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Phonons and the Properties of a Bose System*

L. REATTo AND G. V. CHEsTER

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New Fork

(Received 26 August 1966)

In this paper we suggest a new ground-state wave fuction and low-temperature density matrix for a
strongly interacting system of bosons. Our basic assumption is that the system can support long-wavelength
phonons and that these can propagate independently of any other mode of motion. We therefore write the
ground-state function as the product of two factors. One factor arises from the zero-point motion of the
phonons, and we show that it has the form pc~ f(r;;), where lnf(r) has an infinite range. The other factor
is assumed to have this same form but with lnf(r) of finite range; it takes into account the short-range
correlations arising from the strong repulsive part of the interparticle potential. The function we have chosen
to represent the short-range correlations is not new; functions of this kind were 6rst introduced by Bijl and
l.ater by Jastrow. At 6nite temperatures we use a density matrix for an ensemble of excited phonon
states. We 6nd that for small wave vectors k, the structure factor S(k) is equal to Ak/2mc, a result that
was first derived by Feynman. At a finite temperature T, S(k) tends to the constant value ktsT/me', where
m is the mass of the particles and c the velocity of propagation of the phonons. The momentum distribution
e& has a k ' singularity at absolute zero and a stronger, k~ singularity at 6nite temperatures. The small-k
behavior of both S(k) and n& is completely controlled by the correlations introduced by the phonons. Both the
ground-state function and the density matrix imply that there is a 6nite fraction of particles in the zero-
momentum state in three dimensions; this fraction does not seem to be appreciably aQected by the in6nite-
range correlations introduced by the phonons. We 6nd, however, that these correlations imply that a one-
dimensional Bose system does not exhibit Bose-Einstein condensation at any temperature, while a two-
dimensional system exhibits Bose-Einstein condensation only at absolute zero.

I. INTRODUCTION
'

N this paper we suggest a new approximate ground-
s ~ state wave function and low-temperature density
matrix for a system of interacting bosons. ' The wave
function and density matrix are constructed to take into
account both the short-range correlations arising from
the strong repulsive interactions between the particles
and the infinite-range correlations which we show must
be present if the system can support low-lying phonon
modes. The physical properties we deduce on the basis
of this wave function and density matrix are in excellent
agreement with our expectations. Moreover, we are able
to show that the infinite-range correlations introduced
by the phonon modes are decisive in determining
whether or not the system exhibits Bose-Einstein con-
densation into the zero-momentum state in one, two,
and three dimensions.

The importance of the low-lying phonon modes in
Bose systems —in particular in superQuid helium —was
first emphasized by Landau. ' Feynman' carried these
ideas a stage farther by constructing an explicit ap-
proximate form for the low-lying phonon states. Both
Landau and Feynman argued that the long-wavelength
phonon modes should propagate independently of any
other modes of motion and of each other. This will be
our basic assumption in this paper. It has been con-
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'A brief account of this work has been published in Phys.
Letters 22, 276 (1966).

' L. D. Landau, J. Phys. USSR 5, 71 (1941).
' R. P. Feynman, Phys. Rev. 94, 262 (1954); R. P. Feynman

and M. Cohen, ibid. 102, 1189 (1956).

firmed by detailed model calculations4 and by perturba-
tion analysis. ' It seems that at the present time there are
no experiments which bear directly on this assumption.
What we need to know is whether the condition orl, v y&)1
is satisfied for very-long-wavelength phonons at low

temperatures. The recent inelastic-neutron experiments
of Woods' suggest that our assumption is indeed correct.
They do not, however, go to small enough wave vectors
or low enough temperatures to directly confirm it.
Feynman showed that if one assumes that the zero-
point motion of the phonons dominates the behavior of
the zero-temperature structure factor S(k) at small
wave numbers k, then it must behave like kk/2mc for
small k. Here c is the velocity of propagation of the
phonons and m the mass of the atoms. This behavior of
S(k) for small k is different from that of S(k) for a
classical Quid. The long-wavelength phonons must
therefore introduce correlations into the ground-state
wave function which are not present in a classical Auid.

We shall show that this, in fact, is the case.
It is, however, quite clear that the long-wavelength

phonon modes cannot tell us anything at all about the
short-range correlations due to the strong repulsive part
of the interparticle potential. These are presumably
operative over two or three interparticle spacings and
are therefore of a much shorter-length scale than the
wavelength of a long-wavelength phonon, whose wave-
length should —by definition —be many interparticle
distances at least. An approximate wave function that
takes these short-range correlations into account was

4 I. M. Khalatnikov, Ietroductioe to the Theory of Seperguidity,
(W. A. Benjamin Inc. , New York, 1965), Chap. 22.

' j.Gavoret and P. Nozihres, Ann. Phys. (N. Y.) 28, 349 (1964).
6 A. D. B.Woods, Phys. Rev. Letters 14, 355 (1965).
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first suggested by BijP and later by Jastrow. ' It has
recently been used in variational calculations of
properties of liquid He4 by McMillano and by Levesque
et al."This wave function has the form of a product of
pair functions, f(r;;):

1)~ ~ ~ iÃ

The function f(r) is real, and the short-range correla-
tions are introduced by taking f(r) to be a function that
tends rapidly to zero as r —+ 0, and rapidly to unity as
r —+~. In the variational calculations we have referred
to, f(r) was chosen to have the form exp[—N(r)] where

N(r) had the asymptotic form r &'+ & for large r; n) 0.
We shall call such a pair function f(r) a "finite-range"
function. With this kind of function the variational
calculations for liquid helium were successful in re-
producing the experimental binding energy, and the
structure factor S(k) for those values of k for which it
has been measured (0.6&k(6 A ').

The structure factor S(k) which follows from a wave
function of the form (1.1), with a finite-range pair
function, is formal]y equal to the structure function of
a classical fiuid at a nonzero temperature. [The inter-
action potential p(r) and effective temperature T.«of
this equivalent classical fluid are related to f(r) by the
equation (2keT, «) 'oi(r)= —lnf(r)]. S(k) will there-
fore have the same qualitative behavior as the structure
factor for a classical Quid. In particular the Ornstein-
Zernike theory" assures us that S(0)&0 and hence
S(k) cannot behave for small k in the way suggested by
Feynman. A similar difliculty arises with the momen-
tum distribution of the particles nI, . On the basis of
perturbation calculations, ' we expect that at absolute
zero e~ will behave like k ' for small k; this is again a
result that comes from the zero-point motion of the
long-wavelength phonons. [The singular behavior of
nl, as k ~ 0 should not be confused with the actual value
of eA, at k=0. This is the number of particles on the
zero-momentum state, and, with a finite range f(r), this
is known to be finite fraction of the total. "]It is quite
easy to show that a finite-range pair function f(r) leads
to a distribution nI, which tends to a constant value as
k ~ O. We therefore see that although the wave function
(1.1) can give an excellent description of some of the
physical properties of liquid helium, it does not give
what we believe to be the correct limiting form for either
S(k) or ei for small k. This strongly suggests that this
wave function does not correctly describe the zero-point
motion of the long-wavelength phonons.

~ A. Bijl, Physica 7, 869 (1940).
s R. Jsstrow, Phys. Rev. 98, 1479 (1955).
9 W. L. McMillan, Phys. Rev. 138, A442 (1965)."D. Levesque, D. Schiff, Tu Khiet, and L. Verlet,

(unpublished).
» L. S. Ornstein and F. Zernike, Proc. Akad. Sci. (Amsterdam)

17, 793 (1914).
~ O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).

The aim of this paper is to present a ground-state
function and at 6nite temperatures a density matrix that
take into account the short-range correlations that are
present in (1.1), and at the same time correctly repre-
sent the correlations due to the long-wavelength
phonons. In this way we cannot expect to obtain any
new information about S(k) or Ns for small k. The
behavior of these functions for small k follows quite
directly from our basic assumptions without construct-
ing an explicit form for the wave function and density
matrix. However, the construction of an approximate
ground-state function and density matrix is the only
method k.nown to us by which one can take into account
both the long-wavelength phonons and short-range
correlations. In particular it enables us to compute S(k)
and e& for all k. It is of course not an entirely trivial
matter to show that the approximate wave function
proposed will lead to the correct small-k behavior for
these functions. Sections III and V are devoted to.
showing that our wave function does indeed lead to
the behavior we expect.

As we have already stated, our basic assumption is
that at sufBciently low temperatures the system can
support long-wavelength phonons that propagate inde-
pendently of each other and of any other mode of
motion. We shall discuss the assumption in more detail
in Sec. II. If it is correct, the Hamiltonian for the
system can be written as the sum of a harmonic term
for the phonons and another term which represents the
other modes of motion, and there should be negligible
coupling between these two terms. It follows that the
ground state function must have the form

|t'o=4'z4'oz i (1.2)

where Poi, is the ground-state function for the phonon
modes, and. fg is the ground state for the rest of the
Hamiltonian. It is easy to construct foi, explicitly and
to show that it can be written as a product of pair func-
tions f(r;;) bgt that the pair flection f kas aN inlirlite
range. These inlnite-range correlations in the ground
state control the behavior of S(k) and es for small k,
and these same correlations make the Ornstein-Zernilm
theory inapplicable to the ground state. The function

Pii represents the other modes of motion, and we see no
reason to believe that it will have any infinite-range
correlations in it. For purposes of calculation we shall
choose it to be of the form (1.1) with f(r) of finite range.
We believe that (1.2) represents a very plausible ap-
proximation to the ground state of a boson. system,
irrespective of the strength of the. coupling or the
density of the system; indeed, it may give a good de-
scription of liquid He'. A crucial test of this function
will be to calculate the ground-state energy of the
system with it and see if the presence of the phonon
factor lowers the energy (or at least does not raise it).

The low-lying excited states f, follow at once from
our assumption; we simply replace iPob in (1.2) by the
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appropriate excited-phonon state,

(1 3)

plan to calculate with our wave function and density
matrix, and state some mathematical problems that
arise from the infinite-range correlations.

Now, for a single phonon, /ah&'"& will have (see Sec. II)
exactly the form proposed by Feynman,

g h'" ——(2mc/Nhk)"p1& h (1 4)

where p0 is the Fourier transform of the density p(r)
Of course (1.3) is only correct for the excited-phonon
states; if there are any other lower states, then they
cannot be represented by (1.3). However, if there are
any such states, the phonons could presumably decay
into them, and would not propagate independently of
them. This contradicts our basic hypothesis. Following
Penrose, "we can construct the density matrix for an
ensemble of such states. The most important feature of
this density matrix is that its diagonal elements do not
this density matrix is that its diagonal elements do
not contain any infinite-range correlations. The be-
havior of S(k) for small k is now quite different and
we find that S(0)= (mPc') ', where P= (ksT) '. This
is in complete agreement with what we expect on the
basis of the Ornstein-Zernike theory, and is exactly the
result obtained by Feynman. ' The momentum distribu-
tion eI, has a k ' singularity at absolute zero; with this
density matrix we find a stronger k ' singularity at
finite temperatures.

The wave function and density matrix we have con-
structed lead to qualitatively diferent properties for a
Bose system in one, two, and three dimensions. In three
dimensions, we find that there is a condensate; that is,
a finite fraction of particles in the zero-momentum state,
both at absolute zero and at finite temperatures. In one
dimension we do not find a condensate at any tempera-
ture, and in two dimensions there is a condensate at
absolute zero but not at any finite temperature. These
results are entirely controlled by the low-lying phonon
modes; for example, if we were to use a finite-range pair
function, then there would be a condensate at absolute
zero in one, two, and three dimensions. This suggests
that low-lying collective modes may be decisive in
determining whether or not a Bose system is superfluid.

The plan of the paper is as follows: In Sec. II we state
our basic hypothesis in mathematical form and con-
struct the ground-state function and low-temperature
density matrix. In this section we also discuss the
validity of our basic assumption. Section III is devoted
to the calculation of the structure factor at absolute
zero and at finite temperatures. In Sec. IV we compute
no, the fraction of particles in the zero-momentum state,
and in Sec. V we discuss the behavior of nq for small
wave numbers. In Sec. VI we examine the influence of
the phonon modes on the occurrence of Bose-Einstein
condensation in one and two dimensions. Finally, in
Sec. VII, we mention some of the physical properties we

"O. Penrose, in Proceedings of the International Conference on
I.om Temperature Physics, edited by J. R. Dillinger (University of
Wisconsin Press, Madison, Wisconsin, 1958), p. 117.

H =Hg, +H'. (2 1)

Here H, i, is the harmonic contribution from the long-
wavelength phonon modes which can be written" "

g m1LPiPi +001 PkPi j,
k

k &kc

(2.2)

where mi, ——m/1Vk', 001=ck, and

N

P &ik ri

j~l
(2.3)

The cutoff wavelength X,=21r/k, must be chosen large
compared with the interparticle spacing, so that the
Fourier component p& of the density field are the ap-
propriate variables. H' can be written

H'= Hs+HN, 0h+H, „,
where Hg describes the other modes of motion, Hg, ph

the interaction between these and the phonons, and H,„
is the anharmonic interaction between the phonons.

Our basic assumption that the long-wavelength
phonon modes propagate independently of any other
modes of motion and of each other implies that at
sufliciently low temperatures we can neglect Hg, ,h and
H, and write

H=HN+Hph. (2.4)

At this point it is worthwhile to make some comments
on this assumption. At absolute zero, perturbation
analysis' shows that for small wave numbers k there is
no damping of the phonons to order k'. At low tempera-
tures, calculations by Khalatnikov' show that col,7-A,)&1,
where v.p is the lifetime of a phonon of wave number k.
Both these calculations therefore support our assump-
tion. It follows from Eq. (2.4) that the normalized
ground-state wave function f0 can be written as

$0(rl' ' '1N) QN 4'R(rl' ' 'rN)4' h(11' ' 'rN) (2 5)

where QN is the normalization constant, fN is the ground
state of H~, and $0s is the ground state of H0h This is.
equal to the product of the ground-state wave functions
of the harmonic oscillators described by (2.2); we can
write therefore

&0s(ri rN) = exp —P pi, p1,*G(k,k,), (2.6)
2A

'4 R. Kronig and A. Thellung, Physica 18, 749 (1952).
"G. V. Chester, in I.iquH Helium, edited by G. Careri

(Academic Press Inc. , New York, 1963), p. 51.

II. WAVE FUNCTION AND DENSITY MATRIX

We write the Hamiltonian of the system of X Bose
particles in a volume V in the form
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where G(k,k,) is a function which cuts off the sum over
k for large values of k at a characteristic wave vector k,.
Using the expression (2.3) for ps, (2.6) can be written,
neglecting an unessential constant, as

g« ~ «N

it,s(ri re) =exp[ —zsp X(~r,—r;~)], (2.7)
s«(j

where

In (2.12) and (2.13), the cutoK function G(k,k.) has
been introduced; the temperature must be such that
only phonons with wave vectors less than k, are excited;
this implies T must be such that hck,))k~T. From
(2.11) we can see that the phonon part of the diagonal
element of the density matrix, (R~a

~ R)r, is a product
of pair functions. The diagonal element is given by the
equation

i 2mc
x(r) =—p G(k k,)e'"'.

Nj hk
(2.g) (RlalR)r=Qs '"(T)4'ir(R)4'~(R)

1« ~ «N

If for example G(k,k,) = exp( —k/k, ), then in the infinite-
volume limit, N, V «~, 1''/V =n, X(r) is given by where

Xexp( —P Xr(~r;—r, ~)), (2.15)

cm
x(r) = Lr'+k ']-'

x'eA
(2.9)

2mc
Xr(r) =X ' P tanh(-,'hPkc)G(k, k,)e'"' (2.16)

Ak

where
+hi(r;"—r;")+hs(r —r;")]), (2.11)

2mc
hi(r)=1l1' ' P (e'se"'—1) 'G(k k )e' ' (2.12)

Ak

2mc
hs(r) = —1V ' P schc( hkP)Gc(k, k,)e' 's

Ak
(2.13)

P= 1/heT, and R stands for all the coordinates ri rsr.
Qsr(T) is the appropriate normalization constant deter-
mined by

dR(R( a
~
R),=1. (2.14)

' N. N. Bogoliubov MId D. N. Zubarev, Zh. Eksperim. i Teor.
Fiz. 20, 1064 (1955) [English transl. : Soviet Physics —JETP 1,
85 (1955)g.

We note that the asymptotic behavior of X(r) for large
r, X(r) er r ', is independent of the particular form of the
function G(k,k,).Bogoliubov and Zubarev" showed that
the ground-state wave function of a weakly coupled
Bose gas has the same kind of infinite-range correlations.

As we discussed in the introduction, an excited state
with a single phonon of wave vector k can be repre-
sented by a function of the Feynman form (1.4).
Penrose" has shown how to construct an ensemble of
such states: A state which contains, for each k, X~
phonons can be written as

Sir( g l Ns
P'er r

~ ~ ~
e rsr-s fs, (2.10)

ciF s) «rlFsl

where Fs (2risc/Shk)"——'ps, and g' means a product
where each pair (k, —L) is included once only. If we
weight each state with exp( E/kirT), E=—gs iVshck,
the E-particle density matrix at temperature T in the
coordinate representation, (R'

~
a

~
R")r, is then given by

«'I IR"&.=Q -'"(T)Oo(R')ao(R")
].« ~ «N

Xexp( ——P Lhi(r —r )
2

This is a finite-range function; it is easy to show that

m 1
Xr(r) = —csch(sr/hPc)+0(1/Phck, ).

Nh'p r

At a finite temperature the infinite-range correlations
created by the zero-point motion of the phonons are no
longer present. However, there are finite but very long-
range correlations present; for example at T=0.1'K.
If we take for c and m the values appropriate for liquid
He4, then Xr has a range of about 100 A.

To compute the physical quantities in which we are
interested, we have to specify f&. In the calculations
that follow, we assume that it is a product of finite-
range pair functions. However, the results we obtain
hold also if Pii contains correlations between more than
two particles, provided these correlations are between a
finite number of particles and are of finite range.

III. THE STRUCTURE FACTOR

In this section we study in the infinite-volume limit,
the radial distribution function g(r), and the structure
factor S(k) for our wave function and density matrix.
The radial distribution function at temperature T is
defined as

g« ~ «N

g(r —r') =—( P 5(r;—r)5(r, —r'))r,
n' '+j

(3.1)

where the bracket ( )r indicates an average with the
weight function (R~ a

~
R)r given by (2.15). The struc-

ture factor is defined in terms of g(r) by the usual
relation

S(k) = 1+n, drLg(r) —1]e'"'. (3.2)

At zero temperature, the weight function is simply
Ps'(R). We reported in Sec. I that if the wave function
has the form of a product of pair functions, then P(R)
is formally equal to the configurational probability
distribution for a classical quid at temperature T,ff
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1.5
~ ~

0
o.=2.6 A

used before, and it will be particularly useful in the
calculation of the momentum distribution rss (Sec. IV).
I,et QN[v(r) j be the normalization constant when there
is an "external potential" v(r):

1.0 ~ ~ ~ ~ ~ ~
a ~ e ~ ~ ~

Qrr[v(r)]= dr, " drN

1» ~ «N

&«xp& —Z (I*"+X')—2 v } (33)

0,5

0.0
0

FIG. 1. Structure factor S(k). The full line represents SHs(k),
the solution of the Percus-Yevick equation for hard spheres for
a =2.6A t'packing fraction, ri=(s/6)ao', equal to 0.2004), the
dashed and dash-dotted lines represent Kq. (3.6) when 6(k,k,)
=exp/ —(k/k, )'j and G(k, k,) =exp( —k/k, ), respectively, k, =0.5
A, and SsR(k) is SHs(k) in this figure. The line through the
origin represents (3.8). The points represent the experimental
diffraction data PD. G. Henshaw, Phys. Rev. 119, 9 (1960)J for
liquid He4 at 1.06'K.

Here the subscripts i and j indicate the coordinates r;
and r; in the arguments of the functions. The radial
distribution function can be expressed in terms of the
second functional derivative of the normalization
constant (3.3)":

1 ks lnQs [vj
g(r —r') —1+—8(r—r') =ts ' . (3.4)

rs iiv(r)bv(r') „p
We show in Appendix I that the contribution from the
factors containing X;; in Eq. (3.3) can be expressed in
terms of a functional integral. ""The problem of cal-
culating QN[v] is then reduced to the calculation of a
functional integral with respect to p(r) of a functional
whose most important term is of the form

interacting with a two-body potential p(r) given by:—ln[f(r) j= (2kv T,tt) '9 (r). In Sec. II we showed that
the zero-point motion of the phonons implies that 9 (r)
has a part of in6nite range. Therefore the equivalent
classical Quid does not have a thermodynamic limit.
The existence of g(r) in the infinite-volume limit has
been rigorously proved'r only for potentials &p(r) for
which J'dr[exp( —q (r)/krrT) —1] exists. We shall as-
sume that g(r) exists in the infinite-volume limit even
though rp(r) has an infinite range. It would be interest-
ing to see if this assumption can be rigorously justihed.
However, if we have inhnite-range correlations, then we
cannot expect that the asymptotic form of g(r) for large
r will be correctly given by the Ornstein-Zernike"
theory. In other words, S(0) will not be equal to
m~p. «k~T, g~, where ~y,« is the isothermal compressi-
bility of the equivalent classical Quid. Indeed this rela-
tion is based on the assumption of the existence of a
thermodynamic limit for the system.

In In[f(r)$ there is a finite-range part N(r) and an
infinite-range part, X(r). The different character of these
functions allows us to separate their effects on the
behavior of S(k) and g(r) for small k and large r, respec-
tively. A similar problem has been considered in the
case of classical fiuid with short- and long (but finite)-
range forces. '~" The method we use differs from those

"D.Ruelle, Ann. Phys. (N. Y.) 25, 103 (1963).' M. Coppersmith and R. Brout, Phys. Rev. 130, 2539 (1963).
'9 A. A. Broyles, H. L. Sahlin, and D. D. Carley, Phys. Rev.

Letters 10, 319 (1963).' J. L. Lebowitz, G. Stell, and S. Baer, J. Math. Phys. 6, 1282
(1965).

&exp(s Z 9»+tv )))». (3.5)

Here ( )sa means an average with weight
= exp[—g~& "~ N„.j.To evaluate the average in (3.5)
we use a cumulant expansion. '4%e show in Appendix I
that because of the different range of the functions X(r)
and N(r), it is good. approximation to retain only the
two first terms in the cumulant expansion (Gaussian
approximation). In this approximation, the structure
factor is given by

S(k) =S»(k) 1+~X(k)Ssa(k), (3.6)

where spit(k) is the structure factor corresponding to
the short-range function fit and X(k) is the Fourier
transform of X(r):

X(k) = (2mc/tskk)G(k, k.) . (3.7)

From (3.6) and (3.7) we see that, because Ssa(0) WO,

S(k) = kk/2rtsc as k ~ 0, (3.8)

which is what we expect on the basis of Feynman's
work. s If S(k) has the limiting form given by Eq. (3.8),

~' J. K. Percus, in The Equilibrium Theory of Classical Fluids,
edited by H. L. Frisch and J. L. Lebowitz (W. A. Benjamin, Inc. ,
New York, 1964), p. 1133.

~2 S. F. Edwards, Phil. Mag. 4, 1171 (1959); for a review see
S. G. Brush, Rev. Mod. Phys. 33, 79 (1961).

'8 A somewhat similar method to that outlined in Appendix A
has been used by J. Zittartz, Kolner dissertation, 1964
(unpublished).

~ R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962).
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then g(r) —1 —k/2rr'Nmcr' for large r. Enderby et at."
showed that this asymptotic form for g(r) could arise
from a wave function of the form (1.1) provided
1nLf(r)7 behaved like r ' for large r. To illustrate the
behavior of S(k), Fig. 1 and Fig. 2 show S(k) calculated
on the basis of (3.6) when k, =O.SA ' and for two
different forms of the cutoff function G(k,k,). For the
short-range part Ssn(k), the analytic solution" of the
Percus-Yevick equation" for hard spheres has been
used: SHs(k). This corresponds to a short-range its
with the following N(r): N(r) =0 for r) o, and N(r) = ~
for r(0. We shall call this short-range wave function
the "hard-sphere" function. The values o =2.6 and 2.9 A
have been assumed. Miller, Pines, and Nozieres" have
suggested that S(k) may have a local maximum at
k 0.6 A-'. However, the detailed form of S(k) in this
region depends on k„ the shape of the cutoff function
G(k,k,), and the choice of Ssa(k). We therefore cannot
at the moment compare our calculations with the form
they suggest.

It follows from our basic assumptions that S(k) is
equal to hk j2mc for all k&k„provided G(k,k,) =1 in
this range. However, Eq. (3.6) provides an approximate
expression for S(k) which is only valid for very small

k, and we therefore cannot expect to find from it that
S(k) is linear in k for k &~k,. In the intermediate region,
between the part dominated by the X(r) function
and the part dominated by the short-range function
Q(r), there are probably sizeable corrections to expres-
sion (3.6). We hope to present a study of these correc-
tions in a later paper.

At finite temperature, the infinite-range correlations
are no longer present. However, the function Xr(r)
which appears in the density matrix has a much longer
range than the typical range of the short-range function
u(r) (this range can be estimated from the results of
variational calculations). '" We can therefore use the
same Gaussian approximation as we used at absolute
zero, and we find that S(k) is given by an expression of
the same form as Eq. (3.6) but with X(k) replaced by
Xr(k), where

2mc
tanh (-,' APkc) G(k, k,) . (3.9)Xr(k) =

elk
We find that S(0) is equal to (mPc') ' up to terms of
order Lac'Ssa(0)7 ' which are negligible in our tem-
perature range. We note that because we have to satisfy
the inequality Pkck, ))1,S(k) will depart from its limit-
ing value for quite small values of k.

IV. BOSE-EINSTEIN CONDENSATION

It is generally recognized that the superQuid proper-
2' J. E. Enderby, T. Gaskell, and N. H. March, Proc. Phys.

Soc. (London) 85, 217 (1965)."M. S.Wertheim, Phys. Rev. Letters 10, 321 (1963);E.Thiele,
J. Chem. Phys. 39, 474 (1963)."J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).

"A. Miller, D. Pines, and P. Nozibres, Phys. Rev. 127, 1452
(1962).
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FIG. 2. The same as Fig. 1 for o.=2.9L
(packing fraction g=0.278l.

At zero temperature the density matrix is given by

(r
I
0'i

I
r )p= 7 harp droit'p(r, r2, rN)

ties of He4 are connected with the existence of a macro-
scopically populated momentum state in the system—
Bose-Einstein condensation. We shall call the fraction
of particles in the zero-momentum state mo the "con-
densate. " It is therefore of interest to examine the
momentum distribution ej, for our system. Penrose and
Onsager" showed that if in the wave function the corre-
lations decrease fast enough at large separation, an
interacting Bose system has Bose-Einstein condensation
at zero temperature. However, it is not known how fast
these correlations must die away for their analysis to
be valid. It is therefore not possible to immediately
apply their methods to our ground-state function with
infinite-range correlations; for this function we have no
rigorous proof that a condensate exists. An argument in
favor of the existence of a condensate in the presence of
these correlations comes from the weakly interacting
Bose system. In this system, these correlations are
present, and it is known that a condensate exists. ' We
are only able to give a proof of the existence of a
condensate on the basis of a cumulant expansion of the
appropriate quantities.

The existence of a condensate is directly related to
the presence of o6-diagonal long-range order" in the
one particle density matrix (rI or I

r')r. In fact, if trp(T)
is the density of particle in the zero-momentum state
(we are considering a system at rest) we have

Np(T) = lim (r I
o & I

r')&.
) g—gr )~oo
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The condensate no is equal to the infinite volume limit
of c4N, where

1 n /~+i««'(r
I
p'i

I
r') o

=-
/'2 V Qir

(4 3)

In (4.3), QN is the normalization constant of Pp and

gir~i is defined as

where
np ——np(HS) exp(A), (4.6)

dkX'(k) SHs (k)
2(2n-)'

X$1+ nX(k)Sns (k)] '+ ', n dr-g (r)X—'(r)

e2
+— drdr'X (r)x (r') g (r)g (r')

2
X l g ( I

r+ r
I )—1] (4 7)

Here np(HS) is the condensate for the wave function

pip, g(r) is the radial distribution function for Pp, and

Srrs(k) is the structure factor for fii. We have calculated
6 using for g(r) the expression given by Eqs. (3.6) and

Xfp(r, rp' 'rN) ~ (4.4)

If the wave function is the "hard-sphere function, "
then

pip+i =Qir+i(1+'0 (1/X) )
and from (4.1) and (4.3) we see that np ——n'/s, "where
s is the activity of the equivalent classical fluid which is
defined as z= (A +1)Q~/Qir+i. In general, if the wave
function contains only finite-range functions u(r)~&0,
it is easy to see that QN~i &~Q~~ i and therefore np &~n'/s.
Unfortunately the infinite-range correlations introduced
by the function X(r) in fp render this inequality useless,
because the "thermodynamic limit" no longer exists, and
the activity of the equivalent classical Quid tends to
infinity in the infinite-volume limit.

AN can be written in the following form

A ir ——A ir (SR)BN, (4.5)

where Aip (SR) is equal to expression (4.3) when pp is
replaced by fri. A useful way of writing BN is given in

(35) in the second Appendix. The averages which

appear in that expression can be evaluated using the
cumulant expansion, and this leads to Eqs. (85)—(87)
of Appendix 8 for A N. We show in Appendix 8 that
AN is finite in the infinite-volume limit, so we conclude
that there is a condensate for our wave function. This is
true if the cumulant expansions we used are convergent,
an argument for this is presented in the appendix.

If the short-range part of the wave function is a
"hard-sphere" function (HS), the expression for np

simplifies, and

where Air (T) is defined in (4.8), and QN (T) and pip+i(T)
are the same quantities as we defined at zero tempera-
ture except that X(r) is replaced by Xr(r); kp(0) is the
value of function (2.13) at zero distance. Neglecting
terms of order, (Pkck, ) ', kp(0) is independent of the
form of G(k,k,); kp (0) = —m/4nk'P'c. At finite tempera-
ture only finite-range functions appear in (4.8); if

N(r) &0 and if we chose G(k,k,) so that Xr(r) &~ 0, then
the inequality np&~n'/s applies and we are rigorously
able to conclude that the system has a condensate. If
Xr(r) is not always positive we have to resort to the
same cumulant expansion as before, and from this we

again conclude that there is a condensate at any tem-

perature for which our density matrix is valid. If the
short-range part fri is a "hard-sphere" function, (4.6)
holds when d, is replaced by Z(T) = A(T)+ipkp(0) and

h(T) is given by (4.7), where the functions are the

appropriate ones for temperature T. We have calculated

A(T) in a similar way and we find that np(T) decreases

very slowly with increasing temperature and at T= 1'K,
np(T) differs from np by only a few percent.

V. MOMENTUM DISTRIBUTION

The momentum distribution e~ is the Fourier trans-

form of the one-particle density matrix

np= dre'p'{(rl pil0)r —np(T) j. (5.1)

Here we have taken into account that (rlpilr') is a

(3.2). The short-range structure function SHs(k) was
again approximated by the Percus- Yevick solution of
the hard-sphere problem'&; for the physical parameters,
the values appropriate for He4 were used. We find that
with G(k,k.)=exp( —k/k. ), 6= —0.11when k, =0.5 A ',
with G(k k,)=exp L

—(k/k, )P], A =0.04 with k, =0 5 A '.
In both cases the hard-sphere diameter was chosen to
be 2.6 A. When k, =0.25 A ',

l
6

l
becomes of the order

of 10 ', irrespective of the form of the cutoff function.
We notice that 6 is always small and its value depends
on the way the cutoff is introduced. This dependence
has no physical meaning because if we change the
phonon factor in fp, the short-range factor fri will pre-
sumbaly change as well. The corrections to expression

(4.7) which come from higher-order cumulants have
been estimated and give negligible contributions. From
these calculations it appears that the phonon factor in
the wave function does not greatly affect the value of
the condensate.

At finite temperatures with the density matrix (2.11),
it is easy to show that

n gir~i(T)
np(T) = lim gh2(0)/2

ir, r~" V Q~(T)

lim A ip (T)eP'i"" (4 8)
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Xexp{-',[x(ri—r2)+ n(ri —r2) 7} .- npg&'&(ri —r2)
N, V~+

Xexp{4[x(ri—r2)+N(ri —r2)7}, (5.2)

where AN is de6ned in (4.3) and g&2& (ri—r2) is given by

$($+1) 1
g&'& (ri—r2) =

QN+1
(&3' ' 'dl'N+1

1~ ~ ~ N+1

Xexp{—— P l;;}. (5.3)

Here

function only of the difference ~r—r'~ (the system is
translationally invariant). In our definition of np we
have subtracted the singular part at k=0, due to the
condensate. At zero temperature the one-particle
density matrix can be written in the form (to terms of
order 1/E)

(ri
~
oi

~
r2) o= A Ng"'(ri —r2)

where now (( ))sa means an average with only the
short-range part of (5.4). If the cumulant expansion is
used to evaluate the average (5.7) and the 6rst two
terms are retained, we obtain

[Ssa ' (k)—27
S&'& (k) =Ssa&'& (k) —nx(k), (5.8)

1+nx(k)Ssa(k)

where S&'& (k) and S&'& (k) are related to g&'& (r) and g&'& (r)
by equations identical in form to (3.2). The subscript
SR on a function means that it is calculated using only
the short-range function f&2.

Equations (5.1), (5.2), and (5.8) allow us to take into
account the eGect of the phonons on eJ,. We now
examine the behavior of eI, for small k. From the linear
dependence on k of S&'&(k) for small k we can say that
g"&(r)—1=0(r ') for large r. Therefore the only con-
tribution to n~ which is not regular at k=0 comes from
the factor np exp[x(r)/47 in (5.2). Using this result we
find that e& for small k is given by

2

l*& = II (1—2~. ,*)(1—
2 &.,,) (x';+n';) (5 4) no= n prno/2nkk. (5.9)

and
1o ~ IN+1

QN+1= dri drNqi exp{—-', P I;;}. (5.5)

1 2 1 1
g "&(ri—r2) — + —

&& (ri—r2)
E(X+1) (X+1)2 J&'/+1 n

1 l&' lnQN+1[viv27
~ (5 6)

~vi(ri)~v2(r2) i-o, 2=o

Again the contribution from the X functions to
QN+1[viv27 can be expressed in terms of a functional
integral, and we are left with the same problem we had
in the calculation of g(r) except that the average (3.5)
is replaced by

N+1 2

We now introduce two new correlation functions, g&'& (r)
and g&'& (r); they are given by equations similar to (5.3)
except that in (5.4) any number between 3 and X+1
replaces 1 or 2 for g&'&(r) or 1 and 2 for g&'& (r) as indices
of the Kronecker symbol. Up to terms of order
1/E g &'& (r) is equal to g (r) de6ned in Sec. II.Apart from
a constant factor, these three functions are formally
equal to the three distinct classical radial distribution
functions which can be defined for a mixture of two
particles in a bath of E—j particles and with the
effective interaction potential given by (5.4).

The method we used in Sec. III to calculate g(r) can
be used for g&'&(r) If QN+.1[vi,v27 is the normalization
constant when an "external potential" v(r) is intro-
duced acting only on the particles 1 and 2, the following
relation holds:

This singular behavior comes from the infinite-range
correlations in the wave function, for if the wave func-
tion contains only finite-range functions, the momentum
distribution is regular at k=0.' Using perturbation
analysis, Gavoret and Nozieres' showed that n& has the
form given by (5.9).

At 6nite temperature the one-particle density matrix
can be written in the form

where AN(T) is deaned in (4.8) and g&'&(r, T) is given
by (5.3) with XT(r) in place of X(r) in l(r). Now the
only singular contribution to n& for k=0 comes from
the term exp[—-', k2(r)7 in (5.10). In fact k2(r) behaves
like r ' for large r; this arises from the k ' singularity
which appears in the definition (2.13) of k2(r). All the
other functions which enter expression (5.10) are 6nite-
range functions so that they give regular contributions
to el, . We find that for small k, nI, is given by

no np(T) rn/nPhpk2——. (5.11)

It has been shown previously that this kind of singu-
larity in the momentum distribution is present in a
dilute hard-sphere Bose gas."

The way in which we have written the one-particle
density matrix leads to a relation which may be useful

29 T. D. Lee and C. N. Yang, Phys. Rev. 117, 897 (1960).

(rl~ ol~ r2)T +N(T) exp{'2[k2(0)—k2(rl r2)7}

Xexp{-,'[XT(ri—r2)+N(ri —r,)7

Xg&" (ri—r2, T) —np(T)
N, V~~

Xexp{—2k2(rl r2)+ g[xT (rl r2)+I (rl r2) 7}

Xg&'&(ri —r2 T), (5.10)
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in calculating the condensate np. From its dehnition
(r(ai(r)0 ——I, therefore from (5.2) we deduce that

lim g&'&(r) exp(-', [X(r)+N(r)]}=—. (5.12)
„~p Sp

The function g&'&(r) can be evaluated using one of the
well-known approximate integral equations for the
radial distribution function for a mixture of Quids. See
for example Ref. 30. If one of these equations gives a
good approximation to the true g&mi(r) at small dis-
tances, relation (5.12) can be used to evaluate the
condensate. We note that if the wave function is a
"hard-sphere" function, then (5.12) gives the known"
relation between the activity and the potential of the
mean force at zero distance. [Recall the relation between
the activity and rio and note that gHs&'&(r) =g&s(r).]
In general for a short-range force the value of the
potential of the mean force at zero separation has not
been related to any physical quantity.

note that in one of the cumulant expansions the two
terms which constitute the second cumulant [they
correspond to the two last integrals in expression (4.7)]
are divergent; however, their sum is finite. S(k) and ei,
for small k continue to behave like (3.8) and (5.9),
respectively.

In 1D we cannot take the infinite-length limit of X(r)
owing to the k ' singularity in expression (2.8) for X(r).
However, it is possible to perform the summation over
the discrete k values in (2.8), and the result is that

(6 1)

where n=2mc/m. kri, 1. is the length of the system, and
R(r) is a function of finite range whose detailed form
depends on the cutoff function G(k,k,). In what follows,
the functions R(r;;) will be included in Pa. The ground-
state wave function is therefore

$0(rl' ' 'rN) QN QR(rl' ' 'rN)

VI. ONE- AND TWO-DIMENSIONAL SYSTEMS
y. p. 0/2

X g sin
L

(6.2)

In this section we shall study the occurrence of Bose-
Einstein condensation in one- and two-dimensional
systems. If the ground-state wave function for a one-
dimensional (1D) or two-dimensional (2D) Bose
system is a product of finite-range pair functions, the
properties of these systems would be qualitatively the
same as those of a three-dimensional (3D) system;
in particular both the 1D and 2D systems would have
a condensate. However, we know that a 1D system of
impenetrable point bosons" does not have a con-
densate. "We shall show that if we take into account
the presence of the long-wavelength phonons we obtain
qualitatively diGerent results for 1D and 2D systems.
Our basic assumption is again that these systems can
support such modes and that they propagate inde-

pendently of any other modes of motion. This assump-
tion is supported by the fact that if a condensate exists,
then it is possible by perturbation analysis to show that
the lowest modes are long-wavelength phonons. On the
other hand, the point Bose model in 1D has phonon
modes'4 even though it has no condensate.

We start by considering zero temperature. The
phonon factor in the wave function in 1D and 2D is of
the same form (2.7) and (2.8), except that the k vectors
are in one or two dimensions, respectively. In 2D the
infinite-volume limit of X(r) can be taken and at large

r, X(r) ~ r '. What we said in Sec. IV about eo in 3D
can be repeated here, and we conclude that a condensate
exists in 2D systems at zero temperature. We merely

'0 J.L. Lebowitz, Phys. Rev. 133, A895 (1964).
"%.G. Hoover and J. C. Poirier, J. Chem. Phys. 31, 1041

i1962l.
"M. Girardeau, J. Math. Phys. 1, 516 (1960).
"A. Lenard, J. Math. Phys. 5, 930 (1964).
'4 E. H. Lieb and W. Lininger, Phys. Rev. 130, 1605 (1963).

We see that in 1D the zero-point motion of the long-
wavelength phonons gives rise to correlations in the
wave function that extend over the entire length of
the system.

If o,=2, the phonon factor of the wave function is
equal to the exact ground state for a system of point
impenetrable bosons"; as we have already noted this
system has no condensate. "We believe that the pres-
ence of the factor Pa does not affect this conclusion. It
is interesting to note that in this system the low-lying
modes propagate with a velocity~ c=ahn/m so that
o.=2. Unfortunately the method used by Lenard" can-
not be extended to other values of e, his method is
based on a matrix representation of the product in
(6.2). We have not been able to demonstrate for other
positive values of a that there is no condensate; how-

ever, there are some arguments which support this con-
clusion. First, the phonon factor in (6.2) is a function
extensively studied by Dyson"; functions of this kind
arise in the statistical theory of nuclear levels. This
function is also equal to the configurational probability
distribution for a gas on a circle whose particles interact
according to the two-dimensional Coulomb law of re-
pulsion. The temperature T of the system is such that
1/kaT=n/2. If we neglect fbi, the normalization con-
stant in (6.2) is known from 'Dyson's work to be a
continuous function of n. The quantity +& is very
similar to the normalization constant and this suggests
that g&+& may also be a continuous function of a.
Now we know that the limit of (4.3) when iV —+~ is
zero if a=2, so we expect that the same is true for

"F.J. Dyson, J. Math. Phys. 5, 140 (1962); 3, 166 (1962);
M. L. Mehta and F. J. Dyson, ibid. 4, 713 (1963).
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lnLr/hPc] in 2D
prnhsP

r ln 1D~
nh'p

(6.3)

and taking into account (4.1) and (5.10) we conclude
that there is no oG-diagonal long-range order and
no=0."It is easy to see that the singularity in eI, is also
changed —in 1D there is no singularity at all and in 2D
eg behaves like k—'+ ~'»~'& for small k.

Pote added in Proof. We have calculated pie in 2D for
a finite system and find that pie(T) ~ pie(0)$ ' where
e=pn/4prpihsP. At T=0.1'K and for the mass and
density of He4, &=0.009. This implies that even though
there is no condensate, there is a very large number of
particles in the zero momentum state in any finite
system of realizable size.

The asymptotic form for large r of the single-particle
density matrix, Eq. (6.3), is similar to that found by

3' Dr. J. W. Kane has informed us that he has obtained very
similar results by a different method LPh.D. thesis, University of
Illinois (unpublished) j.

every n. Secondly, the very strong correlations in the
wave function (6.2) reflect themselves in the radial
distribution function g(r) which also is known for some
values of a.a' Indeed such systems possess what Dyson
called "quasicrystalline order. " From the work of
Penrose and Onsager, " it appears that this is the
physical reason for the absence of condensation when
a=2, and this again suggests that the condensation
is absent for every finite positive n. Finally, if mo were
finite, it is possible to show that ns has a 1/h singularity
as k —+ 0, and therefore m~ would not be integrable in
the infinite length limit, whereas we known that the
integral of eI, over ~ must be equal to the number of
particles. From this we again conclude that there is no
condensate.

At finite temperature in the diagonal part of the
density matrix, Xr(r) appears instead of X(r), and
Xr(r) is a finite-range function both in 1D and 2D.
Therefore in the decomposition (5.10) of (ri~or~rs)r,
the factor

exp(4[x'(rr —p s)+N(rr —rs)]}g"'(p r—rs T)

behaves in the same way as in three dimensions; when

~
p'r —rs~ —p~ it goes to 1. The function hs(r) has a h '

singularity as can be seen from (2.13), so we cannot
take the infinite-volume limit of this function in either
1D and 2D. However, in (5.10) the combination
hs(0) —hs(rr —rs) appears and this has a finite limit
when X—+~. Indeed, at large distances

hp(0) —hs(r)

2mc
csch(hPhc)G(h, h, )[1—cosk r]

Ak

Rice" for the two-particle density matrix for neutral
superconductors. Rice obtained his results by using the
Landau-Ginzburg" functional for the local free energy.
It has been suggested by Ginzburg and Pitaevski" that
the same functional form should be applicable to super-
Quid helium. If this suggestion is correct, then we can
immediately apply Rice's method to obtain the results
we have outlined in the section. Alternatively we could
make the assumption that a neutral superconductor
has independent phonon modes in the electronic degrees
of freedom (the neutral Anderson modes4o) and then
apply our techniques to a model wave function and
density matrix constructed in a similar way to that
given in Sec. II. In this manner we recover Rice's
results.

VII. CONCLUSlONS

We have shown in the preceding sections that the
wave function and density matrix we have proposed
lead to results for S(h) and ns for small h which are in
agreement with our expectations. The results we find
for one- and two-dimensional Bose systems are closely
paralled by these found by Rice' for one- and two-
dimensional neutral superconductors. This also lends
support to our basic ideas. A major task that remains
is to test our wave function and density matrix by
computing the numerical values of various physical
quantities. A variational calculation of the ground-state
energy using k, and the short-range pair function as
variational quantities is, at present, under way. We
also plan to carry out numerical calculations of S(h),
e~, and mo both at absolute zero and at finite tempera-
tures. The calculation of all these quantities can be
reduced to problems in some equivalent classical Quid
and we then have available to us all the techniques
that have been recently developed in that field."These
techniques are now suKciently far advanced that we
are confident that they are adequate at liquid-helium
densities.

A number of interesting mathematical problems arise
in connection with the infinite-range correlations in our
ground-state wave function. Because of the presence of
these correlations, we do not know rigorously whether
the expectation values in which we are interested are
well defined in the infinite-volume limit. The first
mathematical task that comes to mind is to try to
construct a proof (or disproof) of the existence of these
expectation values. Another mathematical problem is
the proof (or disproof) of the existence of a Bose-

"T.M. Rice, Phys. Rev. 140, A1889 (1965)."V. L. Ginzburg and L. D. Landau, Zh. Kksperim. i Teor. Fiz.
20, 1064 (1950).

'~ V. L. Ginzburg and L. P. Pitaevskii, Zh. Eksperim. i Teor.
Fiz. 84, 1240 (1958) fEnglish transl. : Soviet Phys. —JETP 7,
858 (1958)g.

40 N. ¹ Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, A
Em Method in the Theory of Sepercorlductieity (Consultants
Bureau Enterprises, Inc. , New York, 1959); P. W. Anderson,
Phys. Rev. 112, 1900 (1958).

4' J. S. Rowlinson, Rept. Progr. Phys. .28, 169 (1965).
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ln ill[a]= — drds il(r)
2

—s —— drldr2 SRR(r—rl)X SBR(r

(A5)X (exp(i Z [4 (r;)+i~(r )]}).R,
j=1

th the short-range~ ~ ~ indicates an average wiwhere( )sain i

—s it(s)+D[il], (A11)XP(ri —r2)SsR(12 s) v s

nd Resonunce in Mug-' R. u, utzon, Reluxutzon und
H (01netzc ysSystems edited by D. ter aar

1962), p. 23.
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where P(r) is an operator whose inverse is

1 s
P '(r) =~(r)+—Ssa(r),

Sg 2
(A12)

and D[v] only contains terms independent of s or linear
in v; they give no contribution to g(r) as one can see
from (3.4). The second functional derivative of (A11)
can be easily performed, and, taking into account (3.2),
(3.4), (A4), (A10), and (A12), expression (3.6) for the
structure function results.

In the calculation of the condensate no, the radial
distribution function g(r; $) for a partially coupled
system enters. By this we mean the system which has
one of the particles coupled to the others by
$(X(r)+u(r)) rather than X(r)+u(r). The radial dis-
tribution function g(r; $) can be expressed in terms of a
second functional derivative, similar to (3.4), of the

normalization constant when there is introduced an
"external potential" w(r) acting on 1 particle only and
an "external potential" e(r) acting on the E 1—remain-
ing particles. In this case the phonon part can again be
expressed in a form similar to (A1) provided that b(r)
is replaced by

N

b(r, $) = i P b—(r r—;) i—/b(r r—i).
j=2

(A13)

The function g(r; $) can be calculated using the same
method as we used to calculate g(r). The corresponding
structure factor S(k; $) is given by

1+nx(k) (1—t)
s(k; ~)= Ssa(k; &), (A14)

1+nx(k)SsR(k; &)

where Ssa(k; $) is the short-range structure function
for the partially coupled system.

APPENDIX B

The quantity AN defined in Eq. (4.3) can be written in the following form:

N+1 N+l
(exp{2 2 (ulj+u2j)+4u12})SR

N j=3

1» ~ N+1 1."N+1
X((exp{—', P (&ij+X2j)+»Xi2}))((exp{— P &jj}))sa[(exp{— P X'j})sR] ', (81)

where ( ~ )sa is defined in Sec. III, (( ))sa is defined in Sec. V, and (( )) indicates an average with weight

1» ~ ~ N+ 1

exp{—-', P (X,,+jn,j)}, where jn,;=g (1—isb, , ;) (1 isb, j)u—;;, (82)

Taking into account the formal identity between the first term in the right-hand side of (81) and n'/s, where s is
the activity of the "equivalent Quid, " this term can be written4'

n QN+i n QNpi(SR)=n exp —n d$ dr [u(r)+X(r)]g(r; $) +N)
& QN 0 V QN(SR)

(83)

where g(r; () is the radial distribution function for the partially coupled system defined in Appendix A and RN is
given by

RN=exp —n d$ dr[X(r)g(r; $)+u(r)(g(r; $)—gsa(r; $))] (84)

The first factor in the last expression in (83) multiplied by the second term in (81) is equal to AN(SR); therefore
AN can be written in the form (4.5), where BN is given by

1» ~ » N+1 1» ~ » N+ I
BN RN((exp{-,' E (&i,+&2i)+@12}))((exp{ E ~ 'j}))SR[(exp{ Z x 'j})SR] (85)

4' T. L. Hill, Statistical 3fechaeics (McGraw-Hill Book Company, Inc. , New York, 1956), p. 192.
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The averages which appear in (35) can be evaluated using a cumulant expansion24; we have, therefore (neglecting
the term xX&2 in the first average of 35 which gives a contribution of order 1/ll&'),

N+1 oo ] N+1

&(exp{-,' g (X,;+X2;)}&)= exp P —(([-', P (Xi;+X„)j"» '
j 3 m=1 ml 2=3

=exp z dr X(r)g&i&(r)+ dr X—'(r)g&»(r)+ — drds x(r)g&i&(r)x(s)g&" (s)[g(r+s) —1)+
2 2

(36)

and

li ~ i N+I 1» ~ ~ N+1 ao (—1)N' i" N+1 1 ~ N+1

(&exp( —2 X'}&)sRL(exp(— E X'}&»3 '=exp Z «( r, X')™»»"—&( Z X')")sa"
i&j i(j m=1 m! i(j i,&j'

=exp 2n—dr X(r)[gsa&i&(r) —gsa(r)+~hgs@(r) J+ . (37)

Here the superscript (c) to a bracket means a cumulant
average, that is,

&f)"=&5&' &f~&"=&f9&—V&(v&' ". (Bg)

In (36) we have written explicitly the first two cumu-
lants only and in (87) the 6rst cumulant. In Eq. (86)
g&'&(r) is the radial distribution function given by an
equation similar to (5.3) except that /;; is replaced by
X;,+m@. In (87) gsao&(r) is the radial distribution
function defined in Sec. V and hgsa(r) is defined by
gsa&'&(r)=gsa(r)+ll&' 'hgsa(r). We note that in the
two cumulant expansions (87) the terms of order E
cancel out and only terms independent of S remain. In
(36) the superposition approximation~ has been used
to express the three-particle distribution function in
terms of the two-particle distribution functions. It is
possible to use a graphical analysis' of the diGerent
terms which contribute to the cumulants, and in this
way it is easy to write higher-order cumulants. It is also
possible to use the functional integral method we used
to calculate g(r) to evaluate the averages present in
(37). However, we do not pursue this matter further
here.

The 6rst term in (84) and the 6rst term in the last
expression of (36) are divergent in the in6nite-volume
limit; however, the sum of these two terms is finite in
this limit. All the other terms which appear in (84),
(36), and (37) are convergent. In fact in (86) the
terms explicitly written or those arising from higher-
order cumulants contain in the integrand powers of

44 J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935).

X(r) or [g(r) —1j,so that the integrals are convergent in
the infinite-volume limit. In (87) in the integrand there
are functions gas&'&(r) —gsa(r) or hgsR(r) (or similar
functions) and these functions go to zero rapidly as
r ~~.We conclude that in the expressions (34), (35),
(86), and (87) for J3N only 6nite quantities in the
in6nite volume limit appear; therefore, taking into
account (4.5), eo is finite in this limit if the cumulant
expansions we used are convergent. The cumulant
expansions have been used to evaluate averages of
slowly varying functions of infinite range, X(r), with
functions of a shorter characteristic space scale and of
finite range: g(r) —1 or gsa(r) 1.Th—e cumulant expan-
sion and the Gaussian approximation to it,seem ap-
propriate in this case.4'

If the short-range function m(r) is the "hard-sphere"
function (see Sec. III), BN simpli6es. In fact in this
case the averages indicated by (( )) and (( ))sa
are equal to ( ) and ( )sR, respectively; therefore
expression (87) is equal to unity. In (84) only the region
r(o and the in6nitesimal region around )=0 could
contribute to the integrals which contain N(r). This is
because for r)o, or for every finite $ and r(0,
N(r)g(r; $)=0 and N(r)gsa(r; $)=0. However, for an
infinitesimal $ the X(r) functions give an infinitesimal
contribution to g(r; ]) [this is not true for I(r) which is
in6nitej; therefore g(r; &) =gsR(r; &) and this integral
is zero. If we express g(r; $) in terms of S(k; $), and for
this function we use the expression (A14), the con-
densate can be written in the form given by (4.6) and
(4.7), taking into account that SHs(k; $) =SHs(k) for
every 6nite $.


