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the spring and dashpot people call a standard linear
solid.

In the limit r, ~ 0, r, ' exp( 1—/r, ) can be considered
as a representation of 8(t) in the sense

by a well-known property of Laplace transform theory.
Therefore as v, ~ 0, the model approaches ordinary
viscosity.

The relaxation function (A8) modifies the expres-
sions (4.5) and (4.6) for the transverse and longi-
tudinal attenuations by multiplying them by a factor
(1+tosr s)—i
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The results of numerical calculations of the temperature dependence of the width and position of the
fundamental lattice-vibration absorption peak in NaCl and LiF are presented. The calculations are carried
out in the high-temperature limit, on the basis of the Hardy-Karo deformation dipole model of these crys-
tals. Cubic and quartic anharmonic terms are retained in the crystal Hamiltonian, but the approximation
of neglecting the anharmonicity of the Coulomb forces has been made. The expressions for the Fourier-trans-
formed anharmonic force constants have been approximated and simplified by a method suggested by
Peierls. The results of the calculations show that the quartic anharmonic terms in the crystal potential
energy make a contribution to the width of the fundamental absorption peak which is comparable in magni-
tude with the contribution from the cubic anharmonic terms, in agreement with the theoretical arguments of
Gurevich and Ipatova. Since the quartic anharmonic contribution to the width is proportional to the square
of the absolute temperature at high temperatures, these results provide an explanation for the experimental
observations that the width increases with a power of the absolute temperature which is intermediate be-
tween the first and the second. Quantitatively, the theoretical results are in quite good agreement with the
experimental data of Heilmann for the variation with temperature of the width of the fundamental absorp-
tion peak in LiF. In the case of NaCl, the agreement between theory and experiment is somewhat poorer, but
the theoretical values are still within a factor of about 2 of the experimental values of Hass. The frequency
dependence of the imaginary part of the dielectric constant of these two crystals has also been calculated,
and is compared with experimental data.

1. INTRODUCTION
" 'N the first part of this series' a formal expression
~ - for the imaginary part of the dielectric constant of
an ionic crystal of the rocksalt structure was derived.
It has the form

4s e' M++M
es(~) =

2~,r, (~)
X (1.1)

Lro' —1) ' (o~)j'+ 4' isr P (co)

*This research was partially supported by the Air Force Once
of Scientific Research, Ofhce of Aerospace Research, U. S. Air
Force, under AFOSR Grant No. 1080-66.

' I. P. Ipatova, A. A. Maradudin, and R. F. Wallis, Fiz. Tverd.

In this expression e is the first-order dipole-moment
expansion coefFicient, V, is the volume of a primitive
unit cell, and M+ and M are the masses of the positive
and negative ions, respectively. The frequency of the
incident light is denoted by co, and cv & is the frequency of
the transverse optical modes of infinite wavelength.
Explicit expressions for the renormalized frequency
Qi(ro) and the damping constant ri(&e) were obtained
to second order in the cubic and quartic anharmonic
force constants in I. It was shown there as well that the
COefriCient (4rre'/V, ) (M++M )/M+M Can be identi-
fied with (es—e„)o~s',where es and e„arethe static and

Tela 8, 1064 (1966) [English transl. : Soviet Phys. —Solid State
8, 850 (1966)j.This paper will be referred to as I, and all refer-
ences to equations from this paper will be prefixed by I.
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high-frequency dielectric constants of the crystal,
respectively, while coo is the solution of the equation
&vs=Q, (&os), and is close to &o&.

It is assumed in what follows that the reader is
familiar with the contents of I. In the present paper we
present the results of numerical calculations of the
imaginary part of the dielectric constant (1.1) for NaCl
and LiF. The principal motivation for the present calcu-
lations was a recent paper by Gurevich and Ipatova. '
In this work largely qualitative arguments were pre-
sented to explain how the quartic anharmonic contribu-
tion to the width of the fundamental lattice absorption
peak I =27&(&0&)g can be comparable to the cubic con-
tribution, so that in the high-temperature limit the
width is essentially proportional to the square of the
absolute temperature, as is observed experimentally. '4
The present calculations were undertaken to con6rm or
disprove the theoretical arguments of Gurevich and
Ipatova.

Numerical calculations of the quartic anharmonic
contribution to the absorption spectra of LiF and Mgo
have been carried out by Mitskevich. ' Because of the
complexity of the expressions which have to be evalu-
ated in such calculations, Mitskevich was forced to
make rather gross approximations whose consequences
it is not easy to assess. Nevertheless, his numerical
results for LiF, if anything, give support to the argu-
ments of Gurevich and Ipatova. Still, in the absence of
detailed numerical calculations of the cubic and quartic
contributions to the width of the fundamental absorp-
tion peak, such conclusions at best can have only a
speculative character. In this paper, and in the third
paper of this series, we present the results of such
numerical calculations.

The principal source of difhculty in carrying
out these calculations is the complicated forms of
the Fourier transformed anharrnonic force constants
(V(kr jt,' ksjs', . ,

' k,j,)) which appear in the expres-
sions for the functions Q&(&o) and F&(&d). Because of the
complexity of the expressions for these coeKcients and
the computational difhculties to which it leads, it seemed
to us to be desirable to determine the extent to which
results for Q&(&o) and 1'&(&o) obtained on the basis of a
simple approximation to the Fourier transformed
anharmonic force constants reproduce the results of
an exact calculation. In the present paper we describe
a method for obtaining approximate expressions for the

{V(kr jr, ksjs, , k,j,)) and present the results of
numerical calculations of Q&(&u), F&(&v), and es(&o) based
on them. In the next paper in this series we will

describe the much more dificult calculations of these
functions based on the exact expressions for the

I. E. Gurevich and I. P. Ipatova, Zh. Eksperim. i Teor.
Fiz. 45, 231 (1963) LEnglish transl. : Soviet Phys. —JETP 18, 162
(1964)].

3 G. Heilmann, Z. Physik 152, 368 (1958).
4 M. Bass, Phys. Rev. 117, 1497 (1960).' V. V. Mitskevich, Fiz. Tverd. Tela 4, 3035 (1962) LEnglish

transl. : Soviet Phys. —Solid State 4, 2224 (1963)].

(V(krjr, ksj,;;k,j,)). ComParisons between the
approximate and exact results will be given there.

ne'/re'= 6 (a/p)e r0'&' (2.1)

The values of the third and fourth derivatives of the
Coulomb energy and of the repulsive energy are

6ne'
3rd derivatives

ro

—6a 1 0!e
e
—rp(p

p
3 p2 r02

4th derivatives
—24ne'

ro

6a 1 0!e
e
—rptp

P p ro
(2 2)

The ratios of the magnitudes of the corresponding
derivatives of the repulsive energy to the derivatives of
the Coulomb energy are (res/6p') and (rs'/24p'),
respectively. Since ro/p is of the order of 8 for the
alkali halides, we see from these results that the con-
tribution from the repulsive energy dominates the
Coulomb contribution in calculations of higher deriva-
tives of the potential energy.

If we denote the potential energy of interaction be-
tween a pair of ions ~ and I(.

" situated a distance r apart
by &t„„(r),then the Fourier transformed atomic force
constants for an ionic crystal in the central force
approximation can be written as

1. 1 h
V(kt jr, . , k,j,)=—— (~ (kt) ~.(k.)) '"

2s! 2X

y, ... ,(l»; l'«') U, (kr jr, 1K
' l «')

LEr ger n]. ~ ~ a&t

X XU, (kj;/«;1'«'), (2.3)

2. THE ANHARMONIC FORCE CONSTANTS

In the lattice-dynamical model of alkali-halide crys-
tals which underlies the numerical calculations of the
imaginary part of the dielectric constant carried out in
this paper, the short-range repulsive forces are assumed
to be of the central-force type and to act only between
ions which are nearest neighbors.

In our work we make the approximation of neglecting
the anharmonicity of the Coulomb forces, and retain
only the anharmonicity of the short-range repulsive
forces. A rough justi6cation for this approximation is
the following argument. The short-range repulsive in-
teraction can be taken to be of the form ae—"p'p, where

ro is the nearest-neighbor separation. The total Coulomb
energy per ion is nes/rs, whe—re n is the Madelung
constant, 1.7476, and the total repulsive energy per
ion is 6' ""p. The value of ro is determined from the
equilibrium condition
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where

4 cKj, ~ (fK j l K ) 4 ~K (r)
l r=[x(lx)—x(l'~')~

~++I

w. (.lkg)
U (ky; lx; lY) = e'"~'&'"&

(M )"'
w, (x'

l
kj)

~2m& x(l'g')

(M, ) i /2

(2.4)

(2.5)

in crystals of the NaCl type. We see from these results
that in this case V(kiji, k&j2, k3j3) is purely imaginary,
while V(kiji, k2j2', k3j3,'k4j4) is real. It also follows

that V(0j; kj', —kj') vanishes, irrespective of whether

j refers to an acoustic or to an optical branch.
We have discussed the properties of the V coefficients

in some detail because these properties provide the
basis for simple approximate expressions for them.
We follow Peierls' in using these properties to rewrite

V(ki ji, , k,j,) in the form

The notation employed in writing these equations is
that of I. The prime on the sums on the right side of
Eq. (2.3) denotes that the terms with (lx)= (lY) are
to be omitted.

A general property of the Fourier transformed
atomic force constants is that they are completely
symmetric in the indices (k,j,).Because p „...,, (lx;lY)
depends on 1 and l' only through their difference, it
follows that V (kiji, , k,j,) vanishes unless the sum

of the wave vectors appearing in its argument equals
a translation vector of the reciprocal lattice. We note
further that V(kiji, , k,j,) vanishes if we set k;
equal to zero and the corresponding j; refers to an
acoustic branch. This is because w (~lOj)/(M„)'" is
independent of ~ for an acoustic branch, ' so that
U (0j; f»; lY) vanishes. In fact, it can be seen from Eq.
(2.5) that in the limit as k —+0 U (kj; la; tV) is of
0(k), when j refers to an acoustic branch. On the other
hand, U (0j; la; lY) does not vanish when j
refers to an optical branch, because in this case
(M+)'"w. (+lOg)= —(M )'"w (—lOj) ' The depend-
ence of V(ki ji, , k,j,) on a particular wave vector
k; in the limit as k;~0 is therefore of the form

k;/leo, , (k,)]'" when j, refers to an acoustic branch,
and is of the form const/l &u, ,(k;)]'" when j; refers to
an optical branch. In either case the dependence on k;
is that of the function Lcm, , (k;)]'"in the long-wavelength
limit.

In the present paper we will be interested only
in the cubic and quartic anharmonic coefficients,
V(k,j„k,j, ;k,j,) and V(k,j„k,j,;k,ja, k4j4), re-

spectively. In addition to the properties discussed above,
these coefficients have the additional properties:

V (kiji, kgj„k,j,) = V (—k,j„—k,j, ;
—k,j3)

= —V(—kiji, —k,j2, —k3j3), (2.6a)

V(k,j, ; k,j, ; k,j„k4j,)
= V*(—kiji; —k2j~; —k3j3, k3j4)—
= V(—k,ji, —k,j„—k,j3, —k4j4), (2.6b)

where the last equality in each case follows from the
fact that every ion is at a center of inversion symmetry

0 A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory
of Lattice Dynamics in the IIurmonic Approximation (Academic
Press Inc. , New York, 1963), p. 14.

11
V(ki ji, , k,j,) =—— XA(k&+ +k,)

2s~ 2X

XLo&,, (k&) a&;,, (k,)]'i'C(k&ji, , k,j,), (2.7)

where h(k) =1 if k is a reciprocal lattice vector, and
vanishes otherwise. Having extracted the factor
Lco;, (ki) ~ cu, , (k,)]'", we expect the new coefficients

C(kiji, ,
' k,j,) to have constant order of magnitude

for all values of their arguments. l
This cannot be

strictly correct since we must have C(0j;kj'; —kj') =0
when j is an optical branch. ]

If in fact the coefficients C(0j; kiji, —kij2) l' and

lC(0j; kiji, k&j&, k&ga) l, required in the calculation of

A, (~)=LQP(~) —coP]/2'& and I', (co) [given by Eqs.
(I3.10) and (I3.11)], are slowly varying functions of
their arguments, as a first approximation it is reasonable
to replace them by constants which we denote by l

Cal'
and

l C4l, respectively. With this approximation I', (~)
takes the simple form in the high-temperature limit

(fe,T)' 1
~~;(0) l

C4l'—P P a(k,+k,+k,)
384 g klk2k3 +jl+j2+j3

X&(~+~i+~s+~a), (2.3)

where k~ is the Boltzmann's constant. At the same
time, the expression for A, (cu) can be written as

(2.9)

where 8; is the frequency-independent part of A, (cv),

kggT 1
~;(0)—P C(0j; 0j; —kiji, kiji)

8 S»jl

(ka T)' 1
~;(0)—g p C(0j; Oj; —kiji, kij2)

64 S klk3 jlj2j3

XC(kiji, —ki jm, k,j, ; —kaj&), (2.10a)

'R. E. Peierls, QNuntgm Theory of Solids {Oxford University
Press, Oxford, England, 1956), p. 38.
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and Z, (cp) is the frequency-dependent part,

~;(cp) =—kg) T 1 cps+cpp. , (0) IC, I
—p

48 S & +21+52 (cp+cpr+cpp)p

(ka T)' 1
;(0) ( C, (

—P g ~(k,+k,yk, )
384 g kIk2kg 6jI+j2+j3

cpx+cpp+cpp
X

CO m~ CO2 Or3

(2.10b)

In writing Eqs. (2.8) and (2.10b) we have used
the notation cd;„(k~)—=cp~, and the convention that
cp, (k) = —cp, (k). In what follows the various contribu-
tions to I', (cv), 6,, and 5;(cp) will be distinguished by a
superscript denoting their order in the dimensionless
order parameter g introduced in Eq. (I3.3).The evalua-
tion of the two terms on the right side of Eq. (2.10a)
will be discussed below.

The primes on the first sums on the right of each of
Eqs. (2.8) and (2.10b) mean that the terms with

~ jr~ =
~ jp~ are excluded. This restriction follows from

the fact that C(0j; kr j&,. —k&j&) vanishes for the kinds
of crystals we are studying.

It follows from Eqs. (2.8) and (2.10b) that Z, (cp)

and I', (cp) are related by

1 " I';(cp')
6&(cp) =— dcp

il

(2 11)

This result is more general than the present analysis
would indicate, and will be of use in determining Z, (cp).

It should be remarked that in their paper Gurevich
and Ipatova' gave approximate expressions for the two
contributions to I', (cp) which diRer from those given by
Eq. (2.9) by the presence of factors of [cd,, (k&)cp, , (k&)] '
snd [cp„(k&)cp,, (k&)cp;, (kp)] ' in the summands of the

two expressions, respectively. It is felt that the present
method of approximating the Fourier-transformed
anharmonic force constants is more correct.

To determine the constants
~
Cp

~

' and
~
C4

~

' we have
proceeded in the following way. Comparing Eqs. (2.3)
and (2.7) we obtain the result

., (lcc; 1 lc') U, (k&j&, lcc; lV)
l l KK ctI ~ ~ exp

X U.,(k,j„l',t'. ') =ÃS(k,+" +1,)
Xcp;, (k&) cp;, (k,)c(k&j&, . , k.j,). (2.12)

Onthebasisoftheassumptionthat ~C(0j;k&jr, —krjp) ~'

and
~
C(0j; k&j&, k,j&, kpjp)

~

are essentially constant,
if we square the modulus of both sides of the equations
defining these coeRicients, Eqs. (2.12), and sum them
over the free variables, we obtain, for example,

/'cp'(0) ~Cp~'P P'M '(k, )cp '(k,)
k1 j1j2

4.p, (lcc; l'~')
kl $1/2 «KK &PV ~1~1 K1K1 &1P1'Yl

Xp,p, ~,(lrccg, lr'ccrc') U (0j;llc; l cc') U„,*(0j;lglcr, Vccr')

X Up(kg jg, lcc; l'Ic') Up, *(k&j &, l&Icr, l&'cc&')

XU, (—k jr,pie;l' cc) U„(—k&jQ lglcg lrccr) (2.13)

with an analogous equation for ~C4~'. Although in the
sum on the left side of this equation we have explicitly
omitted the terms with j&=j2, it is not necessary to do
so on the right side, because such terms are identically
zero and contribute nothing to the sum. The sums on the
right hand side of this equation can be evaluated
analytically if we assume that the short-range repulsive
forces act only between nearest-neighbor ions. After
some rather tedious calculations, we obtain the results

16 M++M
[r 'B'+6rp'BC+15r 'C']

cd/(0)Sp' M+'M '

4 (Mp+M )' 1 M~'+M '
[4rpPAP+ 24r p4A (2rpPB+3C)+ 60 (4rp4BP+ 12rpPBC+9CP) ]

cd (0)S4 M+'M ' M~M Mp+ M

(2.14)

+3[2rp'A'+12rp A (2rPB+C)+6(16rp'B'+20rp'BC+15C')], (2.15)

where

A =—e"(")—V'" ( o)+—ct
"(")—~'(")

'Ir
p fp tp 2

Pp
3

(2.16a)

(2.16b)

1 1
C=—4" (rp) —

ct '(rp)
tp 2 fp

(2.16c)

B=—4" (ro) ——
ct (ro)+ 4(ro)—

t'p 3 ~o 7 p
2

' J.J.J.Kokkedee, Phys. Letters 4, 78 (1963);A. A. Maradudin,
Westinghouse Research Laboratories Scienti6c Paper No. 63-129-
103-P3, 1963 (unpublished) . and we have set P+ (rp)=P y(rp)=ct(rp). The sums
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$3' and S4 are defined by
0.16

(2.17a) O. I 4

1
54———P P h(kg+kp+kp)

g kIk2k3 j1j2j3

Xpp, P (ki)pp;, '(kp)o&;, '(kp) . (2.17b)

The prime on the sum S3' means that the terms with

j=j' are omitted. The phonon branch index j appearing
in the expressions for ~Cp~' and ~C4~' given by Eqs.
(2.14) and (2.15) in all that follows refers to either of
the two degenerate transverse optical branches.

We return now to the frequency-independent part
of 6;(&p) which is given by Eq. (2.10a). In the ap-
proximation of regarding C(pj; Oj; —k&jz, k&jz) and
C (Oj; Oj; —k,j, ; k,j,)C(k,j„—k,j,; k,j„—k,j,)
constants C4' and

~

C4"
~

' which are independent of their
arguments, Eq. (2.10a) takes the form

6,= pek~T(v, (0)C4' (27/8) (k&T)—'(u (0) (
C4"

~

'. (2.18)

We can obtain approximate expressions for C4' and

~

C4" ~' in the same way that the expressions (2.14) and
(2.15) for ~Cp~' and ~C4~', respectively, were obtained.
In this way we 6nd

2 1 (1 1)'
+

3 pp,'(0)pp(3f+ M )
XLrp4A+10rp'8+15Cj, (2.19a)

O. I 2

0. I 0

0 0.08
I—

L 006
x

(p 004

0.02

0.2 0.4 0.6 0.8 I.O I.2 I.4 I.6 I.8

FIG. 1. The function y&(') (x)/(1'/0) for NaCl.

3. NUMERICAL CALCULATIONS

(3.1)Q(r) =ae "'~

The lattice dynamical model of an alkali halide crys-
tal which describes the unperturbed or harmonic crystal
in the present calculations is the deformation dipole
model of Hardy. ' This model has been discussed ex-
tensively in Refs. 9 and 10, and we will not describe
it in detail here. In this model the short-range repulsive
forces are of the central force type and are assumed
to act between nearest-neighbor ions only. The potential
energy of interaction between a pair of neighboring
ions is given by

8 1 (My+ M
/

C4"f'=-
3 co,'(0)pp5'p Mp'M '

)' cV+'+M ' where r is the interionic separation. The parameters a
and p are calculated from the room-temperature values
of the equilibrium nearest-neighbor separation ro and

where

X (rp A+10rp 8+15C) +L(rp A+ 7rp 8)

X (rp A+8rp 8+SC)+ (rp 8+SC)

X (rp A+10rp 8+15C)j, (2.19b)

TasLE I. Data used in determining the parameters of the
crystal models on which the numerical calculations reported in
this paper are based, together with some derived quantities which
characterize the crystals in the harmonic approximation. These
data are from A. M. Karo and J.R. Hardy, Phys. Rev. 129, 2024
(1963), and from J. R. Tessman, A. H. Kahn, and W. Shockley,
ibid. 92, 890 (1953).

NaCl LiF

(2.20a)

1
S,=—P P a& (k)ppr'(k).

E k jj'
(2.20b)

If the coeKcients C(k&j&, , k,j,) are really con-
stants, independent of their arguments, the relations
~C4~'= ~C4" ~'= (C4')' should hold. The degree to which
these relations are satisfied is one indication of the
validity of the approximations made in this section.
This test will be discussed further in the next two
sections.

P
Cp

A+

M+
3I—

COg,

0

2.8138X10 ' cm
4.26X10 'P cm'/dyn
5.62
2.25
0.255X10~4 cm'
2.974X 10~4 cm'

38.16X10~g
58 93X10~4 g
0.3283X10 cm
2.784X10 "erg
4.848X10" sec '

370.3'K
0.644325

2.0087X10 ' cm
1.54&&10 "cmpjdyn
9.27
1.92
0.029X10 '4 cm'
0.759X10 2 cm'

11.52 X 10~4 g
31.54X10 24 g
0.2989X10 ' cm
4.974X10 13 erg

12.53X1018 sec 1

957.0'K
0.478866

9 J. R. Hardy, Phil. Mag. 7, 315 (1962).
' A. M. Karo and J. R. Hardy, Phys. Rev. 129, 2024 (1963).
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the compressibility P using standard procedures. "The
use of room-temperature values enables us, at least in
part, to take into account the effects of thermal expan-
sion on the atomic force constants and frequencies
of our crystal model. As we are evaluating the high-
temperature forms of A, (cu) and I', (~), corrections for
the sects of thermal expansion should be made, and
the present way of doing this, if not rigorous, is at least
simple.

The values of the experimental interatomic spacings
and compressibilities used in determining p and u,
together with various quantities derived from these
data are collected in Table I. The experimental values
used are those quoted by Karo and Hardy. "

For a repulsive potential of the form given by Eq.
(3.1) the coefficients A, 8, C given by Eqs. (2.16) may
be readily evaluated. The numerical values of these
coeKcients for NaCl and LiF are given in Table II.

The normal-mode frequencies co, (k) were computed
for values of the wave vector k given by

0.26

0.24

0.22

0.20

0. I8

O. I6

Ox O.I4-
I—

O. I 2

X
0. I 0

0.08

0.06

0.04

k=
2ro 20 20 20

(3 2) 0.02

where p„p„,p, are three integers which are all odd or
all even, and which satisfy the conditions

«P*&p. P &2o, P.+P.+P &3o (33)

There are 262 sets of numbers of this type, and when all
of their multiplicities are taken into account, they cor-
respond to 8000 points inside the first Brillouin zone
for the rocksalt lattice.

In carrying out the numerical calculations it was
found convenient to introduce a characteristic tem-
perature O~=kcor/k~, and dimensionless frequencies
&,(k) =~, (k)/a&r, and x= co/~r„where ~r, is the maximum
frequency of the crystal. The values of cdr, and O~

yielded by our crystal model for NaCl and LiF are
listed in Table I. The 0~ values are somewhat larger
than the values of the Debye characteristic tempera-
tures, which for NaCl and LiF are 308'K" and
708'K, t3 respectively. The frequencies X;(k) were stored
on punched cards for use in the remainder of the
calculation.

It should be kept in mind that in calculating the
imaginary part of the dielectric constant the phonon-
branch index j refers to either of the two degenerate
transverse optical branches. The value for the dimen-
sionless frequency of these modes at infinite wavelength
is denoted by )t&(0) and is given in Table I.

The frequency independent sums p2, S3', S3, and S4
were evaluated by direct summation on a high-speed

"M. Born and K. Huang, DyrIamical Theory of Crystal Lattices
(Oxford University Press, Oxford, England, 1954), p. 25.

"C.Kittel, IrItrodection to Solid State I'hysics (John Wiley 8z
Sons, Inc. , New York, 1953), 1st ed. , p. 77.

"M. W. Holm, Bibliography, Phillips Petroleum Company
Report No. IDO 16399, 1957 (unpublished).

I I I I I I I I I I I I I I I I

0.2 0.4 0.6 0.8 I.O 1.2 l.4 l.6

Fto. 2. The function y~&'&(x)/(T/O~) for LiF.

computer. The 6-function restriction on the wave vec-
tors in the last sum was treated by a standard method. '4

%ave vectors k~ and k2 are chosen systematically
throughout the Brill.ouin zone. For each choice, the
vector —kt —km is constructed and tested to see if it
lies in the first Brillouin zone. If it does, it is called k3.
If it does not, the unique translation vector of the re-
ciprocal lattice which restores it to the 6rst zone is
added to this vector and the sum is called k3. The values

A
8
C
P2S'
S3
S4

2

C4 2

C4
C4" I'

A«)L, [ Ca ['
A2cyt, &

I C4
I

~

heel, C4'
h'ape'

I
C4"

I

'
Ao)L,64'

NaCl

7.378X10"erg/cm'—4.915X10" erg/cm'
3.645 X10" erg/cm4
0.343915 oui.'
3.294083 coL,4

4.265409 ctrl.
4

8.78395 coL,'
1.18152X10"erg '
2.65708X 10'4 erg~
2.0182X10~ erg ~

0 77943X 10'4 erg~
0.6038X10-~
0.69402X 10~
0.10317
0.2036X 10~
0.090101

LiF

87 125X10"erg/cm'—34.791X10"erg/cm'
15.859X10" erg/cm'
0.299182 coL,'
2 29797 ~14
3.243566 coL,4

5.78108 c01,6

1.04451X10"erg '
2.02998X10'4 erg~
1.398X10l2 erg '
0.26354X 10'4 erg~
1.3787XM '
3 5418X10~
0.18467
0 4598X10~
0.22346

' A. A. Maradudin and P. A. Flinn, Phys. Rev. 129, 2529 (1963);
P. A. Flinn and A. A. Maradudin, Ann. Phys. (N.Y.) 22, 223
(i963).

TABLE II. Quantities which arise in the calculation of the anhar-
monic properties of NaCl and LiF studied in this paper.
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FIG. 3. The function r&&'&(x)/
(T/O~)' for NaC1.
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of p2, S3', S3, and S4 obtained in this way are presented
in Table II together with the values of iCsi', iC4i',
C4', and i

C4" i' determined from them and the expres-
sions (2.14), (2.15), (2.19a), and (2.19b), respectively.

With these sums in hand we can calculate the fre-

quency independent part of the phonon frequency
shift, bi=hi/o&z, If we use. the approximate expressions
given by Eq. (2.18) we find that 3,&4&, the contribution
to &&& of 0(r)'), is given by

8&&4&PEq. (2.18)j=4.986X 10 '(T/0~), NaCl (3.4a)

=6.632X10 '(T/0) LiF. (3.4b)

[We remark parenthetically that the exact results for
8&(" computed in a manner to be described in the next
paper in this series are

1&i&' (exact) =4.354X10 '(T/0'), NaCl (3.5a)

=8.0255X10 '(T/0), LiF. (3.5b)

From these results we see that the approximate ex-
pression (2.18) yields values for 1&i"& which are within

20% of the exact values. We may have some confidence,
therefore, in the results of the approximate calculations
carried out in this paper. )

The values of f&&&s&, the contribution to i&i of 0(»8),
were computed only from the approximate expression

8(x) = (1/2«) —«(x( «,
=0 otherwise,

(3.7)

where a value of 0.01 was chosen for e. This method of
calculation yields pi(x) as a histogram. In calculating

y, &«&(x), the contribution to 7i(x) of O(ri'), the grid of
8000 points in the first Brillouin zone defined by Eqs.
(3.2) and (3.3) was used. In the lengthier calculation of
function y, &«&(x), the contribution to y, (x) of O(rl'), a
grid of only 1000 points was used. This grid was ob-
tained by replacing p; by 2p; in Eqs. (3.2) and (3.3).

In Figs. 1 and 2 we have plotted the functions

yi "&(x)/(T/O~) for NaC1 and LiF, respectively. In Figs.
3 and 4 are plotted the functions y, &'&(x)/(T/0)' for
NaCl and LiF, respectively. In Fig. 5 we have plotted
2)&i(0)yi(x) for three values of (T/O~) for NaC1. In Fig. 6

(2.18). The results are

3,"&= —0.4427X10—'(T/0~)', NaC1 (3.6a)

= —0.7431X10 '(T/0)' LiF. (3.6b)

In computing the frequency-dependent damping
constant and frequency shift, it was the dimensionless
functions yi(x) = I'i(o&zx)/o&z, and &3i(x) = Zi(o&r x)/o&z,

which were actually calculated. The function y&(x) was

computed first. The representation of the Dirac 8

function used in the present calculation was

0.07
OJ

0 0,06
0.05

~0.04

X OO3-
e 0.02
& O.OI

Fn. 4. The function y&(')(x)/
(T/0)' for LiF.
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X
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0,3-6

0.34

0.52

0.30

Fxo. 5. The temperature
dependence at e1evated tem-
peratures of the function
2) g(0}yg(x} for NaCl.
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we have plotted the same function for two values of
(T/0) for LiF. In each figure the rapid decrease in
this function as x exceeds the value at which y&'"(x)
vanishes identically should be noted.

The frequency-dependent part of the frequency shift,
b&(x), was computed by numerical integration from the
results for y, (x) on the basis of the following modifica-

tion of the expression (2.11):
1 ' y, (y) —y, (x) 1 / —x

b, (x) =— dy —-y, (x) ln
(x—y), s 1+x

(3.8)

In writing this expression we have used the fact that
y, &'& (x) vanishes identically for

~
x

~
)2 and that y&&'& (x)
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0.20 constant can be written in the form

0. 18

0. 16

4m&' M+ M Ep
es(po) =

V, M+M ~p'

o. 14

&c 0.12

Op 0, 10

0.08
OJ

0.06

where

Eo ' —— 1— QP(po)
dc'

y = 2A stool p (peo)/poo.

(3.10b)

(3.10c)

(V/~o)
X (3.10a)

[1—(~/«)'3'+ (v/~o)'

0.04

0.02

I I I I I I 1 I

0 0.2 0.4 0.6 0.8 I.O 1,2 1.4 1.6 1.8

If we compare the expression for es(co) given by Eq.
(3.10a) with the expression which is obtained on the
assumption of a damped harmonic oscillator, "

(V/~o) (~/~o)
es(~) = (eo—e-)-, (3 11)

[1—(~/«)'j'+ (po/opo)'(7/~&)'

Fzo. 6. The temperature dependence at elevated temperatures
of the function 2XI(0)y~(x) for LiF.

vanishes identically for
~

x
~
)3, because the arguments

of the Dirac 8 functions in the expressions for these
functions, Eqs. (2.8), cannot vanish for the indicated
values of x. Therefore, the constant t in Eq. (3.8) is 2

for the evaluation of 8p&" (x) and is 3 for the evaluation
of 5&' '(x)."We have added in and subtracted off the
function —yp(x) in the integral on the right side of
Eq. (3.8) to make the integrand a smoothly varying
function of y in the neighborhood of the point y= x.

In Figs. 7 and 8 we have plotted the functions
Fp&o& (x)/(T/0') for NaC1 and LiF, respectively. In Figs.
9 and 10 we have plotted bp"'(x)/(T/O~)' for NaC1 and
LiF, respectively.

The principal motivation for the work reported in
this paper was the desire to determine the tempera-
ture dependence of the width of the fundamental absorp-
tion peak in NaCl and I iF. Ke can obtain an explicit
expression for the width in the following way.

From Eq. (1.1) we see that the frequency &oo, which is
defined as the (positive) solution of the equation

Mp

2XopopI'p (too)

uo
(3.12)

because Qp(co) is defined in terms of A, (co) by

QP (op) =&o P+ 2op id p(to), (3.13)

we find that poo differs from to, by terms of at least 0(rj4).
Therefore, because I'p(po, ) is already of 0(rio), q/poo is
given correctly to terms of 0(pcs) by

21',(,) 2Y [X (0)]

too pop X&(0)

Analytic expressions for y/poo for NaC1 and LiF in the

TABLE III. Theoretical and experimental values of p/ptp for
NaCl and LiF at several elevated temperatures.

we find that for or in the immediate vicinity of the fre-
quency cop the damping constant y appearing in Eq.
(3.11) is just that given by Eq. (3.10c).It is clearly the
width of the fundamental absorption peak at half
maximum. What is usually determined experimentally
is p/too, and this according to Eq. (3.10c) is given by

Moo =QP (poo), (3 9)

can be (and conventionally is) regarded as the position
of the center of the fundamental absorption peak. [In
fact, it is not quite the center because of the co depend-
ence of the function I'&(op).) In the immediate vicinity
of the frequency orp the imaginary part of the dielectric

"We see from Figs. 1 and 2 that in fact 7~&6){x) vanishes
identically for Ix

~
&1.65 in the case of NaCl, and for IxI &1.57

in the case of LiF. That the upper limit in each case is smaller
than 2 is a consequence of the fact that

I j I
is not allowed to equal

I
j'

I
in the first sum on the right-hand side of Eq. (2.8). Thus con-

tributions from ~=~1+~2=2eul, are excluded from the sum for
v~'"(x)

Crystal

NaCl

LiF

r {'K.}
300
460
640
820
985
293
443
593
893

y/coo {th.)

0.0755
0.1464
0.2515
0.3836
0.5284
0.0943
0.1569
0.2292
0.4030

p/rap (exp)'

0.04
0.075
0.135
0.21
0.26
0.08
0.12
0.15
0.35

a The experimental results for NaCl are due to M. Hass, Phys. Rev. 117,
1497 (1960); the experimental results for LiF are due to G. Heilmann,
Z. Physik 152, 368 (1958).

"Reference 11, p. 121.
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0. 14

0. I 2

0. I 0

0.08
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Fto. 7. The function fi, &I&(xl/

(T/0) for NaCl.
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-0.04

"0.06

-0.08

-O. I 0

-0. I 2

LiF: —= 0.2474 —+0.1977(—f I

oIe 0 ~O
(3.15b)

In Table III we give the values of y/&de for NaC1 and
LiF computed at several temperatures from Eqs. (3.15).
In this table we have also quoted the experimental
values of this function as obtained by Hass' and Heil-
mann, ' respectively.

high-temperature limit obtained from Eqs. (2.8) and
(3.14) are

. 7=NaC1: —=0.04699 —~+0.05701 — (3 15a)
&o OH) OH

4. DISCUSSION

The first comment we can make about the results of
the numerical calculations described in this paper is
that they confirm the arguments of Gurevich and
Ipatova in predicting that the quartic anharmonic
contribution to the width of the fundamental absorption
peak in NaCl and LiF is comparable with the cubic
anharmonic contribution for T)O~. The truth of this
statement can be seen most directly from the analytic
expressions (3.15), but also from the plots in Figs. 1—4.
We see from these figures that for both crystals the
comparable magnitudes of the cubic and quartic an-
harmonic contributions to the width of the fundamental

FIG. 8. The function 5~&@(x)/
(T/0) for LiF.
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2.0 2.2 2.4 2.6 2.8 3.0 Frc. 9. The function
1&,&'& (x)/(2'/0)' for NaC1.

absorption peak are a consequence of the fact that
y~"&(x) has a local minimum for x=X~(0), while y~'P&(x)

has nearly its maximum value at this frequency. It is
attractive to assume that the minimum in yi"&(x) at
x=X,(0) is a reflection of that decrease in the number
of phonon transitions contributing to this function
(caused by the stringent wave vector and frequency
conservation conditions) which, rather than any ab-
normally large values of y, ('&(x), leads to a parity be-
tween the contributions from these two functions.

It follows from these results that at elevated tempera-
tures the width of the fundamental absorption peak in
NaCl and LiF should increase more rapidly than as the
first power of the absolute temperature, and this con-
clusion is in agreement with the experimental observa-
tions. ' 4 Because 0" for NaCl is so much smaller than 0"

for LiF, our results suggest that in the temperature
range in which the measurements were made (293—
985'K), which lies below O~L„F,the width of the funda-
mental absorption peak in NaCl should vary more
nearly as T' than shouM the width of the fundamental
absorption peak in LiF. It is only at somewhat higher
temperatures that a T' temperature dependence of
p/p&p is indicated for LiF. This conclusion contradicts
the experimental results for these two crystals. Plots
of the experimental points given in Table III show that
on the basis of the results at the two highest tempera-
tures for each crystal the temperature dependence of
p/o&p for LiF is more like T than, it is for NaC1. This
result was explained by Gurevich and Ipatova' in the
following way. In view of the greater relative separation

between the acoustic and optical branches in LiF
compared with NaCl (owing to the greater relative
diGerence between the ionic masses in the former
crystal), which makes more difficult the satisfaction of
the frequency conservation condition for ~=coo, the cu-
bic anharmonic contribution to y should be suppressed
to a greater extent, in comparison with the quartic, in
LiF than in NaC1. The analytic expressions for y/o&p

given by Eqs. (3.15), however, disagree with this
qualitative explanation. We see that Eqs. (3.15) indi-
cate that the quartic anharmonic contribution to p/p& p,

compared with the cubic, is larger in the case of NaCl
than it is for LiF.' The argument of Gurevich and
Ipatova, however, would be rigorously applicable only
if the ratio of

i
C4i' to iCpi' were the same for the two

crystals. However, reference to Table II shows that the
ratio of iC4i' to iCpi' is somewhat larger for NaCl
than it is for LiF, and this may partly overcome the
relative suppression of the cubic anharmonic contribu-
tion to y in LiF arising from the greater separation
between the optical and acoustic branches. Moreover,
it is also possible that while the qualitative conclusion
that the cubic and quartic anharmonic terms in the
crystal potential energy make comparable contributions
to y may well be insensitive to the approximations made
in their evaluation, the relative magnitudes of these
contributions in a given crystal may depend quite
sensitively on these approximations. No firm conclusion
on this point can be reached, however, until the results
of exact evaluations of y&'P&(x) and y&(P&(x) become
available. Finally, it should be kept in mind that the

0.06
0,04
0.02

cu 0
0~-0.02

I
-004

~-0.06

~ -0.08
-O. I 0

CO

~ -O. I 2

-0. I 4

~ I
I

0.
I I I I I & & I I I

~ ~ I ~ I I I ~ I I 1 I
I I 1 I I I I I I I
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FrG. 10. The function
6g& ) (g)/(T/0) fpp LiF.
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disagreement between theory and experiment with
regard to the question of for which crystal does the
temperature dependence of y/&oo more closely resemble
proportionality to T' has its origin in experimental
values of p/Mo for Lip at essentially two temperatures
in a temperature range in which according to our
present results a T' dependence is not likely to be ob-
served. More extensive measurements of the tempera-
ture dependence of y/u&0 at elevated temperatures for
NaCl and LiF, particularly for the latter crystal, are
also needed to settle this question.

Although we have established the essentially qualita-
tive result that the quartic anharmonic contribution
to p/(oo is comparable to the cubic anharmonic contribu-
tion at elevated temperatures, we see from Table III
that the quantitative agreement between the theoretical
and experimental results is only fair. The agreement is
better for LiF than it is for NaCl. In the latter case the
theoretical results are within a factor of 2 of the experi-
mental values, while the maximum error in the former
case is only 50%%uo.

Finally, in Figs. 11 and 12 we have plotted the imagi-
nary parts of the dielectric constants of NaCl and LiF,
respectively, as computed from the results of the present
paper for a temperature of 300'K. In Fig. 11 we have
also plotted the experimental results of Genzel el al. '
and of Geick, "as combined by Burstein. " Similarly,
in Fig. 12 we have also plotted the experimental results
of Gottlieb' and of Genzel and Klier, "as combined by
Surstein. '9

We should remark at this point that the values of cp
and c„used in the present work are those obtained by
Tessman, Kahn, and Shockely, "rather than the results
of more recent investigations. This was done because it
was these values which were used by Karo and Hardy"
in setting up the deformation dipole model of ionic
crystals which underlies the present numerical calcula-
tions. We may also point out that it has been established
in Eq. (I.4.5) that the erst-order dipole moment
expansion parameter e is given by

2
IO

10

IO

OJ

10

IQ
02 0 4 06 08 I 0 I 2 14

V

~io. 11. Theoretical and experimental results for the imaginary
part of the dielectric constant for NaCl at room temperature.

2
IO

IO

From Figs. 11 and 12 we see that there is reasonable
qualitative agreement between the theoretical and
experimental results for e~(&o) for both crystals. The
theoretical results reproduce all of the qualitative fea-
tures of the experimental curves such as the presence of
a "shoulder" on the low-frequency side of the funda-
mental absorption peak, and the subsidiary maxima on

(4.1)

where e* is the Szigeti effective charge, " and e is the
magnitude of the electronic charge. Using the values of
e*=0.74e, 0.87e for NaCl and LiF, respectively,
together with the values of c„given in Table I, we find
that a=1.05e, 1.14e for NaCl and LiF, respectively.

IQ3

IO

"L.Genzel, H. Happ, and R. Weber, Z. Physik 154, 13 (1959)."R.Geick, Z. Physik 166, 122 (1962).
' E. Burstein, in Phonons and Phonon Interactions, edited by

T. A. Bak (W. A. Benjamin, Inc. , New York, 1964), p. 276.' M. Gottlieb, J. Opt. Soc. Am. 50, 343 (1960).
2'L. Genzel and M. Klier, Z. Physik 144, 25 (1956).
~ J. R. Tessman, A. H. Kahn, and W. Shockley, Phys. Rev.

92, 890 (1953).
"B.Szigeti, Proc. Roy. Soc. (London) A204, 51 (1950).
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FIG. 12. Theoretical and experimental results for the imaginary
part of the dielectric constant for LiF at room temperature.
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the high-frequency side. The quantitative agreement
between the theoretical and experimental results for
e2(4d) is somewhat better in the case of Nacl than it is
for Lip. The frequencies at which the various structural
features in e2(cu) occur are predicted quite accurately in
our theoretical curve for NaCl, but the computed mag-
nitude of e2(cu) is too large by about a factor of 3 on
the low-frequency side of the fundamental absorption
peak, and the height of the peak is too low by about
the same factor. The most obvious difference between
the computed and experimental curves of e2(cu) for LiF
is that the former predicts values of e2(co) which are too
large by a factor of 5 to 10 on the low-frequency side
of the fundamental absorption peak. . In addition, the
theoretical curve has more structure on the high fre-
quency side of the peak, although the computed values
of e2(&u) in this frequency range agree well with the
experimental results. Some of this structure couM be
duc to noise arising from our relatively coarse grid of
points in the first Brillouin zone. It is a somewhat
curious result that our calcuI. ations seem to reproduce
the experimental curves for ei(co) on the high-frequency
side of the fundamental absorption peak much better
than they do on the low-frequency side.

A possible explanation for the result that theoretical
values for eg(co) for LiF are much higher than the ex-
perimental values may have its origin in the fact that
at room temperature T/0~ =0.31, i.e., room temperature
is a low temperature for LiF. On the low-frequency side
of the fundamental absorption peak it is the difference
bands, i.e., those terms in the summand of I', (0; co)

wliich ai'e proportional to [si—444j8(&v+Mi ~2) (see
Eq. (1.3.6a)], which give the principal contribu-
tion to e~(co). At high temperatures this factor is
well approximated by (kiiT&v/h~i&u4) b(co+~i coi), while-
at low temperatures it can be approximated by
[exp(—(i~i/ki T)—exp( —a~,/ki, T)]S(~+~,—~,). Our
use of the high-temperature form in a calculation of
ei(a&) at what is in fact a low temperature for LiF means
that we are overestimating the contributions of the
difference bands on the low-frequency side of the
fundamental absorption peak. Because of the exponen-
tial dependence on temperature of the contribution of
the difference bands to e~(a&), this overestimate can be
appreciable at low temperatures.

Cther discrepancies between the theoretical and ex-
perimental values for y/coo and ei(co) can be attributed
to several sources. One is certainly the simplicity of the
assumed anharmonic interactions. These were derived
from a nearest-neighbor, central-force, interionic po-
tentia1. function, which, when its two parameters are
6xed by the values of the equilibrium interionic separa-
tion and the compressibility, has no additional adjust-
able parameters which can be varied to yieM agreement
between theory and experiment. Related to this point
is the question of the adequacy of the deformation
dipole model to describe anharmonic properties of
ionic crystals. It is not our intention to address ourselves

to this question except to note that inasmuch as it is a,

central-force model it is already incapable of accurately
reproducing the harmonic forces between ions, in that it
predicts the Cauchy relations among the elastic con-
stants, which are known to be violated in NaCl and are
strongly violated in LiF.

1th respect to the simple approximations to the
Fourier-transformed anharmonic force constants used
in the present work, which are based on Eq. (2.7) we

see from Table II that the three quantities (~C4~')'",
C4', and (~C4" ~')'" agree among themselves to within
a factor of about 2.5 for both NaCl and LiF. This
result is in agreement with Peierls" suggestion that
C(kiji, , k,j,) has a constant order of magnitude
for all values of its arguments. The squares of these three
quantities are in poorer agreement with each other, but
even so, they still have a constant order of magnitude.
If the exact result for the first term on the right-hand
side of Eq. (2.10a) is written in the form given by the
first term on the right-hand side of Eq. (2.18), the
coefficient C4' is replaced by a coefficient C4', whose
value can be obtained from the results in Eq. (3.5),
and which is quoted in Table II. The very good agree-
ment between the values of (~C4~')'", C4', and C4'

also suggests that the method we have used in this paper
to compute the constants by which we approximate
IC(oj kiji; —kij2)l', IC(oj;kiji;«2j~;«iji)l, ".
for all values of their arguments gives reasonable results,
at least for the frequency-independent sums. In addition,
because in fact C(ki ji, , k,j,) is not a constant,
lndepcndent of its aI'guIncIlts wc think that detcI mining
the constant-value approximation for C(kigi, . , k,g,)
from the form of this coeScient that appears in the
expression for the function being calculated, e.g., ~;,
takes into account some of the (apparently weak)
dependence of this coeS.cient on its arguments. In this
way a better approximation to the desired function is
obtained than would be if the approximate value of
this coefficient were determined once and for all for all
values of its arguments from the defining equation, Eq.
(2.12).

Although one of the principal reasons for approximat-
ing the coefficients (C(«iji, , k,j.)} by constants
in the calculations reported here was the desire to
explore approximations which might render more
tractable the dificult numerical calculations which arise
in the evaluation of anharmonic properties of crystals,
particularly frequency-dependent properties such as
A, (&v) and I', (&o), it must be admitted that even with
this approximation the resulting numerical calculations
are still by no means trivial to perform. This is particu-
larly true of the calculation of y4'8i (x). It is perhaps an
indication of the true extent of the computational
dif6culties posed by problems of lattice anharmonicity
that preliminary results indicate that an exact calcula-
tion of y, &@(x) takes about five times longer than the
approximate calculations reported here, or about an
hour to an hour and a half on an IBM 7094 computer.
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Work still remains to be done on the problem of the
absorption of light by alkali-halide crystals. Calcula-
tions of the functions y~"'(x), 8,"&(x), y, "&(x), and
8&&'&(x) for the crystal model employed in the present
work, but free from the approximations made here,
are clearly desirable, and are in progress at the present
time. The results of these calculations will be reported
elsewhere.

In addition, we have chosen in the present work to
order the magnitudes of the anharmonic terms in the
crystal potential energy according to the prescription
given by Eq. (I.3.3). In so doing we have omitted con-
tributions to the phonon proper self-energy matrix, for
example those associated with the diagrams in Fig. 13,
which in the more usual ordering scheme'4 are of the
same order of magnitude as the quartic anharmonic
contribution to the damping constant we have retained.
Moreover, and in the present context this may be even
more important, these contributions are of 0(T') in
the high-temperature limit. Inasmuch as we are inter-
ested in comparing the contribution of the terms of
0(T') to the damping constant with the contribution of
the terms of 0(T), it would appear that the only rigor-
ous way of doing this is to compute the contributions
from all terms of 0(T'), irrespective of the order in
some coupling constant to which they are assigned by
an ordering classification scheme. The neglect of many
terms of 0(T') in the expression for the damping
constant we have evaluated in the present work. was
dictated chief by the practical considerations that the
number of such terms is large and that the expressions
for their contributions would be very difficult to evalu-
ate numerically at the present time. That their contri-
butions cannot alter the qualitative aspects of the results

'4 L. van Hove, N. M. Hugenholtz, and L. P. Howland, QNaetlm
Theory of M'arly-I'article Systems (W. A. Benjamin, Inc. , New
York, 1961),pp. 1—101.

Fzo. 13. Two diagrams which
are associated with contributions
to the width of the fundamental
absorption peak of O(T') in the
high-temperature limit.

(a}

we have obtained in this paper seems to be assured by
the generally good agreement of the present theoretical
results with experiment. Nevertheless it would seem to
be worthwhile to study carefully the contributions of
0(T') which we have neglected here, and to try to
estimate their magnitudes or at least to bound them
from above.

In any event, it appears to be clear from the results
of the present paper that future theoretical calculations
of the imaginary part of the dielectric constant, or of
the absorption coefficient, of ionic crystals must take
account of the quartic anharmonic contributions to the
damping "constant" I'&(co) in Eq. (1.1), if quantitatively
reliable results are to be obtained.
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