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This paper discusses a general model for a semiconductor-to-metal transition, in which the energy gap
between the valence and conduction bands decreases linearly with the number of electrons excited across
the gap. It is shown that this model results in a rapid disappearance of the forbidden gap with rising temper-
ature according to either a first-order or a second-order phase transition, depending on the magnitude of the
relative change in gap with the number of excited carriers. Two possible physical models are treated in de-
tail. In one the energy gap results from the splitting of the first Brillouin zone by an antiferromagnetic ex-
change interaction, and in the other it results from a crystalline-structure distortion to lower symmetry. The
latter model is considered in detail in terms of the pairing of ions in a one-dimensional crystal. With these
models, using plausible values of the parameters, the explicit relationship between energy gap and free-
carrier concentration is estimated. The thermodynamic theory is worked out for the limiting cases of band
width large and small compared to the zero-temperature gap. In the narrow-band limit it is found that the
parameters of the model are such as to give a second-order transition for the antiferromagnetic case and a
first-order transition in the crystalline-distortion model. Using these models, the transition temperature can
be evaluated explicitly in terms of the zero-temperature gap. A number of results relating experimentally
measurable quantities such as the pressure coefBcient of the transition temperature and the energy gap
can be derived.

I. INTRODUCTION

HE transition-metal oxides provide a striking ex-
ample of the inadequacy of simple band theory

when an attempt is made to predict the electrical
transport properties of crystals. Most of these oxides are
insulators, ' despite the apparent presence of a partially
filled 3d band. Where the magnetic structure of these
materials has been determined, they are all antiferro-
magnetic; however, they are insulating both below and
above the Neel temperature.

The many attempts to explain the electrical properties
of these oxides can be divided into three categories de-
pending on whether the lack of conductivity is due to
antiferromagnetism, to electron-electron interactions
alone, or to electron-phonon interactions possibly com-
bined with electronic interactions. Historically, the last
class was the earliest suggestion. DeBoer and Verwey, '
who pioneered the experimental work on these ma-
terials, assumed that a high potential barrier exists
between any two transition-metal ions in the crystal. If
the lifetime of an excited state in which an electron can
tunnel through the barrier is much shorter than the
tunneling time, the electrons can be considered to be
localized. A mechanism for such a barrier emerged from
the work of Landau' and of Gurney and Mott, ' who
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showed that in polar crystals it is possible for an electron
localized around an ion to be trapped in the potential
well which results from the lattice polarization due to
the presence of the electron. Yamashita and Kurosawa4
worked out the theory of this model in detail, and were
able to demonstrate the localized self-trapped state
provided a self-consistent solution. Holstein considered
the case where the coupling between the electrons and
the optical phonons is sufficiently strong that polaron
states are appropriate. When the electronic band width
is small, as must be the situation for 3d bands of transi-
tion metal oxides, the polarons are "small"; in this case,
Holstein found that for temperatures greater than about
half the Debye temperature, the quasiparticle band
width has effectively shrunk to zero, and the polarons
are essentially localized, so that such conduction as
occurs will be by a diffusive hopping between adjacent
sites rather than by the correlated motion described in
band theory. Toyazawa' showed that the electrons
could also be trapped by means of the short-range
interactions with acoustical phonons, provided the
coupling was sufFiciently strong.

In all of the above-mentioned theories, except in the
polaron band regime, conductivity occurs only by
means of electronic hopping from site to site. Verwey'
attributed the activation energy to ionization of the
cations. Heikes and Johnson' noted that the measured

4 J. &amashita and T. Kurosawa, J. Phys. Soc. Japan 15, 802,
1211 (1960).' T. Holstein, Ann. Phys. (N. Y.) 8, 325, 343 (1959).' Y. Toyazawa, Progr. Theoret. Phys. (Kyoto) 26, 29 (1961).

7 E. J. %. Verwey, P. J. Haaijman, F. C. Romeijn, and Q. W.
van Costerhout, Philips Res. Rept. 5, 173 (1950).

' R. R. Heikes and W. D. Johnston, J. Chem. Phys. 26, 582
(1957).
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impurity ionization energies are too small to account for
the observed activation energies in these materials.
They ascribed the conduction to a diffusion of electrons
from ion to ion, thus associating the activation energy
with the mobility rather than the carrier concentration.
In a quantitative version of this theory, Vamashita and
Kurosawa4 showed that the activation energy arises
from Landau trapping. '

Mott' suggested that the localization of electrons need
not arise from lattice interactions, but was more likely
to be due to the Coulomb repulsion between two 3d
electrons of opposite spin on the same ion, a situation
analogous to the low-density crystallization of an elec-
tron gas, first noted by Wigner. "Mott proposed that a
critical distance between the transition metal ions
exists, above which Heitler-London theory is a more
reasonable point of departure than Bloch theory.
Anderson" pointed out that if the correlation energy
was much larger than the band width, it would outweigh
the decrease in average kinetic energy resulting from
band formation, and the electrons would remain local-
ized. Kohn" considered an array of hydrogenic atoms
around a circular wire and showed that for sufficiently
large separation and number of atoms the low-lying
many-electron states are nonconducting.

Recently, much work has been carried out based on a
quantitative description of Mott's original hypothesis,
which has come to be known as the short-range, one-
band model. The problem is to investigate the system
described by the Hamiltonian

H=P es(rrst+esg)+I Q n;trr, g,

where ej„is the number operator for an electron in the
state k, o-, and I is the average intraionic Coulomb re-

pulsion. In this model, interionic interactions are ne-

glected. Hubbard" showed that when I is greater than a
critical multiple of the band width an s band is split
into two subbands or a d band into 10 subbands.
Gutzwiller" and Kemeny" have also investigated the
same Hamiltonian and have obtained results essentially
similar to those of Hubbard. In these models, the
splitting into two bands may be visualized as arising
directly from interaction of electrons on a common ion.

A diferent approach to the same problem was sug-
gested by Slater, "who used a two-band model. In this
theory, it is antiferromagnetic ordering which leads to
the insulating nature of the ground state; the doubly

9 N. F.Mott, Proc. Phys. Soc. (London) A62, 416 (1949);Nuovo
Cimento Suppl. 7, 312 (1958); Phil. Mag. 6, 287 (1961).' E. Wigner, Trans. Faraday Soc. 34, 678 (1938)."P. W. Anderson, in SolM State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1963), Vol. 14.

u W. Kohn, Phys. Rev. 133, A171 (1964)."J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1963);
A281, 401 (1964).

"M. C. Gutzwiller, Phys. Rev. 137, A1726 (1965)."G. Kemeny, Ann. Phys. (N. Y.) 32, 69, 404 (1965)."J. C. Slater, Phys. Rev. 82, 538 (1951).

periodic exchange potential splits the erst Brillouin zone
in half and introduces an energy separation at the sur-
face between the new subzones. A quantitative version
of the Slater two-band model has been given by Des
Cloiseaux. ' This model requires that the exchange
splitting be suKciently large compared to the band
width so that an energy gap opens up along the whole

face of the new zone boundary. However, it is not clear
why the insulating property should not disappear above
the Neel temperature.

The lack of electrical conductivity is not the only
enigma provided by the transition metal oxides. Another
subclass consists of several oxides of titanium and
vanadium, which are semiconducting at low tempera-
tures, but undergo a transition to a metallic state above
a critical temperature To. The electrical properties of
these oxides were thoroughly studied by Morin, ' who
found that all of the lower oxides of titanium and
vanadium with the exception of TiO exhibit this
behavior.

Most of the theories presented to explain the lack of
conductivity in the insulating oxides can be extended to
give an insulator-to-metal transition. The theories which

depend on electron-phonon coupling are least satis-
factory in this respect. The polaron model of Holstein'
results in a transition from a polaron band regime to a
hopping regime as the temperature is raised, but the
high-temperature state is not that of a metal. The
acoustical phonon self-trapping model of Toyazawa
exhibits a sharp transition from a band picture to a
localized picture as the strength of the interaction is
increased, but there is reason to believe that the
electron-phonon coupling constant (which depends in-

versely on the lattice parameter) decreases rather than
increases with temperature.

The theories in which only electron-electron inter-
actions are responsible for the nonconductivity exhibit
a transition from an insulating to a metallic state as the
correlation energy decreases. The original proposal of
Mott' contained qualitative reasons why the transition
should be a sharp one, both as a function of temperature
and as a function of electronic density.

Kohn" quantitatively investigated Mott's theory by
considering a ferromagnetic simple cubic array of hydro-

gen atoms. If the potential between a spin-up hole and
a spin-down electron is a Coulomb attraction, an in-

sulating spin-wave state is lowest; however, for a delta-
function interaction, a critical strength exists, below
which only a continuum of states, characteristic of a
metal, is present.

Hubbard, "using the short-range, one-band model,
found that at a critical ratio of the band width Ey to the
intraionic Coulomb energy I, the energy gap due to
electronic correlations has shrunk to zero, and an
insulator-to-metal transition occurs. This may be re-

' J. Des Cloiseaux, J. Phys. Radium 20, 606 (1960); 20, 751
(1960)."F.J. Morin, Phys. Rev. Letters 3, 34 (1959).
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garded as another quantitative treatment of the Mott
transition. ' Hubbard 6nds that the energy gap shrinks
continuously as the ratio of E& to I increases, so that
slightly below the critical value the material has an
in6nitesimal band gap, while just above the transition
point the density of states at the Fermi surface is
negligibly small, so that the material is a poor metal.
This result is contrary to Mott's hypothesis of a sharp
increase in the number of free carriers, although it is
possible that Hubbard's neglect of interactions of elec-
trons on different ions camouQaged the nature of the
transition. Kemeny, " for the case of an extremely
tightly bound simple cubic hydrogenic lattice at zero
temperature, found that all electron-hole pairs making
up the crystallized low-density state disassociate sharply
into a metallic state above a critical density, in agree-
ment with Mott's conjecture.

Morin attempted to explain the conductivity dis-
continuities by adapting the two-band model of Slater."
If the materials were semiconducting because of a band
splitting arising from antiferromagnetism, then a transi-
tion to a metallic state would be expected at the Noel
temperature. Callaway" made the Slater-Morin theory
a little more quantitative by studying the energy band
structure of a body-centered cubic antiferromagnet.
Considering only the Q.rst Fourier component of the
exchange potential, a major simplication, he found that
an insulating state exists whenever an interaction
parameter (proportional to the effective mass, to the
strength of the exchange potential, and to the square
of the lattice constant) is suKciently large. Neither
Callaway nor Morin discussed the nature of the semi-

conductor-to-metal transition beyond noting that the
band gap should disappear at the Neel temperature.

There are difhculties with the Slater-Morin theory,
aside from the fact that it has never been quantitatively
applied to the oxides of titanium and vanadium. Firstly,
the existence of antiferromagnetism has been demon-
estratd only in Ti203," and even in that material the
antiferromagnetic moment is extremely small. Secondly,
no model for the structure of the degenerate 3d bands
has been presented which explains how Ti&03 V203 OI

VO2 can be insulating at T=O even with the antiferro-
magnetic splitting. It is conceivable that the large
amount of short-range order present up to two or three
times the Neel temperature is su%.cient to maintain the
e6ective double periodicity felt by the slowly moving 3d
electrons, and thus maintain an energy gap.

A somewhat different explanation of the transition
was given by Goodenough, " who suggested that, be-
cause of direct cation-cation interactions, all would-be

' J. Callaway, in Proceedings of the International Conference on
the Physics of Semiconductors, Exeter, 196Z, (The Institute of
Physics and The Physical Society, London, 1962), p. 582.

~ S. C. Abrahams, Phys. Rev. 130, 2230 (1963)."J.B. Goodenough, Phys. Rev. 117, 1442 (1960); 120, 67
(1960); Magnetism and the Chemical Bond (Interscience Pub-
lishers, Neer York, 1963).

conduction electrons could be trapped in homopolar
bonds at low temperatures. Goodenough applied his
hypothesis to the oxides of titanium and vanadium, and
was able to account for many of the previously unex-
plained symmetry changes. However, the theory does
not lend itself readily to quantitative investigation.

In the present work, we shall present a model for,

semiconductor-to-metal transitions which can be applied
to the vandium and titantium oxides and can be tested
experimentally, We shall use an itinerant electron pic-
ture, and assume that the nonconducting state of these
materials is that of a normal semiconductor, a filled
valence band being separated from an empty conduction
band by an energy gap. In Sec. II, we shall show how
such a gap can arise in the transition metal oxides from
antiferromagnetism or from a crystalline structure dis-
tortion to lower symmetry. It will be demonstrated that
in these two cases the energy gap will shrink. as carriers
are excited across it, and the decrease in gap will be
quantitatively estimated. In Sec. III, the theory of
conductivity will be worked out in two limits, the
effective-mass approximation and the limit of narrow
bands. We shall demonstrate the existence of a semicon-
ductor-to-metal transition, which can be either erst or
second order, and we shall calculate the transition
temperature in terms of observable quantities.

II. DEPENDENCE OF ENERGY GAP ON
CARRIER CONCENTRATION

A. General Hyyothesis

Consider an intrinsic semiconductor for which the top
of the valence band is separated from the bottom of the
conduction band by an energy gap E,. In general, E,
depends on the concentration of carriers in the con-
duction band m and on the temperature T:

E,=E,(n, T) .
At low temperatures, the concentration of carriers is
also small, and we can write

Ep ——Epp —uT —Pn,

where E,p is the gap at T=O, n —(BE—=,/BT)„, and
P=——(BE,/Bn)T Although th. e term linear in T is re-
sponsible for the major part of the decrease in band gap
at very low temperatures, it does not contribute to the
semiconductor-to-metal transition, and therefore will be
dropped. Only a small error is introduced into the
calculation by dropping it."We are left with

E,=Epp Pn, —(2.1)

which is our fundamental relation. The remainder of
this section will be devoted to demonstrating the appli-
cability of Eq. (2.1) in two particular situations, where
the energy gap is due to antiferromagnetism and where

"D. Adler, Gordon McKay Laboratory, Harvard University,
Technical Report No. ARPA-12, 1964 (unpublished).
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the gap arises from a crystalline structure distortion to
lower symmetry. We shall evaluate P for both of these
cases, and show that Eq. (2.1) remains valid as I
becomes relatively large.

(2.5) in terms of E, :

dG= SdT+—VdP+Q Ii,dN, , (2.2)

where E, is the number of particles in the jth phase and

p,, is the chemical potential of the jth phase. Treating
electrons in the valence and conduction bands as
different phases and ignoring inner orbitals, we can
write

Q p,dN, =IJ,,dN, +IJ,.dN. . (2 3)

For an intrinsic semiconductor, N„+N, = constant, and
(2.3) becomes

B. Thermodynamic Argument

In this section, we shall present a thermodynamic
calculation of the change in energy gap of a sernicon-

ductor with the concentration of excited carriers. This
will provide us with a general expression for P in Eq.
(2.1). The first part of this argument follows closely a
recent paper by Figielski. 23

The differential form of the Gibbs free energy for a
system where the number of particles may vary is

Using the thermodynamic relations

and

where ~ is the isothermal compressibility, we 6nd

(BEg 1 (BEg) BV) BEg
+ . (2.7)

5 Bn i r xV&BP1„,r Bml pr , Bn v, r

Thus, (2.6) and (2.7) yield

Thus,
Eg Ego pal, pP——. — — (2.9)

We express the energy gap for varying carrier con-
centration and pressure as

Q Ij,,dN, = (p.—p„)dN, (2.4) (BE./BP)-, r= —7.
Substituting (2.10) in (2.8)

(2.10)

where A is the number of carriers.
Since B'G/BPBN=B'G/BNBP, (2.2) and (2.4) give (2.11)

where e—=N/U is the concentration of carriers.
It is clear that at T=O, p, =E„and IJ,,=E., where E,

is the energy of the top of the valence band and Ji, is
the energy of the bottom of the conduction band. In
general, p, ,—p„ is the change in free energy when an
electron is removed from the valence band and placed in
the conduction band. Thus, p, ,—p,, is the fxee-energy

gap, which we shall call E,. It is this free-energy gap,
rather than the enthalpy gap, which determines the
number of intrinsic free carriers when the densities of
states are determined from measured physical quanti-
ties, such as effective masses. It is well known that the
free-energy gap E, differs from the enthalpy gap, which
determines the activation energy for intrinsic con-

ductivity, by terms of the order of kT.'4 For the re-

mainder of this paper, we shall neglect this difference
between free-energy gap and enthalpy gap. Writing

23 T. Figielski, Phys. Status Solidi 3, 1876 {1963).
'4 H. Brooks, in Advances .in Electronics and E/ectron Physics,

edited by L. Martin {Academic Press Inc. , New York, 1955), p.
121.

But also from (2.9), we see

(BE,/Bm) p, r = —P.

Combining (2.11) and (2.12)

(2.12)

(2.13)

1 (BE0)' BE,)
&BS,& „,z s s& Bm I

This is the general thermodynamic expression for P. The
first term on the right represents the contribution to P
resulting from changes in the volume of the crystal.
This term can be evaluated easily from the experi-
mentally measurable quantities, p, a, and is always
positive. The other contribution to P is an explicit de-

pendence of the gap on carrier concentration at constant
volume, and can have either sign.

Relations analogous to (2.13) can be derived with
uniaxial stress as the intrinsic variable. One such rela-
tion, appropriate to the case where stress is applied in
the direction of the c axis can be written
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where S. is the applied stress and I~. is the linear
compressibility in the c direction.

These thermodynamic arguments show that when-
ever there is a pressure or stress dependence of the
energy gap of a semiconductor, the gap must also de-
pend on carrier concentration. Since the pressure
coefficients of the gap in V203 and VO, two of the
materials with which we are especially concerned, are
anomalously large, we expect a relatively large decrease
of gap with carrier concentration in these materials. But
this argument demonstrates only that E, depends on
the number of excited carriers. It does not say anything
about the validity of Eq. (2.1) as n becomes fairly large,
nor does it indicate the microscopic reasons for such a
variation in energy gap. Therefore, we now turn to
specific models for which we can calculate expressions
for E, as a function of n. These calculations will provide
us also with expressions for P which can be tested
experimentally.

Since X is the total density of cations, the density on
each sublattice is N/2.

The average potential seen by an electron with spin
up on the sublattice under consideration is

V+' ——(2/N) (ng Vg++n g V~+)

= (2/N) (ngVg++nsU~ ), (2.14)

where ng is the number of 3 ions on the sublattice, ng
is the number of 8 ions. Similarly, for a spin-down
electron,

V '= (2/N)(n&V& +n&V& )
= (2/N)(ngVg +nsVg+). (2.15)

2
(V). =—(n~ —na)(V~+ —V~ )

lV
(2.16)

The average exchange energy is then just the difference
between (2.14) and (2.15), or

C. Antiferromagnetism

Consider an antiferromagnetic crystal which can be
described by Bloch wave functions. Assume that the
crystal is an insulator at T=0 because of the splitting of
the first Brillouin zone by the doubly periodic exchange
potential. In other words, we have an empty conduction
band which begins a distance E, above the filled valence
band, with E, being a measure of the exchange energy.
We assume that the exchange splitting occurs so that
the conduction and valence band edges are at the same
point on the zone, so that the gap and the splitting are
the same. The lower band refers to wave functions
whose amplitudes are large at the sublattice positions of
the electron under consideration, whereas the upper
band wave functions have large amplitudes at the
positions of the sublattice of opposite spin. As the
temperature is increased from T=O, the upper band
becomes thermally populated. When an electron is
excited across the energy gap, the net magnetization on
either sublattice decreases, and thus the gap decreases
with increasing concentration of carriers. Thus, a re-
lationship like Eq. (2.1) can be expected to hold. In this
section, we shall determine for how large a value of n
Eq. (2.1) remains valid and also calculate the value of
P. We shall employ a virtual crystal approximation.
Consider metallic ions with spins ordered antiferro-
magnetically at T=O. I.et an ion for which the as-
sociated spin is primarily down be called type A, a pri-
marily spin-up ion type B. Consider the sublattice of
ions for which the magnetization is negative when
perfect order exists. In the vicinity of an A ion, an
electron with spin up sees a potential V~+, whereas a
spin-down electron sees V& . Similarly, V&+ and V&—

are the potentials in the vicinity of a 8 ion seen by a
spin-up and a spin-down electron, respectively, It is
clear that V~+= Vg and V~ = V~+. For simplicity,
we shall take the case of one 3d electron per cation.

For perfect order, n~=N/2, n~ ——0, and

(V)ax T p= VA VA ~

For complete disorder, n~=ns=N/4, and

Thus,
Ep ——Epp(1 —2n/N) .

P=2E,p/N.

(2.18)

(2.19)

One-dimensional and three-dimensional models of anti-
ferromagnetism have also been investigated in detail, '2

and the result (2.19) is verified to within terms of the
order of the square of the ratio of the band width to the
exchange energy. Thus, for the narrow 3d bands of the
transition metal oxides, Eq. (2.1) will remain valid over
a relatively large range of n. In computing (2.18) it is
tacitly assumed that the lattice constant continuously
adjusts itself to minimize the total energy, so that
(2.18) is a constant-pressure result.

D. Crystalline Structure Distortion

The existence of antiferromagnetism is not a necessary
condition for the applicability of (2.1).The relation can
also be shown to be appropriate when an energy gap is
caused by a crystal-structure distortion to lower sym-
metry. This type of gap can arise from an energy gain
due to chemical binding —the lower band may be
thought of as a bonding band, the upper an anti-

Since n~+ns=N/2, and the number of intrinsic car-
riers is just the number of ions with spin up on both
sublattices, (2.16) can be written

(V),»= (V),x r p(1 —2n/N) . (2.17)

If we assume that the energy gap is proportional to
the average exchange energy, in the spirit of the virtual-
crystal approximation, then (2.17) becomes
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bonding band. Excitation of an electron across the
energy gap decreases the gap because the excited elec-
tron no longer contributes to the chemical binding.
Thus, the situation is analogous to the case of an
antiferromagnetic crystal dealt with in Sec. C. However,
the evaluation of P is more difficult when the gap is
caused by crystalline distortion. In this section, we shall
calculate expressions for P, using a simple one-dimen-
sional model, but employing as much as possible the
physical properties of the vanadium oxides to which we

expect the theory to apply.
Consider a one-dimensional crystal with two cations

per unit cell at zero temperature. Once again, we shall
examine the case of one 3d electron per cation in a non-

degenerate band; the case of large concentrations of 3d
electrons in degenerate bands is entirely analogous.

In accordance with these assumptions, we place ions
at positions

( 1—26
x i=l j+ 4)'

( 1—2p)

4 i

-32

-28

-40

-44

-48—

-52 I

-3
I

-2 0
ko

(a)

(b)

(c)

(c)

(b)

(a)

Here e is a parameter which ranges from 0 to —'„and
rejects the amount of distortion. The crystal is semicon-

ducting due to the extra band gap brought about by the
deviation from one cation per unit cell.

To begin with, the simplest interaction we can write
down is a delta-function potential

1—2p
V(x) = Vp P b x—

l j+ a

f 1—2p
+bx—lj— a

This is essentially the situation in which the Coulomb
interaction is very strongly screened, which is not too
far from the case where an extremely high density of
free electrons exists. Schrodinger's equation may be
written

A2

P"+Vpg P(x ja)+b(x ja b—)j&=E&, —(2.20—)
2m

where b= (1—2p)a/2. —
The solution to (2.20) is"

siny
costa =cosy+ 2z

siny(1/2 —p) siny(1/2+ p)
+2zP (2.21)

where y'=—2ma'Z/h', and z= ma'Vp/h'—

Pro. i. Energy as a function of k: s= —6. (a) &=0.15, (b) &=0.10,
(c) &=0.05, (d) &=0. (arbitrary units for E)

Equation (2.21) gives the energy band structure of
the crystal. We still have two parameters at our
discretion, the strength of the interaction s, and the
amount of distortion e. These parameters determine the
widths of the valence and conduction bands and the size
of the energy gap. As 2' increases in magnitude, the
width of the band in the undistorted case decreases; as &

increases, the gap increases relative to the widths of the
valence and conduction bands. As an example, the
energy-band structure is given in Fig. 1 for s= —6 and e

varying from 0.15 to 0.
As can be seen, the energy gap introduced by the

distortion is approximately proportional to e, a result
which remains valid even when e becomes rather large.
When s is large and thus the bands are narrow, the
distortion depresses the entire lower band and elevates
the entire upper band by relatively constant amounts.
The distortion can be looked at as a band generalization
of the Jahn-Teller effect. When the bands are extremely
narrow, the gap opens up along the whole Fermi
surface at once. This gap, and therefore the gain in
electronic energy is proportional to e. Since the loss in
elastic energy is proportional to e2, the total energy will
be lowered by some distortion. In the limit of infinitely
narrow bands, the analysis must, of course, be equiva-
lent to the ordinary Jahn-Teller theory.

On the other hand, when the bands are wide, a
distortion only introduces a small gap at the edges of the
reduced first Brillouin zone. Only a fraction, which we
shall show in Sec. III is of the order of the ratio of the
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E,=ED—rEg,
E.=ED+ (1 r)E„— (2.22)

energy gap to the band width, of each band is displaced.
Hence the gain in electronic energy tends to be pro-
portional to e', and therefore cannot dominate the loss in
strain energy for any 6nite distortion. This gives us
some insight into the reason why such distortions are
found, for example, in the oxides of vanadium, but not
in sodium. We shall demonstrate these ideas quanti-
tatively in Sec. III.

Returning to the model under consideration, the
positions of the top of the valence and bottom of the
conduction bands at T=0 can be expressed:

and only for relatively narrow bands. As the tempera-
ture increases, electrons are excited across the gap. As in
the case of antiferromagnetism, we wish to calculate the
dependence of the energy gap on the concentration of
carriers.

If the bands are very narrow, then for each electron
excited from the valence to the conduction band, the
energy is increased by E,. Thus, at finite temperature,
(2.26) must be replaced by

ÃD EA
E= (1—8)— (1 b) e—+nA e nD—+Be', (2.28)

2 2

which gives for the equilibrium distortion

Eg ——Ae —D, (2.24)

where D is small and positive. This represents a gap
which shows an upward curvature as & increases.
Equation (2.24) is a good approximation in any region
where E,(e) has constant slope. Thus, it can also be
applied in the vicinity of very small e by tak.ing D=O.

Using (2.22) and (2.23), the zero-temperature energy
relative to that of the undistorted system is

where the second term on the right represents the in-
crease in elastic energy. In the region where 8 is es-
sentially constant and E~ is represented by (2.24),
(2.25) becomes

g= (XD/2) (1—8)—(EA/2) (1—g) e+ale'. (2.26)

From (2.26), we can determine the equilibrium distor-
tion as

eo= (EA/4B) (1 8) . —(2.27)

The above analysis is valid only at zero temperature

where Eo is the common energy of the band edges in the
absence of distortion, and r is a factor giving the ratio of
the depression of the valence band maximum to the
band gap, E,. For suKciently small c, r always ap-
proaches the symmetric value -,'. However, as can be
seen from Fig. 1, for larger e, r can become signiicantly
less than -,'. Let us write

(2.23)

where 8 gives the deviation of the splitting from the
symmetric case. Solutions of Schrodinger's equation, "
for both delta-function and Mathieu interactions show
that the function 8(e) rises rather sharply from 0 to a
constant value which depends on the strength of the
interaction. For very narrow bands, the asymptotic
values of 5 were generally between ~» and —',, centering
alound 3.

It is also found that the dependence of E, on e varies
somewhat from strict proportionality, in the narrow
band limit, as e is increased. In the region of constant 5,
E, can be expressed as the linear function

(2.29)

As expected, the amount of distortion decreases with
increasing temperature. From (2.24) and (2.29), the
energy gap as a function of carrier concentration is

(2.30)

where we have used the approximation that D is small
compared to E,o. Equation (2.30) is the relation
analogous to (2.18) when the gap is due to'a crystalline
distortion, provided we are in a region when 5 is con-
stant and E, is a linear function of e. The value of P
in (2.1) is

2 Ego D)
P= 1+z„i (2.31)

IIL FREE ENERGY AND ELECTRICAL
CONDUCTIVITY

For this section, we shall assume that it is a crystalline
distortion which has brought about the energy gap. %e
shall write down the free energy of the system and then
determine the amount of distortion e, which minimizes
this energy. From this, we can then 6nd the concen-
tration of free carriers m as a function of temperature.
Since electrical conductivity for an intrinsic semicon-
ductor can be expressed as

a=ne(p. +pg), (3.1)

where p, , and p~ are the electron and hole mobilities,
then n(T) gives the conductivity as a function of
temperature for constant mobility.

Treating electrons in the valence and conduction
bands as two independent phases, and ignoring inner

This expression can also be used in the range where e is
very small, by setting 8=D=O. In this region, (2.31)
becomes identical to the antiferromagnetic result (2.19).
This entire argument will be repeated more rigorously in
Sec. III.
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F,( =Be'+B'p'+ (3.3)

A. Narrow-Band Approximation

orbitals, the electronic free energy of the system is

F,I =ep,+ (N p)—IJ,„
p

kT —ln 1+exp
~

p, (E)dE
kT i
f~ El-

kT —ln 1+exp~
~

p. (E)dE, (3.2)kkTi
where p, and p, are the densities of states, p, and p, are
the quasi-Fermi levels, and m and p are the concentra-
tions of free carriers in the conduction and valence
bands, respectively. To (3.2) must be added the increase
in strain free energy due to the distortion. For small
distortions, this may be expressed as a power series in ~'.

Adopting the charge-neutrality condition, m=p, sim-
plifies (3.7) to

F,q= (N N)E—„+eE,+2ekT ln
N —n

2N—kT ln . (3.8)
N —n

The first two terms on the right of (3.8) give the energy
of the system at zero temperature; the remaining two
terms represent the entropy contribution to the free
energy.

Consider a small distortion e, the increase in strain
free energy, to second order in e can be written as Be'.
Using (2.22), (2.23), and (2.24) in (3.8), we obtain for
the free energy of the system as a function of the
distortion, the free-carrier concentration, and the
temperature:

The oxides which exhibit semiconductor-to-metal
transitions are characterized by extremely narrow 3d
bands. For such materials, the effective masses of
electrons and holes are so large that the usual parabolic
band approximations are not valid except at extremely
low temperatures. The physical situation is probably
closer to the extreme limit of delta-function bands.
Therefore, we shall analyze the free energy and con-
ductivity first in this simple limit. We assume one 3d
electron per cation, although any number can be treated
analogously.

We take as the densities of states in the conduction
and valence bands

ND 2 n
F(p,e,t)=NEp+ (1—5) 1—

2 1—8N

N 2 n——(1—5)A p 1— —+Bc'
2 1—8Ã

n
+2ekT ln 21VkT ln—

N —n N —n

Minimization of (3.9) with respect to p yields

(3.9)

p, (E)=1A(E—E,),
&„(E)=NS(E—E.) .

(3 4)
2 n

6=6p 1
1—51V

(3.10)

Substituting (3.4) in (3.2), we obtain

pc Ec
F,I ysIJ, ,+ (N p)IJ,„N——kT ln—1+ex—p

kT

t'~ —E l
NkT ln 1+exp~ —

~
. (3.5)kkT)

Minimizing (3.5) with respect the quasi-Fermi levels
gives

p, =E,+kT ln
N —n

where pp
=—NA'(1 —5)/4B is the zero-temperature dis-

tortion. From (2.24),

2 s
=E,o 1—

i

k1—8 1V

where 8=—8+D(1—b)/E, Spubstitution of (3.10) into
(3.9) gives

p, =E„—kT ln
N—

Substituting (3.6) in (3.5):

(3 6)
N (1—8) 2 n 2

F(e,T) =NEo- Egp 1
1—8Ã

Fg= (N p)E„+nE,+ekT ln— +pkT ln
N —n N —p

+2nkT ln
N —n

21VkT ln . (—3.11)S—n

—NkT ln
N —n

The first term on the right of (3.11) is a constant

NkTl„(3 7) representing the electronic energy of the undistorted
N psystem, —and can be dropped by setting NEp as the zero



D. ADLER AND H. BROOKS

of energy. We may then write (3.11) as

+x lnx+ (1—x) ln(1 —x), (3.12)

1—x
y=ln t 2

E1—Si
(3.13)

where x= e/N and y= E,p—/2k T. Minimizing (3.12) with
respect to x shows

FIG. 2. The func-
tion p(r).

Equation (3.13) is just what we would expect from
application of Fermi-Dirac statistics to a system de-
scribed by (3.4) and (2.30)." Inversion of (3.13) gives
the carrier concentration as a function of temperature.
Since, for a constant mobility, electrical conductivity is
proportional to carrier concentration, it is useful to
perform this inversion. For the case of Boltzmann
statistics, (3.13) can be inverted analytically. The
Boltzmann approximation consists in replacing the
numerator of the right side of (3.13) by ln(1/x), and is
valid as long as x does not get too large. In this ap-
proximation, with substitutions

(3.13) becomes

g—=xe",

2
r—=exp lye

1—Si

lnr = (inrun)/ti.

(3.14)

where gp= v and g„+i=r"". In Fig. 2 the point T=O
corresponds to r=1. As the temperature is increased, T

increases monotonically. At a given temperature Tp,
corresponding to Tp=e", a singularity exists, which
would correspond to a second-order transition to a
metallic phase. Near this transition it can be shown that
the gap disappears like (Tp—T)'". In fact, this point is
only reached when 5 is exactly 0. For all finite 6, a
smaller temperature Tp exists at which point the free
energy of the metallic phase becomes lower than that of
the semiconducting phase, and a 6rst-order transition
occurs. To analyze this, we must look at (3.12). At a
given temperature, the free energy has a local minimum

The function ri(r) is plotted in Fig. 2. For a, given r,
corresponding to a particular temperature, there are
two values of g, corresponding to two carrier concen-
trations. However, the upper intersection corresponds
to a maximum of the free energy and thus has no
physical significance. The lower intersection is easily
shown to correspond with a relative minimum in the free
energy.

The function ri(r) can be expressed explicitly by

(3.15)

1

1.0 1.2 1.&

d lnEgp d lnTp
(3.17)

given by the lower branch of the inversion of (3.13);
there is also a maximum at a higher x corresponding to
the upper branch of this inversion. For still greater x,
the free energy is a monotonically decreasing function.
The largest physical value of x is the "metallic" state,
x= —,', which represents a narrow half-fi11.ed band.
Clearly, when x becomes large, the approximations of a
constant o and a linear F., given in (2.24) break down,
since otherwise (2.24) would imply a negative energy
gap. However, we are not interested in this intermediate
range. As we have noted, near the above-described
metallic state, e is very small, and the free-energy ex-
pression (3.12) will apply provided we take 8—D=O, or
8=0. Thus, the free energy of the metallic state is
simply

F ~M/2Nk T=—,
' ln-', +-,'ln-', = —0.693. (3.16)

The free energy of the semiconducting phase is obtained
by substituting the lower branch of the inversion of
(3.13) into (3.12). The temperature at which (3.16)
drops below this value is the temperature of a first-
order semiconductor-to-metal transition. The transition
temperature is plotted as a function of 6 in Fig. 3.Away
from 6=0, the maximum value of x in the semicon-
ducting region is quite small, and thus e and E, do not
vary much below the transition. This means that the e

dependence of 5 and E, will not change significantly in
the semiconducting region, and thus that the analysis
that went into obtaining (3.12) is consistent.

Figure 3 gives Epp/k Tp as a function of 8. The second-
order transition temperatures E,p/kT, are also shown
as a dotted line. For a given material, b, D, and thus 6

can be expected to be relatively constant as pressure or
stress is applied. If so, E,p/kTp will be constant. This
can be expressed as
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where X is any external parameter which does not
change the value of 8 for the material. Equation (3.17)
can be tested experimentally, and is an important
prediction of this theory.

As we remarked in Sec. III, for crystalline distortions
in narrow bands, values of 8 centered around — Using
this as a typical 6, we And

.50

40

Egp/k Tp ——8.10. (3.ig)

It is also important to calculate the value of x just be-
ore the transition, since this will give the jump in free-

carrier concentration at Tp. These are plotted as a
function of 6 in Fig. 4. For 5=~

n0

N

.30

.20
gsp/1V =0.023. (3.i9)

Thus, the carrier concentration jumps by about a factor
of 50 at Tp. Since it is likely that the mobility in ex-
trernely narrow bands changes considerably from the
semiconducting to the metallic state, we cannot predict
t e metallic conductivity from this analysis. However,
the ow value of n/A' found in (3.19) is essential to
confirm the validity of the assumption that 6 does not
change in the semiconducting region. We can also use
the information provided by (3.19) to estimate the
jump in mobility from the observed conductivity
discontinuity.

The narrow-band limit is an extreme idealization
which is never actually obtained. In reality, the bands
must have some width. The case of a Gaussian broaden-
ing about delta-function bands can be handled without
much diKcu}ty, and can be solved analytically for
Bo}tzmann statistics, "which is a good approximation if

10

I

40
I I

.20 P),30

FIG. 4. np/N as a function oi 8; narrow-band limit

I

10
0

0

p, (E)=—exp—
mA

(E—2Eg/3)'-

the spread is sma}l. A Gaussian spread of a narrow band
urthermore is probably a reasonable representation for

ho
a an in w ic conduction occurs by uncorrel t deae

opping. For the densities of states given bven y

E
p„(E)=—exp—

mA

(E+Eg/3)'

10 it is found that the solution can be mapped onto the one
or X=0 by introducing a renormalized 5:

Ego

kTp

I

10
0 I I

.20 3 .30 40

FIG. 3. E /k~q/ T0 as a function of 6; narrow-band limit.

8,(r= 8+ (1—8)
4k'Tp'

Thus, introducing a small spread to the bands tends to
raise E,p/kTp somewhat. This means that the transition
occurs at a slightly lower temperature then in the zero-
bandwidth case, as one might intuitively expect. For

when X=O; for X/Egp ——0.05, Egp/kTp=8. 24. However,
we note that the effective band gap should more pre-
cise y be taken as (Egp), ff Egp 2X, since this repre-
sents the energy separation between appreciable densi-
ties of states in the two bands. Thus, for the first
example above, (Egp) rr/kTp ——7.94, and for the second
example, (Egp)grr/kTp=7. 42. Thus, for a given energy
gap the transition temperature is raised as the bands are
widened, as would be expected.
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3. Effective-Mass Approximation

We also can consider the situation where the valence-
and conduction-band structure in the semiconducting
state is well represented by ellipsoidal constant energy
surfaces. We can then define density-of-state effective
masses, m, for electrons, mI, for holes, and write

2me 3&2

~.(E)= LE—Eo—(1—«)E.]'"
27r2 A2

2 p,—Ep—(1—r)Ep
S= A eT Egg

kT

2
P= AgT"F, (p

Eo—rEg —
IJ,,

kT

(3.25)

Minimization of (3.24) with respect to the quasi-Fermi
levels gives

1 (2m' P"..(E)=
(3.20) In the Boltzmann limit, Eq. (3.25) gives for the

carrier concentrations,

p,—Ep—(1 r)Ep—
e,=A,T'" exp

kT

p=A y,
T+' exp

kT

and the electronic free energy becomes simply

F.) =NE, +np. pp„kT—(n+ ,p—) .
From (3.26), the quasi-Fermi energies are

3.21(k) E +L(1 r)2E 2+g 2kp]1/2

E„(k)=E,—L(«E,)'+odkP]-;,
p, =Ep+(1 r)Ep+kT ln—

A,T'"where

SuRiciently near the band extrema, (3.20) is always a
good approximation. But for large m, or m&, the equa-
tions do not apply for a very large energy range. The
effective-mass approximation assumes that (3.20) would
remain appropriate for all values of E which have a
Gnite probability of electron or hole occupation at the
temperature under consideration. In this range of
applicability, the densities of states given by (3.20)
arise, for example, from the spherical bands

(3.26)

(3.27)

k'(1 —r)E« k'«Ep
2— ~ 2+e = a~ =

me
IJ,,=ED—rEO —kT ln

A „T3/2

(3.28)

The bands given by (3.21) are a somewhat more
plausible representation of the band structure away
from the band edges than the ordinary effective mass
approximation represented in Eq. (3.20). When the gap
is large, (3.21) reduces to the usual eRective-mass bands.
Substituting (3.20) into (3.2), and taking into account
the fact that the total concentration of states in each
band is X, we obtain the following expression for free
energy:

F(=NE.+np, —Pp.

which substituted into (3.27) yields

F,&=NE„+nEp+n(1 r)E« PEp P«—Ep— —

+nkTln +pkTln —kT(n+p). (3.29)
A,T»2 A „T3/2

If we assume the condition of charge neutrality, n= p,
Kq. (3.29) now simplifies to

2 2
A ~T I (kT)Fpi p

3+m

-p,—Ep—(1—r)E,—

kT

F,~
=NE,+nE,+2nkT ln.A*T3~2

(3.30)

where

and

2 2
AgT+'(kT)F p(p

3 gz.

-Eo—kg —IJ,,
kT

(3.22)

F( )=i
p exp(x —f')+1

(3.24)

(1~ 2n4k~'" 1 &2«n k~'"
Aa =——

I I, (3 23)
&4i ~kPi

'
4 &~kP i

where A*=—(A,A p)'". Equation (3.30) is the wide-band
analogy to (3.8), and if the valence and conduction
bands were rigidly displaced by a small distortion, then
all results would follow just as in the narrow band
approximation. However, as can be seen from Fig. 1,
this is not the case, the distortion being localized near
the band edges, so that E, decreases less rapidly than
E,. Although the thermodynamic functions could be
worked out with the approximation (3.20), in order to
obtain the displacement of 8, in terms of E„ it is
necessary to use the more realistic model (3.21), since
the averaging involved in E, includes states in the
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valence band far away from the gap. We thus obtain

kp

E =Ep—— f(rE )s+assksj'"ksdk
~G 0

=Ep—
~ ~

(YEp){yp(1+2ypP) (1+ye )
«8yos/

—lnLyo+ (1+yos)'nj} (3 31)

where ye= asks/—rE, is determined from the requirement
that the concentration of states in the band is X. In the
wide-band limit where the effective-mass approximation
is most appropriate, yp is large, and the complicated
expression (3.31) simplifies to

~Eo
kTc

00 I I

10 ~ 1
15

10 x fn—
R

I

20

15 r2

E,= (Ep (3/4) ask—p)
—— E,'.

8 cIkp
(3.32)

FIG. 5. Egp/ATp as a function of ln(t/R); efFective-mass approxi-
mation, Boltzmann statistics.

tistics. It may be solved explicitly with the substitution
Thus, in this limit, the reduction in electronic energy is
proportional to the square of the distortion, as we
indicated in Sec. IID. Since the cost in strain energy is
still proportional to ~2, such distortions do not occur
when the bands are wide.

On the other hand, if the bands are narrow, yp is
small, and (3.31) results in

Z„=Eo—(.E,) (1+ (3/10)yo'). (3.33)

-y—1/2e—y-

7

reC

Z=—eCy»2"x.

~=Q'= n(Q) (3.38)

Substitution of the leading term of (3.33) into (3.30),
adding the increase in elastic free energy, and using
(2.24) gives

1
F=ff/E, er~ 1 x—(A.—D—)

r I.et
yc '/2= rCe&'. (3.39)

the same function as defined in (3.15). As in Sec. A, the
solution of (3.38) which minimizes the free energy has a
singularity which would correspond to a second-order
transition to a metallic state. The point y, corresponds
to Q, =e'I', or

+Bes+2EkTx ln . (3.34)
ex*T3/2

e= (EA/2B) r (1 (1/r)x)—
= ep(1 —(1/r)x), (3.35)

From (3.34), we immediately obtain the equilibrium
distortion as

S—= (rC)'y„
ln(1/R) —=2(rc)-s.

Then (3.39) can be written

S=R'= I(RY),

and the critical temperature is given by

2y, =S ln(1/R) = YI(R) ln(1/R) .

(3.40)

(3.41)

which recaptures the result (3.10). Elimination of s From (3.40), the parameter ln(1/R), which determines
from (3.34) gives ycp 1S

F(x,y) E, r 1 )s——1—-x
~
y+x ln(Cxy''s), (3.36)

2EkT 2kT 2 r I
ln(1/R) =

/

t' e ys m*Egpys

Vrr) 2xks i (3.42)

where r= r(1 D/E, p), y i—s defi—ned as in Sec. A, and
C=F(2k)sos/eE op'"A *

Minimizing (3.36) with respect to x,

eQ+~3/2 e—y(1—(1/i) s) (3.37)

which is the analogue of (3.13), and is just what one
would expect from naive application of Boltzmann sta-

Thus, ln(1/R) is essentially a measure of the ratio of
band gap to band width. The quantity 2y,=—E,p/kT, is
plotted as a function of ln(1/R) in Fig. 5. For narrow
bands, as we have assumed, ln(1/R) is large, and
Epo/kTe is a slowly varying function of R. Since in this
region E/ppkT)5, Boltzmann statistics are appro-
priate. There appears to be some overlap between the
effective-mass approximation and' the example of a
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x (T,)= r/y, . (3.44)

When Boltzmann statistics are applicable, y, is signifi-

cantly larger than 1; also r is never greater than ~ and
can be much less. Thus, the fraction of carriers excited
before the occurrence of a second-order transition can be
quite small. If a first-order transition occurs at a lower
temperature than T„ the critical carrier concentration
is still lower than that given by (3.44). Using (3.36) and

(3.44), the free energy of the semiconducting state at T,
can be evaluated as

F(y) Ep r—-(y.+y.—1) (3 45)
2%kT 2kT 2

Equation (3.45) is valid provided that the gap just
below T, is still suKciently large so that the approxima-
tion (3.33) in appropriate.

In order to determine the order of the transition, we
must calculate the free energy of the metallic state. We
shall assume that the eff ective-mass approximation is a
good. description also of the metallic band structure,
although the effective mass in the metallic state m need
not bear any relation to the semiconducting electron and
hole effective masses. With p(E) =CE", the metallic
free energy is

F~.,——rsvp —Ck T

00 Ep—E
dE E'/' ln 1+exp (3.46)

0 kT

Proceeding as before, but applying the condition of
degeneracy, we obtain the usual result

Gaussian spread around the narrow-band limit given in
the last section. From (3.42) and the definitions of yp

and a q, we can write

yp'= (9gr"/»')'"L»(1/R) j ".
For r=-', and ln(1/R)= 1.0X10', this results in 3ypg/10
=0.2, close to the upper limit of validity of the expan-
sion in (3.33). Thus, ln(1/R) must be of this order of
magnitude or larger for Fig. 5 to be applicable. Ex-
pressing ln (1/R) in terms of the effective-mass ap-
proximation band width, E p

—=k'kpp/2g/t, we find

ln (1/R) = ( 81 gre /64) (Eg p/E p)
'

For a band-gap to band-width ratio of 10, ln(1/R)
= ] .1X10', a value sufliciently large so that (3.33) is
valid. In this case, (3.41) yields E,p/kT, = 7.3. For the
same band-gap to band-width ratio in the Gaussian
bands of the last section, we found (Egp). ///kT, = 7.4.

Just below the transition, rl= e. Thus, from (3.37), at
this point

gg(T.) = (1/C)y. '"e gc. (3.43)

But (3.39) and (3.43) imply

where we have identified the Fermi energy of the
metallic state with Ep, the energy of the top of the
semiconducting valence band when the gap has shrunk
to zero. In terms of m,

Ep = (k'/2m) (3m'N)'" (3.48)

where we have taken the bottom of the band as the zero
of energy. From (3.47) and (3.48),

F/r/, t 3 Ep f gr' 'I" r/tEgp

2NkT 5 2kT l 3N) 8k'
(3.49)

The metallic free energy given by (3.49) must be com-
pared to the minimum semiconducting free energy given
by (3.36) and (3.37). If (3.49) drops below the minimum
of (3.36) at some temperature Tp, then this is the
temperature of a first-order semiconductor-to-metal
transition. If this does not occur below T„ then T,
represents the point of a second-order transition. If
(3.45) is valid, then the order of the transition can be
determined by evaluating (3.49) at y= y, and comparing
the result to (3.45). Using (3.39) with r=-'„ the proper
metallic value, and using the definition of C, we find

(E,)...
Teff= T

(Eg)sppsrest

R~.t(y.) 3 Ep pr ( gr»' r/t

y
—P/egg /g (3 50)

2NkT 5 2kT 2 (12' mg

If (3.50) is lower than (3.45), a first-order transition
takes Place at Tp& T.. If (3.50) lies above (3.45), the
transition is a second-order one at Tp = T . We can
expect Ep to be small compared to E,p, since the bands
are relatively narrow. It can then be seen from (3.45)
and (3 50) that th«ransition will be first order unless y,
is smalL But the approximations which led to (3.45) are
consistent only with a large y, . If the initial gap is
small, Fermi statistics must be used. This analysis has
been carried out" and it is found that Fermi statistics
raise T„and thus lower y, .This effect is enhanced if the
electron and hole effective masses diBer significantly.
Thus, as a practical matter, in the range in which the
effective-mass approximation can be used, the transition
will always be first order.

We have tacitly been assuming that the energy gap
in the semiconducting state is a direct one, th e valence
band maximum and conduction band minimum oc-
curring at the same point, in I space. If this is not the
case, two new possibilities emerge, at least in the wide-
band approximation. Firstly, the effective r ca»e
significantly increased if the real value of the indirect
gap E, is much smaller than the theory of Sec. II
indicated. This can b e taken into account by using an
eBective r given by

FM, t= —PpNEp —(m' N'k'T/4Ep), (3.47) (Eg)sppsrest is the direct gap in k space. Since a
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small r favors a first-order transition and, according to
(3.41), (3.42), and (3.44), a low-carrier concentration on
the semiconducting side of the transition, it is seen that
the existence of an indirect gap enhances the sharpness
of the transition. Secondly, the possibility of a transition
to a semimetallic state rather than a fully metallic state
exists. The analysis of such a transition is completely
straightforward and can be carried out by retaining the
expressions for F,~ in the form (3.24). The semimetallic
state is that which the Fermi functions can be replaced
by their value under degenerate statistics:

F i.(i)= :i'"-+( '/4)i-'",

«) =-'i'"+(~'»2)i '"

Once again, it is found that the semiconductor-to-
semimetal transition can be either first or second order,
with the first-order situation much more probable. The
possibility of a second order in this case exists because
the system can become degenerate before the direct gap
has disappeared. This possibility is rendered more
unlikely by the requirement that the semimetallic state
also have lower free energy than the fully metallic state
in order for it to be stable.

C. General Case

In Sec. H we saw from Eq. (3.32) that in the wide-

band limit, distortion of the lattice would not take place
even at absolute zero. In this section we shall examine
the zero-temperature energy of the crystal as a function
of fractional distortion e for a general band model which

permits adjustment to represent any ratio of band
width to band gap, and shall determine under what
conditions the crystal can spontaneously distort. We use
a model in which the bands are spherical around the
conduction and valence band edges, the energies being
given by

E„(k)=Ep—[(rE )'+4P' sin'( —'ka) ]'"
E (k) =Ep+t (1—r)'E '+4P' sin'(-,'ku)$U'. (3.51)

This form of function is that obtained by nearest-
neighbor tight-binding calculations in a one-dimensional
crystal, and the model is simply assumed to have
spherical symmetry when extended to three dimensions.
Although no real band structure has exactly this form,
the model is probably suKciently realistic for our
purposes.

We can obtain the effective-mass approximation from
(3.51) by taking P large compared to E„or the narrow-
band limit by taking P small compared to E,. E,=O
gives metallic bands whereas P=O leads to the zero
band-width case.

In order to determine whether the crystal will distort
we want to evaluate the total energy of electrons in a
filled valence band as a function of the energy gap.

Thus, we are interested in

E„=gE„(k)

z~'"
=NEp 3N—(rE,) ds s'~ 1+9 sin' —~, (3.52)

p & s&

where X=—4P/E, .The integral in (3.52) can be related to
elliptic integrals of the second kind, but for the present
we can restrict ourselves to the two limits of wide bands
(X'))1) and narrow bands (X'«1). In the wide-band
limit, we find

48P 2~
— K ~'(rE,)'

1——
I

—(«,)'— (3.53)
P 384P'

where

=0.150.

This limit is the one where the gap E, is small compared
to P, which is always true for sufficiently small dis-
tortions. In this case E,=A e, and the total energy of the
system at 7=0 to second order in e is

48P 2 p KA'r'~
+~ B— ~p' (354)

p )
where Be' is the increase in elastic energy brought about
by the distortion. Since we expect B))A, (3.54) shows
that there is always a local minimum of E(p) at p=O. If P
is large enough that (3.53) remains a good approxima-
tion as e gets large, it is clear that the crystal will not
distort. However, when the bands are quite narrow, P
will be small, and for suKciently' large c, the opposite
limit, (X'«1), becomes appropriate. Then, from (3.52),

3X'~
E„=NEp N(rEp) 1+ —

~

1+—

In this region, (2.24) should apply, and thus the total
zero-temperature energy of the system can be written

E=N (Ep
—rD) —NAr p —(6/p)+Bp', (3.55)

where 6=—(1+6/4r')NP'/A. Equation (3.55) exhibits a
local minimum at a finite ~:

NAr- 4B'P'
~ 6

2B NPA4rP&
(3.56)

so that the crystal will distort if the energy at this eo is
lower than the energy at &=0. At co, the energy can be
expressed

rD~ r2.4P'--
E=N

~
Ep —

( Erp+, (3.57)—
2) 2 E„

where Ego is the energy gap introduced by eo.
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rEg p 2.4P rD
+ +—)177.

2P Egp 2P
(3.59)

Ignoring D compared to E,o, and taking r=3 as a
typical value, (3.59) becomes

P(0.12Ego. (3.60)

Since the band width in the model under consideration
is 4P, the criterion for distortion is that the band width
be less than half the band gap. In general, when spherical
bands are not assumed, the width of the band will be a
larger multiple of the overlap integral P, so that the
precise criterion is not quite as strict as this. However,
since the gaps introduced by distortions of this type are
of the order of tenths of electron volts, the distortions
will take place only when the band width is of the same
order of magnitude or smaller.

It might appear at first that the foregoing discussion
is inconsistent with the conclusion following Eq. (3.42)
that raising the band width relative to the band gap
raises the transition temperature. However, the latter
conclusion applies only forPxed band gap. In the present
case, the expression (3.56) for eo shows that the band
gap itself decreases with increasing band width, and this
tends. to lower the transition temperature more than the
slow change of y, with ln(1/R) tends to raise it. Hence
for fixed values of 8, and A, and r the transition tem-
perature will be lowered by increasing P as it should be.

Finally, note that the condition (3.60) corresponds to
0.3yo'(0.43 and thus the expansion (3.33) is valid for
the range of band-gap to band-width ratios for which
the crystal will distort.

XV. DISCUSSIOH

We have shown that a narrow-band crystal, whose
structure is such that it would otherwise give a half-
filled conduction band, can lower its ground-state
energy by distorting, and thus produce an insulating
state at zero temperature. Wider band crystals of this
type will not distort, but can lower their energy by
ordering antiferromagnetically and also achieve low-

The energy of the local minimum which must occur at
e= 0 is obtained directly from (3.54) as

E=N[EO 1.7—7pj. (3.58)

Comparison of (3.57) and (3.58) shows that the crystal
will distort if and only if

temperature semiconduction. In both cases the gap
introduced must decrease with thermal excitation of
carriers, and a transition to a metallic state occurs at a
given temperature which can be calculated from the
band parameters of the system.

We wish to apply the theory to the narrow 3d bands
of the transition metal oxides. The limit of zero width
bands is, of course, much too extreme to be accurate, but
the introduction of a small spread to the bands has very
little eGect on the final results. In particular, the ex-
pressions (3.17) and (3.18), which are the ones most
easily experimentally tested, are virtually unchanged by
Gaussian spreads of width up to one-quarter of the
zero-temperature gap. Furthermore, in Sec. IIIC, we
show how a general band model gives the narrow band
results in one limit and the effective-mass approximation
in the other. The conclusions here indicate that the
narrow-band limit is the consistent one to use in dis-
cussing crystalline distortions.

The theory of Sec. III is worked out only for the case
of a crystalline distortion. The analogous calculations
for an antiferromagnet differ somewhat and will be
detailed elsewhere, although the results are very similar.
In the narrow-band limit, whereas a crystalline dis-
tortion always leads to a first-order transition, a satu-
rated antiferromagnet exhibits a second-order transi-
tion. In general, either order transition is possible,
although an antiferromagnet is more likely to undergo a
second-order transition than is a distorted crystal, all
other things being the same.

A first-order transition to a metallic state occurs when
the free energy of such a state falls below the local
minimum of F (rI,,T) for the semiconducting state. How-
ever, the local minimum continues to exist right up to
the second-order transition temperature, T,. This local
minimum might lead to a metastable state when the
material in the semiconducting state is heated, and this
would show up experimentally as a hysteresis. This
hysteresis will not occur when the transition is second
order, and this can provide a quick determination of the
order of the transition directly from the electrical
conductivity data. Thus, the results of Morin" indicate
that V203, VO, and VO2 undergo first-order transitions,
whereas the transition in Ti203 is second order.
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