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Orbach Spin-Lattice Relaxation of Shallow Donors in Silicon*
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The spin-lattice relaxation rate 1/T~ for the exponential temperature-dependent Orbach process has been
calculated assuming that the spin-Ripping interaction is due to the residual spin-orbit interaction associated
with the 1S-T2-donor states. The Orbach rate constant is shown to depend principally on two physical
parameters, the impurity spin-orbit splitting and the level width of the 1S-T2 states. Using the results of
the infrared-absorption measurements of Zeiger and Krag on Bi and of Aggarwal and Ramdas on Sb, As,
and P, reasonable agreement is found between the calculated results and the experimental measurements of
Castner. The simple result found is possible because the level width, assumed due to spontaneous phonon
emission, makes it unnecessary to consider the complicated details of the electron-phonon coupling between
the 1S-A1 and 1S-T2 states.

I. DTTRODUCTION

HE spin-lattice relaxation processes for shallow
donors in Si are currently reasonably well under-

stood except for the exponential temperature-dependent
Orbach process. Careful measurements of the ani-
sotropy of the spin-lattice relaxation rate 1/T& by
I'cher and Wilson' showed the direct process to consist
of the valley-repopulation effect and a one-valley
effect, each with its own angular dependence. These
results are in surprisingly good agreement with the
calculations of Hasegawa' and Roth, ' who recognized
the importance of shear strains in coupling the low-

lying 15 valley-orbit states. Previous calculations4 con-
sidering only long-wavelength dilatational strains (these
do not couple the 1S valley-orbit states) had given
relaxation rates many orders of magnitude too slow.
The Raman spin-relaxation processes have been shown'
to consist of a power-law contribution (1/Tq ~ EPT') and
an exponential temperature-dependent Orbach process.
Calculations by Roth and Hasegawa and Nakayama'
of the T' process in which they include the impurity
potential produce a result having all the correct de-
pendences and the right order of magnitude. The good
agreement obtained in this case is intimately related
to the breakdown of the eQective-mass approximation.
In contrast to the direct process and the Raman T'
process in P and As, the Orbach-process experimental
data" for P, As, Sb, and Bi show a strong dependence
on the atomic number Z of the donor. This result
suggests that the impurity spin-orbit interaction is
responsible for the Orbach spin-lattice relaxation pro-
cess. Recently infrared-absorption optical measure-
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ments have given new information on the effect of the
impurity spin-orbit interaction on the shallow donor
states.

Krag and Zeiger' have observed the weak 15-A1—
15-T2 electric-dipole transition in Bi-doped Si. The
transition showed two peaks split by 1 MeV (10 ' eV)
which have been interpreted' as due to a spin-orbit
doublet produced by the residual effects of the large
spin-orbit interaction of the Bi donors. Employ-
ing elevated temperatures (30'K(T(80'K), severa, l

groups" have observed optical transitions from the
excited 1S Eand 1-S T2 states to th-e 2po and 2p&
donor states. These experiments have permitted a
much more accurate determination of 15-E and 15-T~
energy levels. A very careful study of these and other
optical transitions utilizing uniaxial stress techniques
have led Aggarwal and Ramdas" to conclude the
15-T2 state" is about 1.4 MeV lower in energy than the
15-E state. At 30'K they also observed for the Sb
donor a splitting (0.3 MeV) of the 1S T2 state. This is-
the correct fraction of the Bi 15-T2—state splitting if
the splitting were due to the residual impurity spin-
orbit interaction. The above facts in combination with
the Orbach 1/Tq results further reinforce the argu-
ment that the Orbach process is due to the impurity
spin-orbit interaction.

Abragam" proposed that the Orbach-process 1/Tz
rate could be drastically reduced by the splitting of
the 15-T2 states by the application of uniaxial stress.
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1962 (unpublished).
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Phys. 42, 1826 (1964); R. L. Aggarwal, Solid State Commun. 2.
163 (1964)."R. L. Aggarwal and A. K. Ramdas, Phys. Rev. 140, 1246
(1965).

"The notation of Kohn, in Solid State Physics, edited by F.
Seitz and D. Turnbull, Vol. 5 (Academic Press Inc. , New York,
1957) is followed in this paper. In tetrahedral symmetry the
sixfold degenerate 1S effective-mass state splits into a singlet
(A1), a doublet (B), and a triplet (T.). Aggarwal and Ramdas
label the triplet T1.

'"' A. Abragam (private communication).
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Thus when the splitting produced by the stress be-
comes larger than the small splitting due to the residual

impurity spin-orbit interaction the orbital moment is

partially quenched and the relaxation rate 1/T& is

significantly reduced. Preliminary experiments" on P
and As donors in Si have confirmed this behavior for

.small values of applied stress. For P and As donors
the impurity spin-orbit splitting is too small compared
with the linewidth to observe the splitting of the
1S-T2 state in the infrared-absorption experiments.
These results again point to the role of the spin-orbit
interaction in the Orbach process.

The intent of this paper is to calculate the Qrbach
relaxation rate based on the residual impurity spin-
orbit interaction for the zero-stress case. The rate
constant E(1/T~=Ee '~r) will be calculated in terms
of two principal parameters: (1) the spin-orbit splitting
~„of the 1S-T2 state due to the spin-orbit interaction
associated with the impurity potential and (2) the
level-widths of the 15-T~ excited states which are due

to spontaneous phonon emission. By the use of level-
'widths one achieves a great simplification in the treat-
ment of the electron-phonon interaction which involves

unknown deformation potentials and complicated
angular averages over phonon wave number for the

umklapp intervalley-scattering processes. A relatively
simple expression is then obtained which can be com-

pared with the experimental data making use of the
optical data on impurity spin-orbit splittings and line-

widths of the 15-T2 states.

n„[n„=c„(x, x—,y, y—,s, s—)] are

nA. ,= L1/(6)]"'(11111,1,1,1),

ns. ——-', (1,1,—1,—1,0,0)

ns~ = I 1/(12)]'~'(1,1,1,1,—2,—2), (2)

T2 nr, = (—1, 1—,0,0,0,0)
V2

1
ng „———(0,0,1,—1,0,0)

v2

nr, ———(0,0,0,0,1,—1) .

Several comments should be made about these wave
functions. First, because of the large k; (k;=0.85k ),
the wave functions are highly oscillatory. Only the
symmetric A~ state has a nonzero

~
$(0) I

' and it alone

has a hyperfine interaction with the donor nucleus.
Furthermore, for small r (k; r«1) the E states are
principally d-like and the T2 states are principally
p-like. If the Ts states were pure p-like functions only
the umklapp process (intervalley scattering) would

couple the 3& and T2 states because of parity considera-
tions. In general, however, the T2 states will contain
some d-like admixture which will also allow the intra-

valley process to couple the 3& and T2 states. Thus,
for the Orbach process both intervalley and intravalley
scattering play a role in determining 1/T~.

II. SHALLOW DONOR ENERGY LEVELS
AND WAVE FUNCTIONS

A. Energy Levels without Spin-Orbit Interaction

The shallow donor levels are shown in Fig. 1. The
optical transitions studied by the above investigators
to determine the relative ordering of the 15-T2 and
15-E. levels are indicated. However, the only levels

that need be considered for the Orbach process are the
15 states. These states deviate from the calculated
effective-mass energy of the 15 state because of the

impurity potential and the tetrahedral potential. The
15 states are described by wave functions

where the sum is over the six conduction-band minima

and the n„coeScients are determined to satisfy
tetrahedral symmetry. As shown by Kohn, " the

' D. Olson, Bull. Am. Phys. Soc. 11, 186 (1966).
"W. Kohn, in Solid State Physics, edited by I". Seitz and D.

Turnbull (Academic Press Inc. , New York, 1957},Vol. 5.

B. The 1S Energy Levels: Spin-Orbit
and Zeeman Interactions

Appel" has carefully considered relativistic effects
on the 15 donor states in Ge and Si. In this paper we

shall only be concerned with the spin-orbit effects.
The Hamiltonian for the donor states will be

H =H.44. „,+U(r)

It2

+ Lgrad U(r))&y S]+Hz„..„, (3)
2m c

I

where the additional potential U(r) the donor experi-
ences is given by

U(r) = U; p(r)+a(x4+y4+s4)+bxys. (4)

The U;, (r) is the atomic potential of the donor and the
other terms are crystal fields. It is noted that the
tetrahedral term bxys has odd parity. By far the
largest contribution to the spin-orbit interaction for
the 15 states will come from U;„„(r). Hence the

'6 Joachim Appel, Phys. Rev. 133, A280 (1964}.
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spin-orbit interaction is closely approximated by

Ji' 1dU; p(r)
H,. — L S.

2m'c2 r dr

The angular momentum L in tetrahedral symmetry
transforms according to the T~ representation. The
only nonzero matrix elements of FI„can be shown to
be between the T~-triplet states and also between the
T2 and E states. No matrix elements of H„ involve
the A~ state, nor are there matrix elements within the
E doublet. The E-doublet states can contain admixtures
of opposite-spin states because of the nonzero (Ts

~
H„~IE)

matrix elements. "These matrix elements could be com-
parable to the (Ts

~
H,.

~

Ts) matrix elements. However,
as long as (Ts~H„~E) is substantially less than the
15-T2-E energy separation, the E states will contain
much less admixture of opposite-spin states than the
T~ states. Furthermore, the E states lie above the T2
states and would have a smaller Boltzmann factor for
the Orbach relaxation than the T2 states. In this

paper we assume the Orbach relaxation is due princi-

pally to the T& states and we neglect the effect of the E
states. This assumption is supported by the Orbach

.spin-lattice relaxation results. The energy 8 determined
from the Orbach-relaxation temperature dependence~ is
in much closer agreement with the 3&-T2 energy
splitting than the larger A~-E splitting. " For Sb and
Bi (Ts~H„~E) could be comparable to the 1S-Ts-E
energy splitting and the E states might play a role in
the Orbach relaxation, but certainly not a dominant
role.

C. Diagonalization of the T2 Energy States

The Hamiltonian (3) now becomes for a magnetic
field applied in the s direction,

H=H, tt. .„+V(r)+); p(r)L S
+gfxsHoS, +JxsHsL, , (6)

where X; p+)pJQH It is readily shown that the orbital
Zeeman term may be completely neglected. For con-
venience we choose our energy scale such that

fHef f vasss+ U(r) 7 (
A i)=0

~

A i)

and

"LH.n, .+&(r)7J Ts)=h~ Ts).
Although

(Ts
~
X;~~L S ) Ts)) (Ts ( gfxJ3HS, ) Ts),

we still choose the m~m, representation since this is
consistent with the A~ Kramer's doublet represented
as pure spin states Ail) and Ail). The 6-by-6 matrix
for the Ts states breaks into two pure states,

~

rli= 1,
m, =—,') and

~
ris& =—1, ris, = ——,'), and two 2-by-2

matrices which are readily solved yielding for the
energies of the six states,

W= 8+P&H pure-spin states,

W= 8+ 'f P&(9Ps+—4P—H+4H') 7iJ' (7)
W= h+-', L

—P&(9P'—4PH+ JH')7"'

where H=sgfxsHs and p=s(Tss~X; iI-,
~
Ts;)."

For all the donors except I' we have p)H. For the
case p))H the energy levels are shown to first order
in II in Fig. 2. The wave functions showing the admix-
ture of each spin state are also indicated in the figure.
For P&)H the impure states become nearly equal
admixtures of opposite-spin states since a+ ~+is and
b+-+g — asss H —&0. The Orbach process is repre-
sented by phonon-absorption transitions from either
one of the A ~ Zeeman states to the four T2 impure-spin
states followed by phonon emission back to the other
2 ~ Zeeman state.

ls efg mass 29meV

:-8~I.55m eV

III. THE RAMAN SPIN-LATTICE
RELAXATION PROCESS

lS Having found the energy levels of the Hamiltonian

(3), the Raman spin-lattice relaxation process may be

Fn. Energy-level diagram showing the orbital states of the
shallow donors in silicon. The indicated optical transitions on
the diagram are those studied by Aggarwal and Ramdas and also
by Ottensmeyer, Giles, and Richard. This work led to the con-
clusion the 1S-T2 state is lower in energy than 1S state. Experi-
mental results indicate the Orbach relaxation proceeds via the
1S-T2 states.

'~The author is indebted to G. Watkins and F. Ham for
pointing out to the author the possible importance of the spin-
orbit coupling of the 1S-F and T2 states. They have shown for the
Li donor (interstitial instead of substitutional) that (EIH«i Ts)
is larger than (Ts IH„I Ts).

"It is readily shown that, assuming F*=FfI=F'= (1/a'")e "'

, dV;, (r) 1 .
Js = F„*t,Igs, (r) ~' ™—sinksyl. , sinkoxdr

and we can expand Ilx, (r) ~

' in reciprocal-lattice vectors keeping
only the first constant term which is unity. Then

Xo „1dV;,„(~)
P —— e '"'~- '"'"

y sinkpy coskpÃdr.a' r dr

This integral is orders of magnitude smaller than for the isolated
impurity atom both because of the oscillatory nature of the wave
functions and also because of the extent of the donor wave function
(kpu~20) for donors in Si. The spin-orbit interaction is reduced to
approximately 5X10 4 of the atomic value.
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2'
It2

' (Attla"I T»&(Tsfla" IA(t& '

~AI t T2j

)&6(M'—bee gpna)p—(&v)p(~')dQ dQ dk&d&o', (8)

calculated by using second-order perturbation theory"
considering the electron-phonon interaction as the
perturbation coupling the Al and T2 Zeeman states.
This amounts to the same approach used by Orbach'0 in
calculating relaxation rates for rare-earth ions in crystal
fields. It is different, however, in that the Al and T2
states are different orbital states whereas in the rare-
earth case one is considering coupling between dif-
ferent Mz states of a J level split by the crystal field.
In the present case Orbach relaxation can proceed via
all four of the impure-spin T2 states shown in Fig. 2.
The Raman spin-lattice-relaxation-transition prob-
ability associated only with the T2 states will be
given by

~so &p

g&))gsa

0+P+ H/5

e+P-H/5

e+p-H

(Txe(Tytt)

~( Txwry)I) b+T t)2

a (
x "tt)eb Txt)

;; t i ~-2p+»&

P-H/

b+~
TX+]TV

~~ Il a+Tg
~2 /

b ( ~n )t}-e Txt)

Jp
]seeps

(et ]
~[ (et]a+&pe

[(et] «+p~ae'k~pee epH+eHs

F;(t)Uk e
H Qg.

where the summation is over the four impure-spin T2
states and conservation of energy introduces the delta
function requiring that the difference of the absorbed
phonon energy her and the emitted phonon energy
hh' be equal to the Zeeman energy difference. Of
course, in the second-order perturbation of H,~ both
orders of the two H„'s, namely absorption followed

by emission and emission followed by absorption, must
be considered although only the former contributes
to the Orbach process.

The ma, trix elements (Tel a., IA &(have previously
been considered' and will not be fully discussed here.
Although both intervalley and intravalley processes
can couple the Al and T2 states, the large or~ and q
required for the Orbach process produce substantial
interference in the matrix elements tending to reduce
the effect of intravalley scattering. This can make
(Ts

I H„ I
A t) depend mostly on umklapp intervalley

scattering between opposite conduction-band minima.
This fact may explain why the T2 levels apparently
have little effect on the low-temperature direct and the
Raman power-law spin-lattice relaxation processes. ' The
matrix elements (Ts I H„!,A t) are functions of the
conduction-band shear and dialational-deforma tion
constants „and &, respectively, and are also propor-
tional to an expansion coefficient of the period part of
the Bloch function and nontrivial functions of q.'

A)

6
-H Q-H ~ gF;(—T)Ub. e ' ])ik" r

ki

FIG. 2. Energy levels and wave functions of 1S-Aj and 1S-T&
states including the impurity spin-orbit interaction and the
Zeeman energy. The four 1S-T2 states which are admixtures of the
two spin states 1'1 and 11 are responsible for the Orbach relaxa-
tion. The energies are shown for H &P to first order in H.

However, it is not necessary to evaluate the matrix
elements explicitly and do the angular averages over

q. All the complicated details of the electron-phonon
matrix elements evaluated at phonon frequencies equal
to the energy separation between the four "impure-
spin" T2 states can be lumped into a single parameter,
namely I'y (I'y= hW, ,), the level width of the Ts levels
due to spontaneous phonon emission to the donor
ground state Al. The level widths will be a function of
the 15-Al—15-T2 energy separation but in this treat-
ment the small second-order differences in level widths
of the four impure-spin 15-T2 states will be neglected
and a common level width will be assumed.

Examination of the wave functions of the four
impure-spin T2 states shows that the squared matrix
elements are the same for the four terms in the sum
in (8). Implicitly performing the angular averages
over q and putting in the thermal-phonon quantum
numbers (8) becomes

2'
A2

(T,—iT„) 2

(A, ]la., l
T,]) 1 IH., IA, l p((d) p((o') tr„,ts„,

v2 Quet~, Q(aql

4 1 1
( I)x(rxbx

I
8(~'—~—2H)d~d~', (9)

n=l a+(d n„. a—(o'—n„)—
"Presumably one could also use third-order perturbation theory and treat H„as a perturbation as was done in the classical paper

of Van Vleck treating the Raman spin-lattice relaxation processes. J. H. Van Vleck, Phys. Rev. 57, 426 (1940). Here the exact
diagonalization of the T2 states including the spin-orbit interaction is instructive because the results will show constructive
and destructive interference between the four T2 impurespin states.

"R.Orbach, Proc. Phys. Soc. (London) 7?, 821 (1960); Proc. Roy. Soc. (London) A264, 458 (1961).
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where

and
a'b'= a'b'= a b a'b'= a'b'= a+b+

ni ——8—2P—H/3 —iF/2,
np ——8+P H/—3 iF—/2,
n() ——8—2P+H/3 —i I'/2,

n4 8——+p+H/3 —iI'/2.

factor (a+b++a b ) which may be factored out.
(10) Equation (13) then becomes

4 1 1
& (—1)- -b-
x=i (p—n (p+n„i

/' /g
11 cn cn

=(~'4'+~ & )' ): + „-) ()4)
'(o—X

In the Raman integral most of the contribution comes
for co and co'))FI and using the delta function we may
assume co'= M as an excellent approximation. Consistent
with this, we also neglect FI in the energy denominators.
The thermal-phonon quantum-number product can be
set equal to e "l'~~ since the integrand peaks for co))kT.
Introducing these approximations (9) becomes

where for the present case the coefficients cl' and c2' are

)/Cl—
ir(3p+-ir) ir(a, .+ir)

i'
C2

iI(3p+ir) ir(a..—ir)
2m

A2
G(p))e m/ITd~ P -( 1)nanbn

n=l

The transition rate (12) now becomes

2'
(a+b++a b )'

IE2

where

G( ) =( (A ) i
H., i

T.()

(T.—iT„) . 2

X 1
i
H,p i

A i p'((p) . (12b)
K2 Qee q, Qco tl'

In the general case the energy-denominator factor
may be expanded in partial fractions to obtain a sum
of simple first-order pole terms. The energy-denomina-
tor factor becomes

4 1 1 2

2 (—1)"a"b"
n=l (p+nx

c dn dn
+ + +, (13)

(p n (t) n (p+n (p+n„

where the c and d„are a set of complex coefficients
determined by the partial-fractions expansion. At this
juncture we shall assume 6rst that the latter two non-
resonant terms make a negligible contribution to the
Orbach process. The more general case is considered in

Appendix I. A second assumption we shall make is
that FI&F„for all the donors which appears to be well
satisfied for FI~~3000G. The terms corresponding to
nl and ns and also corresponding to n2 and n4 can then
be grouped in pairs with the same energy denominator
since their energy separati. on is smaller than the line
width. This is equivalent to saying relaxation via e&

and np (also ni and n4) will constructively interfere as
may be seen by the signs of the different spin coef-
ficients of the wave functions shown in I'ig. 2. Correc-
tion terms, if desired, can be found from a Taylor-series
expansion in the energy. FI. We replace 0,& and n3 by
lil 8 2P i I'/2 an—d np—and n4 by l) z = 8+P iI'/2—
After this replacement in (13) each term has a common

X
n=l

mmxx G(pp) e m/pTd(p

+c.c. . (16)
M —X~

Two different approaches will be presented for
evaluating (16). The first is direct integration making
use of the principal-value theorem while the second is

simply a Taylor-series-expansion approach.

A. Direct Integration

I'
(p —8„+iF/2 p GO

—b
—inG(8) e '"/xT. (17)

Using (17) for the four integrals in (16) we collect
terms and find the transition probability becomes

4m. (a+b++a b )' Irk..'e '"T
~'A, t A, ~=-

O' A.,'+ F' F

X [G(8 2P)e'e" —+G(8+P)e e'"Tj
+/( „P G((p)e "T

1
X — —

d&p . (18)
(d—(8—2p) (p—(8+p)

The integrals in (16) can be readily evaluated if the
Orbach peak in the integrand is much narrower in
width than the nonresonant thermal peak. If we set
G((d) =p„~f„(p" the most important term in the series
will be n = 6. In the Debye approximation G(&p) =A(pP

for which the thermal part of the integrand will peak
at (p=6kT and have a width I)(pp=2(6))/'kT. For all

the donors the experimental evidence indicates I' less
than kT/3 hence r((h&p. The integrals in (16) are
then closely approximated using the principal-value
theorem by

mmsx G(4p)e M/ICT mmxx G(()pem/ICT



The largest contribution comes from the erst terms
while the di6'erence of the two principal-value integrals
can be shown to be much smaller. Furthermore the
latter terms introduce correction terms which consist of
power-law temperature-dependent terms. We expand
G(8—2P) and G(8+P) about 8 and we also expand the
exponentials in P/kT since P&(8 and P(kT/3. The
result is

the fact that (18) yields the difference of two nearly
identical power-law series of terms signifies the ex™
potential contribution is dominant. For a= 6 the power-
law contribution is only 3/o of the exponential contribu-
tion. Equation (19) should be a good approximation to
the Orbach-relaxation rate H/'g, q g, g due to the
impurity spin-orbit interaction.

Sir'(a+b++a b )'5„'
G(8)e e //s P—

i't ' (4„'+F') I'

+higher-order terms.

The pI'InclpRI-vRlue lntegl Rl

B. Taylor-Series Expansion

Writing out the transition probabihty (12) without
(19) expanding into pa, rtial fractions but making the other

assumptions leading to (16), W'~, t ~, t becomes

G((o)e ""r/((o 8)do)—

is readily evaluated by extending the upper limit to
inanity Rnd employing Laplace transforms. " Since
k1'( 0.5~ for the experimental range of interest, this
is an excellent approximation. The result is

(—1)"+'
G( 8) d" /ds" Le ' Er(s)j.=e/er.

For all the donors s&6. An asymptotic expansion of

Ei(s) for large s is e'(1/s+1/z'+2(/ss+ . ) The final
result fol the lntegI. Rl Is

G(8)n!(AT—/8) "+'(1+kT/8+ .)
Although rt!(kT/8) "+' can be comparable to

sr(t),./F)e '/" r

2' o(tmax

x, t= (a+b+—+a b )o G((o)e "/x~
It2

j. 2

X d(o. (20)
(o—(8—2P—iT'/2) (o (8+—P iF/—2),

x= o)—(8—2P),
y=~ (8+p), —
s=o)—(8—P/2).

(21)

The transition probability now becomes

Now, instead of using partial fractions, multiply out
the quantity within the absolute value sign in (20) and

make the following three substitutions:

2m' f

(a+b++a b )2e e/kT e2P/—kr- —
h2

mrna*
—( e+P) G(8+P+y)

—(e+p) y'+(F/2)'x'+ (F/2) '
mmsx (e sp) G—(8—+2p+x)e —*/&&dx

+e p/kr-

~P/2k T
o()nis,x—( 8—P/2)— G(8 P /2+—s)e '"r

(s—3P/2+ itF/2) (s—3P/2 —iF/2)
+c.c. ds . (22)

Since P(&AT we set the exponentials in P/kT equal to unity. Furthermore since P(&8 the functions G(8—2P+x),
etc. may be replaced by G(8+x), etc. to a good approxima, tion. However, the P cannot be dropped in the energy
denominators. We note that for F(AT/3 the Lorentzian part of the integrand varies much more rapidly than

G(8+x)e */~". It is therefore convenient to expand G(8+x)e */~r in a Taylor-series expansion.

G(8)~ 2G'(8) G(8) x'
O(s+*)~-*("'=. o(e)+(o'(s) — ls+ o"(s)— + —+" .

AT) AT (AT)' 2
(23)

The limits on the integrals need not be chosen precisely for the 6rst few terms in the Taylor expansion since the
main contributio~ to the Orbach process comes from

~
x~ (F/2. For the experimental conditions, the power-law

contribution comes from negative x. Somewhat arbitrarily we shall select the limits to be a and —a where a))I'
(a= 101' would cover most of the acoustic spectrum. ) Equation (22) becomes

2sr d G(8+x)e '/ "r)
8'g, t g, t= (a+b++a b )'e e/"—~ g--

h' s=o dxs rt! p, o

6 x dY
+c.c. . (24)

, x'+ (I'/2)', (x 3P/2+i F/2) (x+—3P/2 iF/2)
sr Batemal Tabtes of Irstegrat Trawsfon/ss, edited by A. Krdelyi (McGraw-Hill Book Company, Inc. , New York, 1954), Vol. 1, 135.
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The integrals for the zeroth-order term may readily
be evaluated leading to the following simple result
after combining terms and using 6„=3P, namely,

4m' G(h)e
—«/bT

W~bt ~bc'= 2(a+b++a b )'
h' r

XI I, (25)
arm+~, .2/

'

which is the same result as (19). &he higher-order
terms in the sum in (24) are discussed in Appendix 11.
We find there that the nth order terms will be pro-
portional to (I'/kT)'" times the zeroth-order term and
will have a negligible effect if F«kT, which appears
to be satisfied for all the donors. The explanation for
the compact result in (25) is simply that we have made
our expansion about the resonant phonons most im-
portant for the Orbach process. Inspection of the higher-
order terms shows thev are smallest when k,T 8/n
[where G(ob)=Rob"] but become more important for
either higher or lower temperatures. To further simplify
(25) we need to consider the origin of the level width.

C. Level-Width Considerations

The contribution to the level width of the T2 states
due to spontaneous phonon emission, namely F„,assum-
ing there is no interference in the phonon emission to
the A &l') and A r 1) Zeeman states is given by

2xl.= W"~ =—"'(I«.IH., I T.) I').,
h

+b+'( (Ag~H, ( ) ) p(b). (26)

Using the definition of G(or), recognizing the two matrix
elements squared in (26) after performing the angular
averages are the same, and recalling that a+'+b"'= 1,
I'„becomes equal to 2rr/hLG(h)]'/2. Eliminating G(8)
in (25) and using 1/T~=Wg, t aber'+W~bc ~, t' the
spin-lattice relaxation rate becomes

r, m

=4(a+b++a b )—' e «"
I

. (27)
T1 hl" kr2+a. ~

Further consideration of the Orbach-relaxation rate
involves the thorny question of level widths, the prob-
lem having arisen principally in relation to the width
of the infrared-absorption lines of shallow donors. The
mechanism of Lax and Burstein" will not apply here
since the transitions here only involve 1$ states. Spon-
taneous phonon emission as discussed by Kane23 appears
to be a most likely candidate to contribute to the

2 M. Lax and K. Burstein, Phys. Rev. 100, 592 (1955).
~' F. Q. Kane, Phys. Rev. 119, 40 (1960).

1$-T2 level widths due to lifetime broadening. A
careful analysis of the linewidth mechanisms for the
infrared spectral lines of boron acceptors in silicon
has been made by Colbow. "Besides phonon broadening
he considers the following: (a) internal strains, (b)
concentration broadening (impurity banding), (c)
Stark broadening due to ionized impurities. (c) will
not be important for this work because it is negligible
below 30'K where the number of ionized donors will be
infinitesimally small. Broadening due to internal strains
will be less than 10 4 eV for typical dislocation densities.
Concentration broadening does appear to be a possible
effect and indeed the Orbach rate constants are shown
to vary with concentration. ~ However, the circum-
stances pertaining to the spin-lattice relaxation of the
shallow donor-electron spins are not really analogous
to the infrared-absorption case.

For much of the Orbach process temperature range
Ti«T2' (1/T2' is the static low-temperature spin-
packet width). T&' has been measured by the pulse
experiments of Gordon and Bowers."At higher tem-
peratures where T1 determines the spin-packet width of
the inhomogeneously broadened line the different
donors are relaxing independently of each other.
Furthermore, the Orbach-rate constant E in (27) does
not depend, except for small higher order corrections,
on the energy 8 of the resonant phonons. Any smearing
of h for different donors due to strains or impurity
banding (static effects) should have little effect on the
Orbach-rate constant E (of course the exponential term
can be affected). Effects which limit the lifetime of the
1$-T2 states can affect E. It is probable that at low
temperatures and concentrations the individual donor
level width is determined by spontaneous phonon
emission so that we can set I'=F„which reduces
1/Tg to

1 e—«rbT ( /bb 2—=4(a+b++a-b-)2
"

I
~. (2S)

T, h kr„'+a,.')
IV. DISCUSSION AND COMPAMSON

WITH EXPERIMENT

Equation (28) has a particularly simple and appealing
form and can be intrepreted physically as follows. The
factor (I'~/h)e «~T is just the rate at which donor
electrons are excited from the 1$-A1 to T2 states. A
factor 2(a+b++a b )' represents the effectiveness of
the four impure-spin T2 states in flipping the spins of
electrons excited to the T2 states by phonon absorption.
Were it not for the constructive interference between
the (8+P+H/3) and (8+P H/3) levels and also be-—
tween the (8 2P+H/3) and (/e —2P H/3) levels, this— —
term would be 2L(a+b+) '+ (a b ) '] where (a+b+)'

"K.Colbow, Can. J. Phys. 41, 1801 (1963)."J.P. Gordon and K. D. Bowers, Phys. Rev. Letters 1, 368
(1958).



TABLE I. Orbach-process results. 1/TI =Be ~'~~.

DOIlor AtOIIllC

0.42
0.186

0.031

1.0.

0.3b
0.13
(est)

0.022
(est)

9.55"
21.1b

0.06

0.20
0.87

0.88

0.87
0.70

12.8
4.4

0.3
(est)
0.2b

0.5
(est)
0.4
0.3
(est)
0.2
(est)

~calo
10"/sec

12
2.1

2.6
0.027

Donor
concentration Aexpt

1016/cc 10"/sec

1.5
0.091

' Reference 8.
~ Reference i i.

represents the fractional probability the spin is Sipped
in the (8+p+H/3) or (8 2p+H—/3) state, while

(a b )' represents the fractional probability the spin
is flipped in the (8+P—H/3) or (8—2P—H/3) state.
The remaining factor of 2 is introduced by the dehni-
tion 1//Tt W~, t ~,g+——W~, g ~,t. The last factor is
simply the interference factor measuring the destruc-
tive interference between the (6+p) Ts states and the
(8—2P) Ts states. For h„))l'„ these levels are well
separated compared to the level width, there is no
destructive interference, and the relaxation proceeds
independently for the (8+P) and (h —2P) levels. The
relaxation rate then appears to be independent of 6„,
but, of course, this is only true if D„&&II.For ~„&I'„
there is destructive interference and the relaxation
rate is proportional to 6„'/I'„assuming A„))H. Con-
sidering H a,nd 6„fixed the Orbach-rate constant 8 as
a function of I'~ obtains a maximum when F„=A„.
This maximum-relaxation rate is given by

(1/Tt), „=4(a+6++a b )s(6,./2h)e ""r. (29)

Using the measured 6„for Bi and Sb and estimated
values for As and P, using 8=0.167 cm ', and. using
I'~'s for the 15-T2 levels based on Aggarwal and
Ramdas's data" and partly on estimates of the I'„
due to umklapp phonon emission, ' the Orbach rate-
constants have been calculated and are shown in
Table I along with the maximum values from (29)
and the experimental values. The agreement between
E„q, and E, ~t, for the low-concentration P and As
samples for reasonable values of I'„ is quite good.
However, it has been assumed that the 6„for As and P
can be extrapolated from the values of 6,.for Sb and
Si in the same ratio as for the free atoms. This assump-
tion may not be valid if the core parts of the impurity
wave function are different for different donors. For
the high-concentration samples for all the donors the
E ~~ values are two or three times larger than the
E„t, values: However, the ratios of the E, ~~ t for
example, E,„„(Bi)/E,~,(Sb)) for the approximately
equivalent concentration samples are in much better
agreement with the calculated ratios. A careful quantita-
tive check of (28) would require both more precise

knowledge of the 15-T2 level widths and more experi-
mental data for 1/Tt for the different donors at con-
centrations approaching 10"/cc. At present (28) does
seem to adequately describe the Orbach relaxation rate
for the shallow donors in Si.

A remaining problem is that of the level width I'~.
If the 15-T2 states decay principally via the umklapp
process, previous calculations' have suggested there
would actually be a much larger variation in the

umklapp F„ for the 15-T2 states than is apparently
observed in infrared-absorption linewidths or than that
which is required to give agreement of the experimental
results with (28). In particular the energy separation
of the 15-Aq and 15-T2 states for As is just right to
maximize the umklapp-process phonon decay of the
15-T2 states which would suggest a much larger I'„ for
As than any of the other donors. It is also worth

mentioning that while at low tempera, tures and long

phonon wavelengths the shallow-donor spin-lattice re-
'

laxation processes are due to transverse phonons; the
Orbach process, utilizing only very short-wavelength

phonons, is almost entirely due to longitudinal phonons.
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APPENDIX I: PARTIAL-FRACTIO5'S EXPANSION

Assuming constructive interference between the
Zeeman states (H(1'), we need only consider the sum
in (12) to be over the 8—2p and 8+p pairs of Zeeman
states. The sum can now be converted to

(I 2)
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—. + +c.c. ,
(a—Xi —iF 5„+iF 28—P 28—4P

+ — +c.c. , (I3)
~—4 —iI' A., i—I' 28—P 28+2P

1 1 1—+ +—
~—1),i iI' &., iF—28+2P 28—P

1 1 1 1 1

s&—X4 iF 6,„+iF 28—4P 28—P

+c.c.)

+c.c. .

Combining the terms in the brackets by expanding the
latter term-energy denominators in series for P/8((1
this expression becomes

+C.C. i
a)—Xi iF(h,.+iF) (28—5P/2)'

—1
+ +C.C. )

Xi i—F(h,. iF) —(28+P/2)'

+C.C. ,
(o Xi iF—(d,. iF) —(28+P/2) '

+c.c..
a)—Xi iF(d,.+iF) (28—5P/2)'

The nonresonant terms present in the original sum
are now due to poles Xi and X4. Expansion of (I1) by
partial fractions gives

Since g&&A„, I' the second terms in the brackets are
very much smaller than the 6rst terms. Furthermore, vie
observe that they have opposite signs in the A~ and X2

terms (resonant terms) and therefore will give an
additional cancellation after the integrals of X~ and X2

Lsee (17)] have been summed. The large coeflicients

1/(iF)(6„&iF) 'in the 1) i and Xi terms have the opposite
sign to those, respectively, in X4 and X3 terms, hence
there will also be cancellation between the (1) i,4) terms
and the (1).4,1).i) terms but here one is confronted with

the Ei function again, but this time vrith both positive
and negative arguments. Thus, although the effect
of the nonresonant terms appears to involve complicated
cancellations it may be shorn that they introduce
terms of order (6„/8)' times the resonant terms. This
general result also applies for the Taylor-series-
expansion approach. One can shove that the pomer-
lavr Raman process due to the 1 5-T2 levels contains
contributions proportional to both (6„'/8') T' and
(6„'/8')2' for nkT«8. The T' temperature depen-
dence vrould arise from a Van Vleck—type cancellation. "

APPENDIX IL HIGHER-ORDER TERMS
IN TAVLOR EXPANSION

To check the effect of higher-order terms in the
transition probability in (24) we shall explicitly cal-
culate the second-order term. Although the choice of
the symmetrical limits about the mean of the energies
8—2P and 8+P would appear to make the odd terms
small they are still not completely negligible compared
to the higher-order even terms in (24). The integrals
@re need for the second-order term can be evaluated
by direct integration and are

c+3P/2 a—3P/2

=I(a) .
,.„„„~'+(F/2)'

C X2dg (a-3P/2)'+(F/2)' '"
+c.c. =2I(a)+3P ln

, (x+3P/2 —iF/2)(x —3P/2+iF/2) (a+3P/2) '+ (F/2) '

F F 3P ' F~'
n )=2.—,-—(i+(—) )+0(- ~+

It is observed that the integrals in (II1) are the same except for the extra ln term which means there will be sub-
stantial cancellation when the second-order terms in (24) are added together. For o))F, p the ln term may be
expanded to yield

(a—3P/2)'+(F/2)' '~' (5,. '
3p ln —

i
g.

-(a+3P/2)'+ (F/2) '
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The second-order contribution to the transition probability becomes

2'�(a+b++a b )'e «"r

h2 2
I(zz) (G(8—2P+x)e 'I~ )

d2

+ (G(8+P+x))e 'i'-r .=De ~~'r —2
dx

d2

(G(8 p/2—+x)e '"r)
dg2 -s 0

Z(PI2aT)

—d2

/2a ' (G(8—P/2+x)e *i" )
8 dx

eei2kT (Q 4)

The terms inside the square bracket times I(a) are first evaluated at x= 0 and are then expanded to second-order
terms in (P/8)' and (P/kT)'. One finds that the zeroth-order and the first-order terms in P identically vanish
leaving only second-order and higher-order terms. One also sees that the remaining term in (II4) will be com-
parable or smaller than the second-order term in the expansion for large enough a. Neglecting this term the result is

2x (a+b++a b )2e G"'(8) G"(8) G'(8) G(8)
Wg t a i'=— — I(a) Giv(h) —4 +6 —4 +

It 2 4 kT (kT)' (kT)' (kT)4

Using G(co) =Ace" we can readily compare this to (22) and we find

1 I(o) r2(~,.2+r2)- (kT)4 (kT~'
~(zz —1)(n—2) (rz—3) I I

—4n(m —1)(n —2)
I

27r 16K (kT)' &8i k8)

(&~ 5)

(kT ' (kTq
+6~(~—1)j —4

~
~+1 . @f6)I8 &8]

The factor in the square brackets is a factor less than unity for typical values of kT/8 in the Orbach-process
temperature region. For k T/8= 6 the bracket is 1/18 while for kT/8= 1/12 the bracket is —1/92 if we set n =6
Consequently the second-order term will clearly be negligible in comparison with the zeroth-order term as long
as F is enough less than kT. This is simply a statement that the Orbach-resonance part of the Raman integrand
must be substantially narrower than the thermal (cd, zzkT) part of the integrand which gives the power-law
term and this is a very reasonable condition for the expansion in (23) to be valid.


