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The lowest-order nonvanishing contribution to the viscosity of a crystal lattice is considered. This con-
tribution depends on the cubic anharmonic momentum-Aux operator previously derived by the author. An
inhomogeneous transport equation, which describes both anharmonic and imperfection phonon scattering
and whose solution determines the viscosity, is presented. The scattering operator is then replaced by a single-
relaxation-time approximation where the effective relaxation time is found from lattice-thermal-conductivity
experiments. With the aid of a Debye-like model, solutions are obtained for the coefficients of viscosity. From
these solutions the attenuations of longitudinal and transverse sound waves are calculated and compared
with experiment for Ge and Si, where qualitative agreement is found.

I. INTRODUCTION' ONEQUILIBRIUM statistical mechanics gives us
expressions for such transport coeflicients as the

thermal conductivity, viscosity, and coe%cients of
diGusion. The transport relations, which incorporate
these coefficients (e.g. , Fourier's law of heat conduc-
tion), together with the macroscopic conservation laws
form the hydrodynamic equations of motion. Here, the
term hydrodynamic refers to processes which can be
described in terms of a limited class of macroscopic
variables such as the local energy density, particle
number density, momentum density, etc. , or equiva-
lently, local thermodynamic variables such as the
temperature, chemical potential, velocity, etc.

It has been shown that the transport coefficients are
given by time integrals of correlation functions in-
volving the microscopic Quxes. This formulation is valid
for all phases of matter. For a complete discussion see
McLennan, ' and DeVault and McLennan. ' To reduce
the correlation-function formulas of a solvable form, one
is confronted with a many-body problem. For example,
for a gas one attempts to reduce the formula to a sum
of quantities which involve the motion of a single
particle. For a dielectric crystal it is convenient to re-
duce the formula to a sum of quantities involving a
single phonon mode. Even with these simplifications the
problem is still rather formidable; however, one is in a
position to make meaningful approximations.

Starting with the kinetic theory of Peierls' and more
recently with the correlation-function treatment of
Hardy et ul. ,' ' the theory of lattice thermal conduc-
tivity has been discussed in considerable detail. Hardy,
Swenson, and Schieve' give a perturbation expansion
for the thermal conductivity. The Hamiltonian for the

~ Research done under the auspices of the U. S. Atomic Energy
Commission.
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lattice is written as H'+AH', where H' is the harmonic
Hamiltonian for a perfect lattice and XII' is the pertur-
bation due to anharmonic forces and lattice imperfec-
tions. The lowest-order term in the perturbation expan-
sion is of order X '. The X '-order corrections have been
treated in detail by Hardy and Schieve. '

Some confusion appears to exist concerning what is
meant by the viscosity of a crystal. To make the concept
clear consider the macroscopic conservation laws for a
system with one atomic constituent,

Bp—+V j=0,
Bt

BQ—+V s=0,
Bt

s,=s,' X,,BT/Bx, . — (1.4)

s,' is the reversible part of the energy flux, which is
zero for a system with a vanishing local velocity. X;; is
the thermal conductivity and can be determined from
its correlation-function formula. Similarly the momen-
tum Qux or pressure tensor can be written as

Bvi Bv
P 1t,g te srt~ytm +- .——

Ox~ Bxt

where v is the local velocity. t; is the reversible part of
the pressure tensor which in general is not zero even for
systems with vanishing local velocity. The coefficient

is the viscosity and can be determined for any
phase of matter from its correlation-function expression.
In a solid the symmetric part of the velocity gradient is
often referred to as the strain rate.
875

BP; Bt,;+ =0,
Bt 8$&'

where p, I, p are the densities of mass, energy, and
momentum and j, s, t;; are the associated Quxes. The
energy Qux for slowly varying hydrodynamic processes
can be written as'
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Just as a temperature gradient will disrupt the
equilibrium phonon distribution of a crystal, so will a
velocity gradient. In fact, it has been shownv that the
disturbance of the phonons caused by a velocity gradient
does lead to a finite viscosity. The lowest order (X ')
contribution to the viscosity was discussed in Ref. 7;
however, it has recently been shown' that the diagonal
part of the harmonic part of the momentum-Qux
operator, which was used there, actually vanishes
identically with the result' that the ) ' contribution to
the viscosity also vanishes. (Although the derivation
of the harmonic momentum-Qux operator in Ref. 7 was
in error, the remaining conclusions cited there are
correct. ) The X '-order contributions also vanish since
each of the six possible contributions at this order also
depends on the diagonal part of the harmonic part of
the momentum-Qux operator being nonzero.

The lowest-order nonvanishing contribution to the
viscosity comes from the X' order of the perturbation
expansion. There are six possible contributions at the

order. It was shown in the preceding paper' that five
of these are zero. Here we treat the remaining non-
vanishing contribution which depends on the diagonal
elements of the anharmonic momentum-Qux operator.
This operator has been derived in an earlier paper. '

In Sec. II the inhomogeneous transport equation
whose solution determines the viscosity is discussed,
and the collision operator is replaced by a single-
relaxation-time approximation. Since the collision oper-
ator is the same as that for thermal conductivity, the
effective relaxation time is obtained for particular mate-
rials from thermal conductivity experiments. The results
of Sec. II are used in Sec. III to compute the coefficients
of viscosity by employing a Debye-like model for a
primitive lattice with a cubic symmetry. Both an ap-
proximate analytic solution and a numerical solution
(by use of a computer) are obtained for germanium
and silicon. It is interesting to note that, in a sense,
lattice viscosity depends more strongly on the anhar-
monicities than does the lattice thermal conductivity.
Both the homogeneous and the inhomogeneous parts
of the transport equation for the viscosity are involved
with the anharmonicities. This will be shown to mean
eGectively that in considering the damping of an
infinitesimal strain sound wave one must use finite
strain to determine the viscosity.

In Sec. IV the viscosity is used to determine the
attenuation of longitudinal and transverse sound waves
in germanium and silicon. Comparison is made with
experimental results reported by Mason and Bateman'
and qualitative agreement is found. The conclusion
previously suggested by Mason and Bateman" and by

' G. P. DeVault and J. A. McLennan, Phys. Rev. 138, A856
(1965).

8 G. P. DeVault, Phys. Rev. 149, 624 (1966).
~ G. P. DeVault and R. J. Hardy, preceding paper, Phys. Rev.

155, 869 (1967}.
» Vf. P. Mason and T. B.Bateman, J. Acoust. Soc. Am. 36, 644

(1964).

Klemens" that the relaxation time associated with
longitudinal wave attenuation should be about twice
that of thermal conductivity seems reasonable here. The
results are discussed in Sec. V.

The Appendix discusses a simple model for extending
the present analysis to describe materials which exhibit
viscoelastic behavior, i.e., materials which "remember"
their past history. '

II. THE TRANSPORT EQUATION

It was shown in Sec. III of Ref. 9 (the preceding
paper) that the lowest-order nonvanishing contribution
to the coeKcients of viscosity for a lattice is given by

~' ~-= U ' 2»"h"'—U(~( T* ')'/~(H')')]~"'™,
ks (2.1)

where XT; is the perturbation to the volume-averaged
momentum-flux operator T,,=T,P+XT,,', T,P is the
harmonic part of the Qux, and XT; is due to anharmonic
forces and lattice imperfections. The same separation
occurs for the system Hamiltonian H =H'+AH', where
H is the harmonic Hamiltonian. The brackets ( )'
imply an average taken with the unperturbed-equilib-
rium canonical ensemble foo The qu. antities &ok, and
pk, '~ are, respectively, the frequency and generalized
Gruneisen parameters associated with mode (k,s).' U is
the volume of the system. qk, ' is defined by

= (U/KT)p fo (n)rk (Q)

XPT~ '(P) —~Ti '(P)]P.(~P), (2 2)

where the diagonal elements of an operator in the
phonon representation are denoted by, for example,
fo'(u) =—(n

I
fo'I n) The time a.vera, ge of XT~~' is denoted

by XT&„'.' P, (nP) is the lowest order perturbation ap-
proximation to the Laplace transform of the transition
probability I(nIexp( —iH//A) IP)I'; E~, is the phonon
number operator associated with mode (k,s); and T
and ~ are, respectively, the temperature and Boltz-
mann's constant. qk, ""satisfies the transport equation

d()VS,)' B(XTt ')"
T yk

' —U =L[pq ' ] (23)
d T 8(H')'

where the operator I. describes the effect of the scatter-
ing of the phonons due to anharmonic forces and lattice
imperfections, and is given by the right side of Eq.
(4.49) in Ref. 7.

We note that as was discussed in Ref. 9, Eqs. (2.1),
(2.2), and (2.3) depend only on the diagonal part of
XT;,'. Only 'the cubic anharmonic part of the perturba-
tion contributes to the diagonal part and thus

~TE-'(t3) =- U ' 2»"I:&'(P)+k]v"'" (24).
ks

"P.G. Klemens, in Physical Acoustics, edited by W. P. Mason
(Academic Press Inc. , New York, 1965), Vol. 3.
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The quantity q~, ' bears a close relation to the non- We now assume that (llrq, }relaxes according to
equilibrium ensemble f for the system. For the process
we are considering, f is given byl d(kg, ) (Eg.)r,—(Xg,)

collisions

(2.11)

f= fr, +Dfo

fL
KT ~&m 0

where v, is a combined relaxat1on t1me for normal and
umklapp processes, and imperfection scattering. Then
by combining (2.11.), (2.10), (2.7), and (2.4) the integral
equation (2.3) takes the form

where fr, is tile local equlllbrlum ellsemble and fo ls the
strict equilibrium ensemble. To the order of perturba-
tion we are considering,

V B~g

I, C —
0 OI

KT 8$~

Ol'

d(Xg, }r, d(Xg, )
)

dt coiiisions

(2.12)

By forming the average of the number operator with
(2.6) we find

(2.7)

Thus (2.1) can be simplified to

gijlts s' ~ r~k8Pka Pks ~

ka
(2.9)

Equation (2.9), in conjunction with the solution of the
transport equation (2.3), then determines the viscosity.

indicating the relation between q k, ' and the deviation
of the average number of phonons in mode (k,s) from
the local equilibrium average.

Also by using (2.6), the expression (2.1) for the
viscosity can be simplihcd. From the definition of
thermodynamic variables for the nonequilibrium state'
one has the condition that the average energy density
must be equal to the local equilibrium average. This
condition, together with (2.6), leads to

(2.8)
ks

Thus thc sohltlon to the 1claxatlon cquatlon 1s

d(Xg, }'( B(XTI ')'
lm —rT ~~ lm V . (214)

d T k 8(B'}'

Thc possibility that solutions to thc homogeneous part
of the integral equation (2.3) should be added to the
solution (2.14) must be considered. However, such
solutions are multiplied by constants which are to be
determinecL Condition (2.8) serves to show that the
homogeneous solution proportional to Aa&~, (which exists
for all processes considered here) is not to be included in

(2.14).Furthermore, it is obvious that the homogeneous
solution linear in k (which exists for normal processes

only) does not contribute to the viscosity since (2.9) is
only sensitive to the part of pk, ' which is an even func-
tion of k. It was pointed out in Ref. 7 that, in principal,
a 6nite viscosity exists even when only normal processes
are considered. In contrast to these remarks, in lattice
thermal conductivity one cannot treat normal processes
alone; furthermore, in the conductivity treatment of
more general processes which include normal processes,
the homogeneous solution linear in k must be included. "

Debye Model

In order to be able to explicitly calculate the coeK-
cients of viscosity, we now consider a Debye-like model
of the lattice. From the expressions (2.9) and (2.14) the
coefficients of viscosity are

Rel8xRtlon-T1Qle Model

By using the local equilibrium ensemble' one can
show to the order of approximation we are considering
that

d(Eg )'
Ckg —A(Ok8

4T
(2.M)

6~, is a heat capacity associated with the mode (k,s).
Since the collision operator I.is the same as that of the

12 J. Callaway, Phys. Rev. 113, 1046 (1959); P. G. Klemens,
Proc. Roy. Soc. (London) $08, 108 (1951).
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lowest-order contribution to the thermal conductivity, '
we will use the relaxation time v, obtained from thermal
conductivity experiments on cubic crystals. In particu-
lar, we use the effective temperature-dependent relaxa-
tion time defined through

X=-'v. Cyc' (2.17)

where X is the thermal conductivity, C& is the specific
heat per unit volume, " and c is the Debye-averaged
sould speed. The resulting 7, is taken independent of ks
but, obviously, is temperature-dependent.

Further, we use the long-wave limit for the pressure
tensor as discussed in Ref. 8,

elastic constants and three independent third-order
elastic constants. To approximate cubic symmetry by
spherical symmetry there must then exist certain rela-
tions" between the elastic constants. Although these
relations concerning the second-order constants are
reasonably well satisfied for such cubic crystals as Ge
and Si, the relations concerning the third-order con-
stants are not at all well satisfied. We must preserve the
anisotropy of the crystal.

We now proceed to discuss a computer calculation
of the integrals involved in Eq. (2.22) for the coeKcients
of viscosity. It is convenient to define

where
()I 2' ..~)0—p'—1(IIO)0+ij (2.18) I,, i

—=(12~)-' do P y„'~pk, .'", (3.1)

y'J= (12m) ' dQ Q yl„'&,
so that (2.22) becomes

(2.19)
i)ij lm '&cTCv (Iij le Y r ) (3.2)

V 'Q —+(2w) ' dkk' dQ (2.21)

one can re-express (2.15) as follows:

=r,TCv (12m) ' dQQ y, '&y„, ' —y'y'

(2.22)

III. EVALUATION OF VISCOSITY COEFFICIENTS

We ultimately wish to compare the results of the
evaluation of (2.22) with the results from experimental
measurements of attenuation of sound waves in cubic
crystals. There are three independent second-order
elastic constants and six independent third-order elastic
constants for crystals with cubic symmetry. "It might
be thought that the easiest way to approximate the
very complicated integrals involved in (2.22) would be
to assume spherical symmetry. For the case of spherical
symmetry there are two independent second-order

"By specific heat per unit volume we mean the specific heat
per unit mass multiplied by the density. By context the thermal
conductivity X is not to be confused with the perturbation strength.

'4R. N. Thurston and K. Brugger, Phys. Rev. 133, A1604
(~964).

and dQ is an element of solid angle in k space. The
Gruneisen parameters, in the long-wave limit, '

yk, "= e~ '—el„' . ,' P——e k'e~, &(k„k/parg, ')
lmyr

X t eij imp r+eig mr~i@], (2'.20)

are assumed not to depend on the magnitude of k but
rather only on the direction k=k/k. The e,;„„and c;;& „,
are the second- and third-order elastic constants.

Also, all polarizations are considered to contribute
equally to the total specific heat when weighted with
the Debye-averaged sound speed. With these assump-
tions and

For cubic symmetry there are three independent coeK-
cients of viscosity. For our purposes it is sufFicient to
calculate two of them. Using the abbreviated notation'4
for the coefficients of viscosity and elasticity we consider

'gll rc+CV(I11 'r ) i

g44= 7,TCyI44,

where p is the Gruneisen constant defined by

(3 3)

(3 4)

~=-' g ~"= (36~) ' dn P Q ~, "
8

(3.3)

The polarization vectors e~, are chosen so that they
form a mutually orthogonal basis with the longitudinal
polarization in the direction of k. It is convenient for
the purpose of the solid-angle integration to make the
arbitrary choice of taking one of the transverse polariza-
tion vectors to be in the azimuthal plane.

The third-order elastic constants have recently been
measured at room temperature for germanium and
silicon. "By using these values together with the meas-
ured second-order elastic constant, " calculations per-
formed on an IBM 7094 computer gave the results:

for Ge,

y =0.742, Igg = 1.035, I44= 0.1259;
for Si,

y =0.491 Iii= 0.682 I44= 0.0795.

(3.6)

(3.7)

An estimate of the validity of these calculations can
be obtained by comparing the calculated Gruneisen

constants with the experimental values as obtained from

p =nIC/Cv, (3 g)

where o. is the volume thermal expansion coefficient and

'~ H. J. McSkimin and P. Andreatch, Jr., J.Appl. Phys. 35, 3312
(&964)."H. J. McSkimin and P. Andreatch, Jr., J. Appl. Phys. 34, 651
(1963);35, 2161 (1964).



155 NONVANISHING CONTRIBUTION TO LATTrCE VrSCOSITY

E is the bulk modulus defined by

E= 3 Q cjjjj= 3 (cr1+2cls) ~ (3.9)

By using the thermal data compiled by Corruccini and
Gniewek" for n and Cy, one obtains y =0.75 for Ge and
y=0.41 for Si at room temperature. The agreement is
very good for Ge but rather poor for Si. However, the
thermal data compiled by Gschneidner" yield p=0.56
for Si. The computed value (3.7) of y for Si is equal to
the mean of the two experimental values.

The calculated results (3.6) and (3.7) will be used in
in the next section in computing the attenuation of

longitudinal and transverse sound waves. First, how-

ever, we turn to an approximate hand calculation of
I~~, I44, and y. The results of these calculations will
indicate the dependence of the viscosity on the elastic
constants. The basis of these calculations is the ap-
proximation which results from ignoring any polariza-
tion dependence in the denominators in (2.20) and
(2.22). The following replacement is made:

k'/pa&l„s = 1/pc', (3.10)

c is a velocity chosen such that the Gruneisen constant
(3.5) will be equal to the value calculated on a com-
puter. One obtains

11 1 1
I»———+ [35(crt+ 2crs)+23crll+ SC113+4crss+SC144+62crss]+ [84(3c11+2crs) (C111+2crss)

45 315 pc 7560 p'c4

+168(c11+4c13)(ct13+ctss+clss)+ 126(3c11'+4ctters+ Sero')+ 2crrr(43C111+ 16crss+ 32C112+100clss+ Scrss)

+4C144(57ctss+61C113+58crss+15clss)+clio(369crts+440ctss+38crss)+4CMs(149crss+Scrss)+57C133'j, (3.11)

2 1 1 1 1
I44 +—(—9C—14s+47crss+18csss)+ [252C44'+168cs4(2crss+csss)

45 630 pc' 3780 p'c4

+c144(29crss+46ctss+ 74c4ss)+ clos (269clss+ 118csss)+ 116csss'j, (3.12)

1 1
[3(C11+2C13)+ (C111+4C to 3+2C113+2C144)].

3 18 pc~
(3.13)

IV. ATTENUATION

Necessary for a discussion of the attenuation of a
sound wave are the macroscopic conservation laws
(1.1)-(1.3). For linear slowly varying processes they
can be reduced to, with the aid of standard thermo-
dynamic relations,

where

a2T~~&m

CE + 3 Tcr jj C jj 1m ~il
83 Bl BS,BS,

82N; Bt,,
p + =0,

BP Bx,

(4.1)

(4.2)

tjj 3lrlm(T TO)C,jim C,, lmelm rirllmrie——lm/rjt, (4.3)

'r R. J. Corruccini and J. J. Gniewek, Natl. Bur. Std. (U. S.)
Monograph 21, (1960);29 (1961)."K.A. Gschneidner, jr., in Solid State Physics, edited by F.
Seitz and D. Turnbull (Academic Press Inc. , New York, 1964),
Vol. 16.

For Ge, (3.11) and (3.12) reduce to

Igg = 1.230, I44= 0.289, (3.14)

and agree sufficiently well with (3.6) and (3.11) and
(3.12) may be useful in indicating the effect on the
viscosity if future measurements report changes in the
elastic constants.

Substitution of a transverse wave traveling in the
1 direction and polarized in the 2 direction leads to a
dispersion relation in terms of the wave number and the
frequency. For the boundary-value problem this is
solved for the wave number in terms of the frequency
and to lowest order in the frequency the imaginary
part of the wave number, i.e., the attenuation with
distance, is

I'r = (sos/2pcr )rj44, (4.5)

where co is the angular frequency of the wave and c& is
the transverse wave velocity. The next term in the
expansion is of order co' and is negligible for the fre-
quencies being considered here.

Similarly, a longitudinal wave in the 1 direction yields
for the attenuation

1 = ( '/2pc ')(rj +XTp'/c '),

where cL, is the longitudinal wave velocity.

(4 6)

and where summation over repeated subscripts is under-
stood. Here, C, is the specific heat per unit volume at
constant strain; n;;, the thermal expansion coeS.cient
tensor; e;,, the in6nitesimal strain tensor; X;;, the
thermal conductivity tensor; u, the displacement vec-
tor; T, the temperature; and To, the reference tem-
perature. For crystals with cubic symmetry

(44)
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FIG. 1. Measured and calculated longitudinal attenuation in
Ge normalized to unity at 300'K. Experimental measurements are
represented by solid line.

By expressing (4.5) and (4.6) in terms of I» and I44
with the aid of (2.17) we obtain

Fr = (cu'/2 pcs') &.TCvI44, (4 7)

TmI.E I. Theoretical and experimental attenuation.

Ge (calc.)
Ge (expt. )
Si (calc.)
Si (expt. }

I'L, (dBjcm)

1.34 (306)
2.75 (306)
1.18 (480)
2.2 (480}

rp (dBjcm)

0.42 (306)
0.73 (306)
0.33 (495)
0.62 (495)

3.2
3.8
3.6
3.5

I'r ——(+'/2pcr, ')r,TCv(I» [1 —s(c/c—r)'y')) . (4.8)

The temperature-dependent relaxation time was ob-
tained from the thermal conductivity experiments of
Geballe and Hull" with one exception. Following the
suggestion of Klemens" and of Mason and Bateman, "
the relaxation time for g~~ was given twice this value
thereby effectively doubling the I» in Eq. (4.8). Then,
by using the results calculated for I», I44, and p which
are given by (3.6) and (3.7), the measured specific
heats, '7 and the measured second-order elastic con-
stants, " the longitudinal and transverse attenuations
can be compared with experiment. The results of these
calculations are compared with the experimental results
of Mason and Bateman" for T=300'K in Table I. The
numbers in parentheses in Table I are the frequencies of
the sound waves in Mc/sec. Table I indicates that
both the calculated longitudinal and transverse attenua-
tions are about 50% lower than the experimental values.
The ratio I'c/Fr calculated here, however, is very close
to the experimental ratio.

Only a qualitative discussion of the temperature
dependence of the attenuation can be given. This is

because the integrals involved in the definitions of I~q,
I44, and 7 depend on the third-order elastic constants
which have only been measured at T=300'K. However,
the experimental Gruneisen constants as computed
from (3.8) for Ge and Si show a marked temperature
dependence indicating that the third-order elastic con-
stants are highly temperature-dependent. Since the
integrands of I~~ and I44 are quadratic in the Gruneisen
parameters, we can attempt to obtain a qualitative
indication of the temperature dependence of the
attenuation by assuming that the temperature depend-
ence of the Griineisen parameters y~, '& is that of the
experimental Gruneisen constant y. One expects that
such an approximation will be better for I~~ than for
I44 since I~~ depends on y~,"and I44 depends on yl„",
i.e., since p=p" and p"=0 for cubic symmetry. A
comparison between the temperature dependence cal-
culated in this way and as determined from experiment
is given in Fig. 1 for longitudinal attenuation in Ge.

The limitation of this approximation can be seen from
the following: For transverse waves the experimental
attenuation does not decrease nearly as rapidly with
decreasing temperature so that the preceding approxi-
mation is not an accurate portrayal. Furthermore, for
Si the thermal expansion coe%cient vanishes at about
120'K, indicating by this approximation that the
attenuation should vanish at 120'K. This is not
observed.

V. DISCUSSION

There have been earlier treatments of the attenuation
of sound waves in solids in which it was realized that
a sound wave will disturb the equilibrium phonon
distribution thereby causing entropy production as the
system tends to return to equilibrium. "Such treatments
are generally based on the use of a Boltzmann transport
equation to determine the attenuation due to viscosity.
However, as was discussed in Ref. 7, since the momen-
tum is not transported with the phonon group velocity
it is not obvious from the kinetic-theory viewpoint how
to formulate the correct transport equation. The result
of these analyses was that totally unrealistic values for
the Gruneisen constants were necessary to bring about
agreement with experiment.

Mason and Bateman" have developed an ingenious
heuristic model for the attenuation which has some
similarities with the results of this paper. Their develop-
ment is based on assuming the medium is viscoelastic
(see Appendix) so that the medium has a memory. An
essential diBerence, though, is that their end result
depends on the thermal energy (multiplied by a factor
of 3) rather than Cv2'."This together with the visco-
elastic assumption yields a temperature dependence

"T.H. Geballe and G. W. Hull, in Low Temperature Physics
and Chemistry, edited by J. R. Dillinger (University of Wisconsin
Press, Madison, Wisconsin, 1958), Paper No. 42-6.

I A. Akhieser, J. Phys. (USSR) 1, 277 (1939);H. E. Bommel
and K. Dransfeld, Phys. Rev. 117, 1245 ('1960); T. O. Woodruff
and H. Ehrenreich, ibid. 123, 1553 (1961)."See Ref. 10, Eq. (25).
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which agrees quite well with their experimental results
for both longitudinal and transverse attenuation. How-
ever, they assume the Gruneisen constants to be
temperature-independent which clearly is not the case.
There is a need for further experimental worl».

The approach used here and in the preceding paper,
i.e, , a perturbation expansion of the correlation-function
expression for the viscosity, leads in a systematic way
to the correct transport equation at any given order of
the perturbation. At the lowest nonvanishing order,
meaningful approximations were applied and qualita-
tive agreement with experiment was determined nithout
the use of aly adjustable parameters The .longitudinal
attenuation was found to be due to both viscosity and
thermal conductivity, and the transverse attenuation
due to viscosity alone. One cannot properly categorize
the part of the longitudinal attenuation due to thermal
conductivity as being due to viscoelasticity as was
attempted in the past. "

A deviation from the quadratic dependence of the
attenuation on ~ is observed at low temperatures. "
Viscoelasticity, which is treated in terms of a simple
model in the Appendix, gives such a deviation. How-
ever, this could possibly be explained by boundary
scattering of the phonons, to which the hydrodynamic
theory presented here does not apply. Also it is possible
that a low temperatures cv7, is suKciently large com-
pared with unity that the lowest order in the Chapman-
Enskog expansion of the nonequilibrium system en-
semble, which is considered in the present theory, is not
sufficient.

Besides the transport coefficients of thermal con-
ductivity and viscosity, there is also the possibility of
cross terms in the relations between the macroscopic
fluxes and forces (gradients). That is, the energy Aux

might have a term proportional to the velocity gradient
and the momentum Aux a term proportional to the
temperature gradient. The associated transport coe%-
cients would then be tensors of rank three which must
vanish for cubic symmetry. A more general analysis
indicates that these coefficients must also vanish for
more complicated symmetries (at least at the order of
perturbation we have considered). This is due to the
result that, for the case of the momentum Qux, the
coe%cients are sensitive only to the even part in k of
the solution of the proper transport equation. However,
this transport equation yields only solutions which are
odd in k.

APPENDIX

macroscopic pressure tensor is replaced by'

t;, (x,t)=t, to(x, t) — dt'Z, ,l (t—t')Bvl(x, t')/Bx, (A1)

where the relaxation function is given by

Basic properties of the relaxation functions have been
discussed in Ref. 2.

Consider the Fourier transform of Eq. (A1),

t,;(x,c0) = dt e'"'t;, (x,t)

where E,,l (ld) is the Laplace transform

Kl'lm(lc) = dt e'"'E,,l„(t)

= (V/llT) dt '"e'(T,, (t)LTlm —Tlm])o. (A4)

where

K;lm(ld) = & ' 2 «lCkcV kc"q kc™(CC))
ks

(A5)

r,T d(Xl„)' 8(XT, ')'
(")= y„ lm P (A(i)

1 &or, d T — B(H')'

Thus, by assuming an effective relaxation time inde-
pendent of k,

Note that in the limit cc —& 0, IC,;l (cc) —+ rt;;l,
X,;lm(t) ~ rt, ,lb(t), and Eq. (A1) reduces to (1.5). Thus,
while for ordinary viscosity we only had to consider a
single number for a particular coefficient of viscosity, we
now are faced with determining a complete spectrum.

A simple model is to use the Markoffian Pauli equa-
tion in conjunction with (A4) to determine E,;l (cc),
the net result being non-Markman from the hydro-
dynamic point of view. However, we must now keep the
term in the Pauli equation which vanished in the limit
cc —+ 0 (see Ref. 7). Then following the procedure out-
lined in Sec. II of this paper, we find

A brief discussion of a simple model of viscoelasticity
is given here. In the event that the medium is charac-
terized by large internal relaxation times, i.e., of the
order of or greater than times characterizing hydro-
dynamic rates of change, then Eq. (1.5) for the local

Itillm(lc) (1 ~lcrc) %jim ~

Inversion of the Laplace transform yields

(A7)

(AS)

22 K. Lucre, J. Appl. Phys. 27, 1453 {1956). We note that this relaxation function represents what
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lim—
re~0 ~c

(A9)

the spring and dashpot people call a standard linear
solid.

In the limit r, ~ 0, r, ' exp( 1—/r, ) can be considered
as a representation of 8(t) in the sense

by a well-known property of Laplace transform theory.
Therefore as v, ~ 0, the model approaches ordinary
viscosity.

The relaxation function (A8) modifies the expres-
sions (4.5) and (4.6) for the transverse and longi-
tudinal attenuations by multiplying them by a factor
(1+tosr s)—i
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Temperature Dependence of the Width of the Fundamental
Lattice-Vibration Absorption Peak in Ionic Crystals.

II. Approximate Numerical Results
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The results of numerical calculations of the temperature dependence of the width and position of the
fundamental lattice-vibration absorption peak in NaCl and LiF are presented. The calculations are carried
out in the high-temperature limit, on the basis of the Hardy-Karo deformation dipole model of these crys-
tals. Cubic and quartic anharmonic terms are retained in the crystal Hamiltonian, but the approximation
of neglecting the anharmonicity of the Coulomb forces has been made. The expressions for the Fourier-trans-
formed anharmonic force constants have been approximated and simplified by a method suggested by
Peierls. The results of the calculations show that the quartic anharmonic terms in the crystal potential
energy make a contribution to the width of the fundamental absorption peak which is comparable in magni-
tude with the contribution from the cubic anharmonic terms, in agreement with the theoretical arguments of
Gurevich and Ipatova. Since the quartic anharmonic contribution to the width is proportional to the square
of the absolute temperature at high temperatures, these results provide an explanation for the experimental
observations that the width increases with a power of the absolute temperature which is intermediate be-
tween the first and the second. Quantitatively, the theoretical results are in quite good agreement with the
experimental data of Heilmann for the variation with temperature of the width of the fundamental absorp-
tion peak in LiF. In the case of NaCl, the agreement between theory and experiment is somewhat poorer, but
the theoretical values are still within a factor of about 2 of the experimental values of Hass. The frequency
dependence of the imaginary part of the dielectric constant of these two crystals has also been calculated,
and is compared with experimental data.

1. INTRODUCTION
" 'N the first part of this series' a formal expression
~ - for the imaginary part of the dielectric constant of
an ionic crystal of the rocksalt structure was derived.
It has the form

4s e' M++M
es(~) =

2~,r, (~)
X (1.1)

Lro' —1) ' (o~)j'+ 4' isr P (co)

*This research was partially supported by the Air Force Once
of Scientific Research, Ofhce of Aerospace Research, U. S. Air
Force, under AFOSR Grant No. 1080-66.

' I. P. Ipatova, A. A. Maradudin, and R. F. Wallis, Fiz. Tverd.

In this expression e is the first-order dipole-moment
expansion coefFicient, V, is the volume of a primitive
unit cell, and M+ and M are the masses of the positive
and negative ions, respectively. The frequency of the
incident light is denoted by co, and cv & is the frequency of
the transverse optical modes of infinite wavelength.
Explicit expressions for the renormalized frequency
Qi(ro) and the damping constant ri(&e) were obtained
to second order in the cubic and quartic anharmonic
force constants in I. It was shown there as well that the
COefriCient (4rre'/V, ) (M++M )/M+M Can be identi-
fied with (es—e„)o~s', where es and e„are the static and

Tela 8, 1064 (1966) [English transl. : Soviet Phys. —Solid State
8, 850 (1966)j.This paper will be referred to as I, and all refer-
ences to equations from this paper will be prefixed by I.


