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Generalization of the Maxwell Criterion for Van der Waals Equation
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A method is proposed for generalizing the Maxwell equal-area rule for replacing isobaric isotherm seg-
ments in the condensing phase for van der Waals equation. The new vapor-pressure isotherm cuts oB lobes
unequal by an amount depending on the internal energies and diBering specihc heats of the liquid and vapor
phases. Improved predictions of both liquid specific heat and entropy of vaporization for some metals are
demonstrated by a simple example.

I 'HE van der Waals equation is often used as a
simple model description for a Quid consisting of

two phases, such as liquid and vapor. In phase equi-
librium, the van der Waals pressure function is replaced
by a pressure function of temperature only, independent
of volume, by a method due to Maxwell. ' Despite
widespread belief to the contrary, this Maxwell method
is not unique, and a generalization of it permits a more
realistic description of a two-phase Quid by van der
Waals equation. Such a generalization will now be
demonstrated for this state equation, while noting that
similar arguments apply to other state equations.

In what follows, for unit mass of Quid the state
variables P (pressure), E (internal energy), and S
(entropy) are required to be continuous functions of the
independent variables V (specific volume) and T (tem-
perature). As a consequence, certain linear combina-
tions of the state variables must likewise be continuous
in (V,T) as, for example, E+PV TS=G, (Gibb—s free
energy) and E TS=F, (Hel—mholtz free energy). The
combined thermodynamical law,

Tds= dE+Pd V,

must be satisfied along a reversible path. The van der
Waals state equation is Pir(V, T),

Prr=RT/(V b) a/V' —V&—b, T)0, (2)

where R is the gas constant per unit mass, and a and b

are substantive constants. For T(Tg, where subscript
C always denotes critical value, Eq. (2) yields physically
unrealistic oscillatory pressure isotherm segments for
a range of V. In this (V,T) region the functional form
of Eq. (2) is discarded, and a new pressure function,
P~ (T), independent of V, replaces it so that the over-all
pressure state surface is still continuous. The isotherm
segments for P~(T) are isobaric. The (V,T) region of
P„(T) is that of phase equilibrium, bounded on the
small-volume side by V3(T), the "liquidus, "and on the
large-volume side by Vi(T), the "vaporus"; also,
V3(Tc) = Vr(Tc). The liquidus and vaporus lines
separate the coexisting phase equilibrium state from
the all-liquid and all-vapor states, respectively. The
new continuous P(U, T) surface consists of the van der
Waals function P~(V, T) outside coexistence, and the

F.. Fermi, Thermodynamics (Dover Publications, Inc. , New
York, 1956), p. 71.

vapor-pressure function, P~(T), within coexistence.
The isobaric isotherm segments of P~(T) are reversible
paths on which the differentials dI'~ and dG are both
zero; continuity then prescribes Prr(V3, T) =Prr(Vi, T)
=Pg(T), and G(V3, T) =G(V„T).

The pressure state surface does not give either E(V,T)
or the specific heat Cv= (BE/BT) v. However, requiring
that 5 be an exact di6erential of V and T within a
given (V,T) region leads to

(BE/B V)r = T (BP/BT) v P —(3)

in that region. From (3), the caloric state equation
E=E(V,T) can be found in the given region only to
within an arbitrary function of temperature, which
function cannot be further specified by thermodynamics
alone. Nevertheless, some condition on this arbitrary
function must be imposed at the region boundary, to
insure continuity of E.

We consider three regions, the liquid, vapor, and
coexistence regions. The liquid region (Vr„Tz), where
the subscript L refers to the liquid phase, is assumed to
consist of {b&Vr( Vs(T), Tr,& To}.The gaseous region
(Vg, TG), with subscript G denoting gaseous phase, con-
sists of both (Vg, Tg&Tq) and (Vg)Vi(T), T&To}.
Integrating Eq. (3) by using (2) in the liquid and vapor
regions, and compacting the notation by letting sub-
script j be either L or 6, results in

where each f, (T,) is some function of temperature only,
with fl. and fg not necessarily identical. Continuity
of E requires in particular fr, (Tc)=fg(Tc) for V& Vc.

We now consider two reversible paths from the
critical point (Uc,To). One path stays in the liquid
region leading to a point (Vr„Tz); the other path stays
in the vapor region and leads to the point (Vg, Tg). The
entropy function on either of these paths is

V, —b

S,(V;,T,)=So+A ln

I Vc b-—
This entropy function can be seen to satisfy the
differential Eq. (1) by using Eqs. (2)—(4). For some
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6xed T&T&, the difference of the Gibbs free energy
functions of the gas and liquid is

Gg(Vg, T) G—r, (Vr„T) = VGPiv(VG, T) U—IPrv(Vr„T)

+f (T) f—(T) [(—rr/V ) (rr—/V )j
—AT[in(VO —b) —ln(Vr, —b)j

dfg dfr, dT
T ———— . (6)

TC JT 8T T

Fze. 1.Vapor pres-
sure using the Max-
well criterion (&=0)
and the example
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Both Piv(VG, T) and Prv(VI„T) are defined by the
van der Waals function, Eq. (2). At the coexistence
boundary, where Vr, = V3(T) and Vs = V,(T), con-
tinuity requires Prv(V3, T) =Pw(V&, T) =Pz(T) and
Gr, (VS,T) Gg(Vi—,T) =0. Then from Eq. (6) we get,
for fixed T,

Pivd V=Pg{Vi—U )+4 (T),

Pw(V i) = P~(V3) = PA(T), (7)

4 (T) = fg(T) fi(T)—
df, df, dT

(g)
gT gT T

Reversibility was not required along any of the unstable
oscillatory van der Waals isotherm segments, Prv(V, T)
for {V3(T)(V (T)(Vi(T),T( I'o}, contrary to a
widespread unacceptable justifIcation for the Maxwell
recipe, where $(T)=0."

With g(T) given, one can now find P~(T), Vi(T),
V3(T) and their temperature derivatives by satisfying
Eq. (7); a numerical method must be used since (7) is
transcendental. Values obtained can be used to deter-
mine all the thermodynamic properties of the equi-
librium coexistence state. The magnitude of rb(T) must
not be allowed so large that Eq. (7) cannot be satisfied;
such a violation might appear likely for T near Tz,
since the oscillatory van der %aals isotherm segments
have decreasing oscillatory amplitudes as T approaches
To. However, Eq. (8) forces rb(T) also to be smaller for
these T, since the difference fg(T) fI, (T) must be-
continuous for all T and is zero at To, as is P(To).

When P(T) is identically zero, Eq. (7) reduces to the
well-known Maxwell criterion; then fr, (T)=f0(T),
with the restrictive consequence that Cv(liq) =Cv(vap).

When fl, (T)g fg(T), a variety of realistic improve-
ments in the model description occurs. The constant
volume specific heats Cv(liq) and Cv(vap) can now
differ; the particular specific heat, Cq~, along the
saturated liquid line can assume more realistic values.
The "equal-area lobe" rule must be abandoned, and
the liquidus and vaporus lines take on diferent loci

' For a discussion, see H. ¹ V. Temperley, Changes of State
(Cleaver-Burne Press, Ltd. , London, 1956), p. 62.
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than for rb(T) identically zero. The thermodynamic
properties such as heat and entropy of vaporization are
thereby changed. The limiting values of various
properties of the coexistence phase at the critical point
will be altered. ' If p(T/To) is not the same function for
different substances, then properties of phase equi-
librium for different materials cannot be correlated
completely by the reduced variables P/Pc, V/U&,
and T/Tc.

As a simple illustrative example, we choose fg(T)
=~AT, and fr, (T)=APT Tc), thus—assuming both
fr, (T) and fg(T) to be linear in T and coinciding at Tc.
This choice might be realistic for T not too near T~,
but it admittedly leads to a possibly unrealistic dis-
continuity in C~ at T& for V( V~, other choices for
fz, (T) can easily be made which avoid the Cv dis-
continuity. Nevertheless, for this example, Q(T) = rb&(T)
=R{Tln(T/To)+To T},and thes—e values were used
in (7) to compute thermodynamic properties. Figures I
and 2 show comparisons of the reduced vapor pressure
and entropy of vaporization for both this p&(T) and for
the Maxwell construction where rb(T)—=0. The pre-
dicted vapor pressures are seen to be little affected, and
either curve gives a fair description of the vapor
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zation entropy (in
cal/mole desi for
same criteria as in
Fig. 1.Solid lines are
theoretical predic-
tion. Experimental
data are those shown
in Ref. 4.
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' Limiting values for the example g(T) —=0 (Maxwell method)
are given by R. E. Sarieau, Phys. Rev. Letters, 16, 297 (1966).
It appears that a negative sign was omitted from Eq. (27) of this
reference.
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pressure for the metal Hg, as quoted in Ref. 4. However,
as shown in Fig. 2, a much better prediction for vapori-
zation entropy with this nonzero pr(T) is noted for the
metals than for p(T)—=0.

In conclusion, it should be noted that recent sta-
tistical mechanical treatments for a condensing Quid
derive not only the van der %Rais state equation, but
also the Maxwell equal-area rule. ~' Thus, there sjems
to be some di6erence between these statistical treat-

' A. V. Grosse, J. Inorg. Nucl. Chem. 22, 23 (1961).' M. Kac, G. K. Uhlenbeck, and P. C. Hemmer, J. Math. Phys.
4, 216 (1963); 4, 229 (1963).' N. G. van Kampen, Phys. Rev. 135, A362 (1964},' J. L. Lebowitz and 0. Penrose, J. Math. Phys. 7, 98 (1966).

ments. and the thermodynamic arguments given here.
A resolution of this di6erence appears desirable.

These e6orts are motivated by the need for a simple
yet fairly:accurate model- for describing the state and
dynamical behavior of superheated liquid metals over
large temperature ranges, such as are encountered in
exploding wire experiments. '
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Fluctuations in the phase of the condensate wave function appearing in the single-particle Greeri's
function for a condensed Bose system are examined in one, two, and three dimensions. The results indicate
that at nonzero temperatures, long-range order will appear only in three dimensions.

I. INTRODUCTION

'HE appearance of a condensatc in Hc4 is ac-
companied by coherent, - large-scale Quctuations

in the phase of the condensate wave function. This
phase coherence is responsible for the. long-range order
in the system. Physically this means that particles, far
apart in space, are intimately correlated. Yang' has
shown that thcsc long-I'RIlgc corrclRtlons alc DlRnlfcst, ln
the asymptotic behavior (for large spacial separations)
of appropriate correlation' functions of the system. In
particular, these correlation functions, instead. of vanish-
ing as in a normal system, approach a nonzero constant;
In Hc4 the correlation function of interest is the singlc-
particle Green's function, while in a supercoriductor it is
the two-particle Green s function describing paired
states. Rice' has argued that a super'conducting tran-

~ Work supported by the National Science Foundation under
Contract Nos. GP-5517 and GP-4937.

f Parts of this paper are based on a thesis submitted to the
University of Illinois in partial fulallment of the requirements of
the Ph.D. degree.

g A. P. Sloan Foundation Fellow.' C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).' T. M. Rice LPhys. Rev. 140, A1889 (1965)g reached these
conclusions by using the Landau-Ginzburg molecular-6eld ap-
proximation for the free energy.

sition will not occur in one or two dimensions. It is the
purpose of this work to show that similar conclusions

may apply to the He4 system.
The behavior of the equilibrium, single-particle

Green's function, G(r, t;r', t), as ~r—r'~~ eo, is deter-
mined entirely by the long-wavelength correlations. In-
formation about these long-wavelength correlations is
the content of the hydrodynamic equations. Kadano6
and. Martin~ have shown that one may obtain the long-

wavelength, low-frequency correlation functions, which

describe the linear response of a system to a disturbance,
from the hydrodynamic equations. These response func-
tions contain all of the information inherent in the
linearized. hydrodynamic equations.

The hydyrodynamic equations for supcrQuid helium

are well known, they are just the two-Quid equations of
Tisza4 and Landau. ' The corresponding response func-
tions have been obtained by Hohenberg and Martin. '

3 L. P. KadanoR and P. C. Martin Ann. Phys. (N. V.) 24 419
(1963).

I.. Tlsza, Nature j.41, 913 (1938).
' L. Landau, J. Phys. USSR S, /1 (1941).A translation may he

found in I. M. Khalatnikov; Introduction to the Theory of Sgper-
Pgidity (W. A. Benjamin, Inc., New York, 1965).' P. C. Hohenberg and P. C. Martin, Phys. Rev. Letters 12, 69
(1964); Ann. Phys. (g. .V.) 34, 291 (1965).


