, )&~), I

Here, ere have assumed a uniform medium in a volume
V. For intense pump 6elds, @which have not yet been
depleted appreciably by the sum-frequency generation. ,
e&0 and ah, o. can be treated as constant c numbers. Then,
Eq. (42) yields

(I),(t) = Lc1(0)—{t/@)f~o~,o~;t$ exp(—12~«t) (43)

From Fqs. (42} and {43), we find the average rate of
sum-frequency generation;

d(a),t&I») (t)/dt
= (I'/tt) p) *&o~,'&ta, '&I) &(0) f~(&I) '—&Ia,&I);&(o)$

+(-,t/~)r: f.*&".t".t"&(0)+f.&"t".".&(0}j

+(2 I f), l
't'/@') &~~,'o~, '&Ir„(I)„&(0), (44)

which can readily be integrated. Equation (44) shows
that for k&)

——ko', corresponding to second-harmonic
generation, thc avcragc rate of geDeration depends on
the initial statistical properties of the pump and the
second-harmonic «lds. In particular, if &al(0) )=0, this
rate is proportional to the second-order correlation
function (aq,ta~,to~,u)„)(0), and is therefore two times
higher for a chaotic than for a coherent pump jj.eld.

Corresponding to the Hamiltonian of Eq. (37) with

CIs0 Rnd g@0» tlcRtcd as c numbers& thc deQslty Dlatllx
for tlM sum-frequency Geld ls

t)~(t) = d'~~, d'Pd'1, (a~,)PI{p&)

X I ~)+P) )(&I~+P),I, (46b)

with us=(I/tt} J&)'dt f)»x).,'. The above expressions
lead to the following results. (I) For coherent pump
«lds, if IP.&= I0&, the generated sum-«equency «ld
is also coherent; but if IP&)W IO), the sum-frequency
output has the same distribution function I'I, as the
input with t)),(t) =J' d' PPI1( p)) Ia),+p),&(&«),gpss. I. (2) If
I P)t;}= I 0), the sum-frequency output reflects the
statistics of the pump fields. (3) In general, the sum-
frequency output has the composite statlstlcal prop-
erties of the pump 6elds and the sum-frequency in-
put. Clearly, measurements of the statistics of thc
sum-frequency or second-harmonic output could yield
information about the statistics of the pump 6elds.
For example, if IP),&= I0), the nth-order correlation
function of tlM second hRrIQODlcs ls px'opoltlonRl to
the 2nth-order correlation function of the fundamental.

The discussion can easily be extended to the mul-
timode case. As discussed in the case of incoherent
scattering, if the energy and momentum matching
condition is relaxed, Eq. (44) gives

d«""'&"-'&(;t)/«=(/~)l g.'&~.,& )~~.& )~„&-)}(;0)
a(E) (+)E~ ( )E) ( ))(r 0)$+(&«It/t»)

XLg~'&&u &+)F& &+)Z,&-))(r 0)
+g « "'&"'-'&"'-'&('0n+(2lg.

l t /~)
&+)g (+)g, (—)g, &

—))( 0)
ga= —EV(2s A&«pit'/«), I~'I,')gl, p&2) @«, ,

where +k (» t) has the saIlie explessloli as ill Eq. (4i).
~gain& for ~o=4, If &K(0)}=0, the average rste of
second-harmonic generation is usually higher for
multlmodc thaD fol single-mode pump 6clds~ slQcc
&EI,&+)E)„&+)EI,& )Ek, &-)& has a larger value in the
former CRsc. For stationary 6clds, thclc ls a I'Rtlo of 2
in the rates of second-harmonic generation for the two
cases. '«The density matrix given in Eq. (46) can also
easily bc generalized to multimodes.

Thc above dlscussloD ls vRlld Rs long Rs thclc ls no
RpplcclRblc dcplctlon of punlp power by sum-frequency
generation. For the more general case, the mathematics
becomes much more complicated, since the reaction
of thc sum-frequency 6cld on the pump Gelds must be

If.,.t.iiy ~.(0)=Jd P.I'.{P.)ip.&&p.l, the Eq (4»
"J. Ducuing a,nd N. IBIoembergen, Phys. Rev. 133, A1493

(j.wc).
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taken into account. The sum-frequency generation now
depends on higher-order correlation functions of the
initial pump fields. The output is no longer coherent
even if the initial pump 6elds are coherent. Ducuing
and Armstrong" have discussed the statistical aspects
of second-harmonic generation with high conversion
using the classical approach. A corresponding quantum-
statistical discussion would be extremely difficult, if
the noncommutability of the operators a and at is to
be taken into account.

V. PARAMETRIC AMPLIFICATION

One of the most important subjects in nonlinear
optics is parametric amplification. It is not only because
the parametric ampli6cation may lead to tunable
oscillators at light frequencies, "but because in a broader
sense, it also describes such important nonlinear proc-
esses as stimulated Raman and Brillouin scattering by
elementary excitations. " In the latter cases, the idler
photon mode is replaced by the mode of elementary
excitations. The calculations remain the same if the
elementary excitations are bosons.

The statistical properties of a parametric amplifier
have been discussed in detail by Gordon eI, at. '4 How-
ever, they have assumed a constant field strength for
the pump mode. From our discussion in the previous
sections, we expect that the statistics of the pump field
should inhuence the statistical output of the amplifier.
Their results are valid only when the pump field is in a
coherent state. In the following, we shall follow their
calculations, but take into account the statistical prop-
erties of the pump 6eld.

The interaction Hamiltonian for parametric am-
plification is also the same as in Eq. (37).

g [E &+&(r,.) p&»: F,&-&(r;)

X Ez& &(r;)+adjoint7. (48)

Here, however, the coherent scattering process is to
destroy a photon in the pump mode p, and to create one

photon in the signal mode s and another in the idler
mode I, with ce„=co,+err and k„=k,+kr. The Heisen-

berg equations of motion are

da, /dt = uo, a, (t) i&ca&(t)—azr (f), —
daz'/«= c~.a"(I) ~~*a'(Z—)a.(Z) (49)

where

&c = 7&7V(87r'&ce~cd.—cdr/er e.erL') '& 'er p "&*:e,er

2' J. Ducuing and J. A. Armstrong, in Proceedings of the Third
Quantum Electronics Conference, Pa~is, D63, edited by P. Grivet
and N. Bloembergen, (Columbia University Press, New York,
1964), p. 1643."J.A. Giordmaine and R. C. Miller, Phys. Rev. I.etters 14,
973 (1965)."Y. R. Shen and N. Bloembergen, Phys. Rev. 143, 372 (1966).

'4 J. P. Gordon, W. H. Louisell, and L. R. Walker, Phys. Rev.
129, 481 (1963). See also W. H. Louisell, Radiation and Noise in
Quantum Electronics (McGraw-Hill Book Company, Inc. , New
York, 1964).

If the pump 6eld is of high intensity, and has not been
depleted appreciably by the parametric process, then
a~(t) =a~(0) exp( —ia&„I), where a~(0) and a~t(0) can
be regarded as c numbers. Then the solution of Kq.
(49) is

a, (t) = (a, (0) cosh(
I

&c
I (a~ra„) 'I't7

+[a.a,/I. I (a,ta„)r&27az(0)

Xsinh[l &cl (a~ta )'~'t7} exp(—ceo,t),
ar(t) = (az(0) cosh[

I
«

I (a, a,)"'t7
+[Ma./I ~l (a.'a.)"'7a.(o)
Xsinh[l &&I

(a~ra )'&'t7} exp( —i&crt), (50)

&a,'a, )(t) =Trp„(0)((a, a,)(0) cosh'[l&cl (a,ta,)»'t7
+ (&aztar) (0)+1)+sinh'[

I
&c

I (a.'a, ) & t7

+i[&ca,&a, ar )(0)/I&el(a„ta„)'"—&&*a„t&a,az)(0)/
l&cl(a~ra )'"7-,' sinh2[l&cl(a ta )"'t7}, (51)

with a similar expression for &aztaz)(t). Equation (51)
shows that the output signal in the parametric amplifica-
tion depends on the initial statistical properties of the
pump field. Assume (a,ar)(0) =0. Then, for a coherent
pump field, we have

&a.'a )(I)= l[& .' .)(o)—&a 'a )(o)-17
+l[& .' .)(0)+( " )(0)+17

Xcosh[2I&cl &(a~ra )' ')/7 (52)

but for a chaotic pump field, since

&(a,'a„) )=rz!(a„'a„)",

we have

&.,t.,)(~)=-;[&.,t.,)(0)-&.,I;)(0)-17
+-', [(u.ta, )(0)+(ar tuz) (0)+17

X p [rr!/(2n)!7(2 I
&c

I z) '"&a,ta„)r . (53)
n=o

It is clear from the above expressions that the signal
output is much larger for chaotic than for coherent
pump fields.

For the multimode case, if the energy and momentum
matching condition can be relaxed, as discussed in the
previous sections, the calculations follow essentially
the same as in the single-mode case with u replaced by
E& &(r, t), and &c in Eq. (49) by

cc'= NV(2rr/L')(co, —coz/e. ez)' 'e, p "*:e,er. (54)

The result is

&E,&+&E,&
—

&)(r z)= Trp (0)(&E &+&E &
—

&)(r P)

Xcosh'[I «'I (E~&+&E &
—&)'&'I7+(Ez&—

&Ez&+&)(r,p)

xs hLI. I(E„&+&E,&-&) 'I7}, (ss)

assuming (E,& 'Ez&—
&)(r,p) =0. Again, the output signal

is usually larger for multimode than for single-mode
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pump 6elds. For stationary 6elds with many modes,
we have

&g (+)g (—))(r ()—z[(jV, (+)+,(—&)(r 0)

&gz(
—)gz(+))(r 0)j+~ [&g,(+)g, (-))(r 0)

Substitution of X,(y, z) in Eq. (58) gives

~.(-.,~) = d'-n~n(-n)(1/-&-. &)

+(Eq& &Ez&+~&(r,0)]P [zz!/(2')!j(2~'t)'"
where

(zz, )(t) = sinh'[I an, I tg.

X&g„(+)g„(—)&~(r 0) (56)

In principle, all higher-order correlation functi'ons

of the signal and the idler fields can be obtained from
Eq. (50). However, to describe the statistical properties
of fields, an explicit expression of the density matrix
for the 6elds is usually of great interest. For the case
of parametric ampli6cation, the density matrices

p, (t)=Trzp, ,z(t) and pz(t)=Tr, p„z(t) for the signal and
the idler fields can be obtained through the use of the
characteristic functions, "which are dehned as"

X.(v, &) =Tr. ,z(z. .z(&) exp[van '(0)1 exp[—~*a.(o)j}
=Tr, z(p. (0)pz(0) exp[ma, '(t)$

)&exp[—y~a, (t)]}, (57)

Xz(v, &) =Tr z(z.(0)pz(0) emh~zt(~)3
Xexp[—y*az(t) ]}.

Explicit expressions of X, and Xq can be found by sub-
stituting into Eq. (57) the expressions of a, (/) and

az(t) in Eq. (50) and the known initial distribution p, (0)
and pz(0). '4 Here, a„t and a„are treated as c numbers.

Then, the characteristic functions lead to the density
matrices in the E representation, "

p, (i)= Trzp, ,z(t) = d'n, P, (n„t) I
n, &&n, I,

If the pump 6eld is coherent, this corresponds to a
Gaussian probability distribution for a chaotic field
with an average number of photons (n,&.

'4 Thus,
with no input to the amplifier, the parametric ampli6er
acts as a noise oscillator. Characteristic functions for
various input conditions have been obtained by Gordon
e$ al.24

More generally, we should also consider the loss in the
modes due to absorption. However, in the 6rst approxi-
mation, we can simply take su, and &oz in Eq. (49) as
complex quantities. The mathematics is straightfor-
ward, and will not be reproduced here. The above
discussion ls VRlld as long Rs thc pump 6cld is not
appreciably di&turbed. The general calculations, taking
into account the reaction of the parametric process on
the pump 6eld, becomes extremely complicated.

VI. CONCLUSION

Nonlinear optical effects often depend on the statisti-
cal properties of the 6elds present. The rate of nonlinear
absorption, emission, and amplification is higher for
chaotic than for coherent, and higher for multimode
than for single-mode pump 6elds. The statistics of the
fields generated in the nonlinear effects is a partial
function of the statistics of the pump 6elds. Measure-
ments of the statistics of the output 6elds may yield
information about the statistics of the input fields, and
the statistical properties of the medium.

X(p, t) exp(n, y*—n, *y)d'y/x'
I u„), (58)

with a similar equation for pz(t). As an example, con-
sider the case where initially both the signal and the
idler modes are in the vacuum state.

z.(0)= Io.&&o. I pz(0) =
I oz&&ozl.

From Eqs. (50) and (57), the characteristic function X,
1S

X (»~&=e~(-:I~l'(«sh'[I l(o'o.)"'~3
+sinh'[I ~I (tz„tu )"'tj—1)}. (59)

"R. Glauber, in Proceedings of Conference on Physics oj'QNgn&gm

E/ectronjcs, &65, edited by P. I. Kelley, B. I ax, and P. E.
Tannenwald (McGraw-Hill Book Company, Inc. , New York,
1966},p. '?88.

APPENDIX

Classically, a cavity problem of coherent scattering
can usually be converted to a corresponding steady-
state propagation problem by simply replacing t by—s/c in the field amplitudes, where s is the direction of
propagation. It is expected that the same is true in
the quantum treatment. This can be realized by using
a localized momentum operator instead of the Hamil-
tonian operator.

For steady-state propagation, the field amplitudes at
6xcd spatial polilts remain unchanged. The vector
potential for a plane wave propagating in the s direction
can be written as

p(— &)+t '() p(' «)},

A(s) =b(s) exp(its), (A1)

Lb~(s) bz, '(s)j=4~



QUANTUM STATISTICS OF NONLI NEAR OPTICS

For free fields, &Is{s)=a&, exp(sks) H. ere, we have defined
localized annihilation and creation. operators b(s) and
IV(s) liii(iei' tile asslliilptioii 'tllat ((bit) (bs)") does ilo't

vary much in a distance d large compared with the w ave-
length. We also assume that k=2'-&s/d, where &s is an
integer. Thus, the corresponding localized photon
DuInbcl opcx'RtoI' ls

tI(s) = ((ht/I ') 2 k"(s)k~(s)

where Q, is the cross-sectional area of the beam, and I.'
is the volume of quantization. Ke can also define a
locRllzcd IIlomcDtuID opclRtoI',

(P(so, t) =SR(so, t)/c

I 3 gO+d/2

=s— H(s, t)ds,
gO-d/2

(A3)

everywhere iii 'tlie volliine I . Therefore, +(so, t)
has the same form as given for the various cases dis-
cussed in this paper, but with bs(so) and b&t(so) replacing
uI, and c/, t, assuming that the mcdiun1 has a uniform
density E(so), which fills the entire quantization volume
foI' fI'cc 6clds)

(P(s, t) =z P kkLb&, &(s)bi, (z)+-,' j.
The momentum operator acts as a translation

OPCI'RtoX':

@(s)/«= (—1/tk) Llt (s) (p(s))

dE( &(s)/ds= (—I/i7i)LE(—
&(s),(P(s)]. (A4)

Thus, for example, in the case of sum-frequency genera-
tion, Eq. (A4) yields

dEs( &(s)/ds
—ikEg( '(—s) =iT27r(os/(;e(s) j
X&(s)se. I&"):s»,4, E&,(s)Eso (s) (AS)

"L.Mendel, Phys. Rev. 144, 1071 0966).

wliei'e P(s, t) is tlie Haiiiil'toiiiaii density, a&id X(so,t) is
the Hamiltonian corresponding to a system which has
the same Hamiltonian density

gO+d/2

(1/d)

%'hrch Rgx'ccs %'1th thc corrcspondlIig classlcR1 cquRtlon.
According to Eq. (A4), the unitary translation operator
lS

U(s,so) = exp (s/k) (P(s)ds
gO +

Here, the space-ordered product { )+ has the similar
definition as the time-ordered product. Field operators
Rt different spRtlRl points Rlc coIlIlcctcd by this unltRI'y
OPCI'RtOI".

E(s,t) = U '(s,so)E(so, t) U{s,so). {A/)

We can Dow define a localized density matrix operator,

,(.)= U(.,O),{O)U- (.,O), {Ag)

assuming fx'cc spRcc foI' 8+0. Thc11 tlM correlation func-
tion of 6clds Rt different tlnics ls glvcn by

{E(+)(sti). . .E(+)(s t„)E(-)(st„).. .E(-)(s ti))
=Trg(O)E(+&(s t,)".E(+&(s t.)E(-&(s t.)

y. . .E(-)(s «,)j
=Trt p(s)E(+&(O, ti) . .E(+'(O,t„)E(-&(O,t„)

X . E( &(O,ti)]. (A9)

The equation of motion for the density matrix p(s) is

~p/~s=( —1/s@)L(P(s) p(s)3 (A1o)

With the help of these localized operators, the calcu-
1Rtlons fol steady-state propagation ln R medium be-
come exactly the same as the corresponding calculations
for a cavity with t replaced by —s/c.

Physically, the density matrix p(s) describes an
ensemble of photon systems which has all the statistical
properties of 6elds at z. If a photon system is taken as
the section of the light beam emerged from the plane
at s in a time T, where T can be the counting time of
photodetectors, ' then p(s) actually describes an en-
semble of such photon systems. This is the ensemble we
measure ln cxpcl lments.

The problem of beam splitting has been deliberately
avoided 111 this papcI'. It lcqullcs some modification of
our formalism. Qualitatively, the split beams would
have different statistical properties than the unpslit
beam, and they are coxrelated with each other. The
equivalent problem ln thc CRvlty case collcsponds to
the splitting of the photon ensemble with time.


