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The theory of thermally stimulated conductivity (TSC) for a single trap depth in the presence of deeper
traps, and a single type of recombination center, has been developed in detail without making the cus-
tomary restrictive approximations and assumptions based on the relative importance of recombination
or retrapping, or on the constancy of the lifetime. General conclusions about the shape of the TSC curve are
presented, depending on the ratio of recombination to trapping probabilities, and on the ratio of the density
of the traps of interest to that of deeper traps. The results of the theory are applied to the particular cases of
erst-order kinetics, strong retrapping with constant lifetime, and strong retrapping with varying lifetime.
A critical discussion is given of the analysis of TSC data according to methods involving the quasi-Fermi-
level, the half-widths of the TSC curve, varying heating rates, and the initial activation energy at the
beginning of the TSC curve. lt is concluded that the method of decayed TSC provides the most reliable
determination of trap depth. The results of the theory can be readily adapted for application to systems
involving more than one type of recombination center.

INTRODUCTION

~ ~
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VARIETY of methods have been used for the
determination of trapping parameters of imper-

fections in crystals. Among these various methods
thermally stimulated conductivity (TSC) offers the
advantage of experimental simplicity and potentially
a high yield of information per unit time expended.
This method consists of photoexcitation of a crystal
at a low temperature, thus producing occupied traps
from which the trapped carriers cannot be freed by the
available thermal energy at that temperature. %hen
the temperature is increased, usually at a linear rate,
for convenience of analysis, these trapped carriers
become free and contribute to the conductivity until
they recombine with carriers of the opposite type. The
conductivity measured in such a heating of the crystal,
in excess of the normal dark. conductivity, is called the
thermally stimulated conductivity. For a single trap
depth, information about the magnitude of the trap
depth can be obtained from the temperature of the
maximum TSC, about the density of traps from the area
under the TSC curve, and about the capture cross sec-
tion of the trap from the detailed shape of the TSC
curve. It is the unambiguous derivation of this informa-

tion from the experimental data that is of chief concern
in the interpretation of TSC.

Since thermal stimulation was first proposed by
Urbach' in connection with luminescence measurements

(glow curves), several different models have been

explored. The energy-level scheme has been basically
the same for the different treatments, consisting of a
single trap level, a recombination level, and the con-
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F. Urbach, Sitzber. Akad. Kiss. Wien, Math. Naturw. Kl.
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duction band. Differences between the treatments have
arisen because of diferent assumptions about the
densities of the levels, their capture cross sections, and
their ionization energies.

Two considerations are of primary importance: (1)
which is the dominant process —capture of free electrons

by recombination centers (lifetime dominant), or
capture of free electrons by empty traps (retrapping
dominant); and (2) is the lifetime constant during the
TSC measurement or is it varying? The combination of
these possibilities gives rise to four basic types of TSC
curves, three of which have been treated in some detail;
(a) lifetime both dominant and constant, giving rise to
a erst-order kinetics TSC curve'; (b) retrapping domi-

nant and lifetime constant, giving rise to an effective
thermal equilibrium" TSC curve analyzable in terms of
a quasi-Fermi-levep'; (c) retrapping dominant and
lifetime changing'; and (d) lifetime both dominant and

changing. The only model of type (c) to be analyzed
has been one in which the density of holes in recombina-
tion centers is equal to the density of trapped electrons

(i.e., it is assumed that there are no deeper traps in the
crystal and that the density of trapped electrons is
much larger than that of free electrons).

Extensions of these basic models exist in the form of
criteria by which to judge the shape of a TSC curve.
Examples of these are the formulations of Grossweiner'

relating the partial width of the TSC peak to the trap
depth and the capture cross section, derived on a first-
order kinetics model, and of Halperin and Braner, 7

and of I.uschik, ' who have expressions involving the

2 R. R. Haering and E. B.Adams, Phys. Rev. 117, 451 (1960).
3 R. H. Bube, J. Chem. Phys. 23, 18 (1955).
4I. Broser and R. Broser-Karminsky, Ann. Physik 16, 361

(1955).' K.. %.Boer, S. Oberlander, and J. Voigt, Ann. Physik {Lpz)
2, 136 (1958).

6 L. J. Grossweiner, J. Appl. Phys. 24, 1306 (1953).' A. Halperin and A. A. Braner, Phys. Rev. 117, 408 (1960}.' C. B. Luschik, Dokl. Akad. Nauk SSSR 101, 641 (1955).
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half-width of the TSC peak for 6rst-order kinetics and
for strong retrapping cases.

There are also experimental variations of the sin1ple
TSC measurement that permit a determination of trap
parameters by an analysis that is somewhat independent
of the characteristics of the levels. The heating-rate
methods' ' are based on the fact that the temperature
of the maximum TSC depends on the heating rate used.
Thc lnl tlR1 activation-encl gy IIlcthod of GR11lck Rnd
Gibson' assumes that at the beginning of the TSC curve,
far below the maximum temperature, the density of
free electrons has an activation energy equal to the trap
depth. A variant of the preceding, the decayed TSC
method lnvolvcs R preliminary hcRtlng to cnlpty
partially the trap of interest as well as to empty com-
p1etely a11 sha11ower traps.

There have been several recent critical investigations
of TSC with the purpose of establishing experimentally
which of all the proposed methods is the most reliable.
DittfeM and Voigt" studied 11 ways of analyzing TSC
curves and concluded that the quasi-Fermi-1evel
analysis assuming retrapping dominant was superior to
other methods for CdS crystals. At about the same time
Nicholas and Koods" applied nine ways of analyzing
TSC curves to Cds crystals and conc1uded that frst-
order kinetics was the most commonly encountered
behavior, for which the quasi-Fermi-level approach
was by definition completely inadequate. Bube et al. i2

concluded that the method of decayed TSC was the most
reliable indication of trap depth in the absence of infor-
mRtlon Rbout thc ln1portRncc of I'ctI'Rpplng. FoI' traps
for which retrapping was dominant, trap depths de-
termined from decayed TSC agreed with Fermi-level
analysis; for traps for which retrapping was negligible,
trap depths determined from decayed TSC agreed with
dccRy-curve RnRlysls.

It is the purpose of this paper to investigate the
behavior of the classical simple level scheme with the
additional consideration of the possibility of deeper
filled traps, omitting a]l of the usual approximations
and assumptions related to the characteristics of the
levels until a 6na1 mathematical expression is at hand.
It is in fact possible to do just this, and the results
clarify the signi6cance and the applicability of the
diAcrcllt methods of Rna1ysls.

SOLUTION OF THE KINETIC EQUATIONS

In this section we shall calculate. the density of
free electrons e as a function of temperature T for a
crystal with the energy-level scheme shown in Fig. 1.

9 G. F. J. Garlick. and A. F. Gibson, Proc. Roy. Soc. (London)
60, 5'74 (194').

"H. J. Dittfeld and J. Voigt, Phys. Status Solidi 3, 1941
(1963)."K. H. Nicholas and J. Woods, Brit. J. Appl. Phys. 15, 783
(1964}.

'2R. H. Bube, G. A. Dussel, C.-T. Ho, and L. D. Miller,
J. Appl. Phys. 3?, 21 (1966).
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FIG. 1.The simple form of the energy-level diagram forming the
model for the considerations of this paper. Included are e free
electrons; a quasi-electron-Fermi-level located BI below the con-
duction band; Eg recombination centers with a capture probabil-
ity y for free electrons; 3T& traps with depth E~, capture prob-
ability P for free electrons, and thermal emission probability E; and
X~ deep traps.

n+n) —ye(e+e, +—x—,) = n/r, —

8,=pe(A", —n,)—mg,

(&)

(2)

where I' =PiV. exp( —E&/kT), X.is the effective density
of states in the conduction band, E~ is the shallow trap
depth, N~ is the density of electrons trapped in shallovr
traps, ~ is the lifetime for free electrons, y is the capture
probability of a recombination center occupied by a hole
for a free electron, and p is the capture probability of
an empty trap for a free electron.

The normal condition in high-resistivity crystals is
for e«e~ and for n&&A~. This latter condition is satis6ed
experimenta1ly for normal heating rates of a fraction of
a degree/sec as long as the lifetime is much less than 1
sec; the highest lifetimes encountered in photosensitive
materials of CdS-type are less than 0.1 sec. Kith the
additional assumption that E, is independent of tem-
perature (i.e., that we make neghgible error by neglect-

"This assumption is made only to avoid saturation of recom-
bination centers.

It is assumed that the crystal has two trap levels, a
shallower level with density X~ and a deeper level with
density X~, and one recombination level with density
Eg))%~+X~."It is assumed that only the shallow traps
have effective thermal interaction with the conduction
band, and the deeper traps are introduced primarily as
a reservoir of excited electrons (and hence of holes in
the recombination centers) as a way of simulating dif-
ferent lifetime conditions.

Ke choose to treat the discrete trap case, in spite of
the evidence that the physical situation commonly
involves a distribution in energy, " in order to gain
physical insight into the general nature of the problem
and in recognition of the fact that discrete levels do
occuI cvcn lIl IcR1 CIystR1s.""Thc Rna1ysls pI'cscntcd
here can be extended by extrapo1ation to a quasi-
continuous trap distribution and can be used to clarify
the results obtained experimentally in that case.

The kinetic equations based upon the model of
Flg. 1 RI'C
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n, =—yn(n, +X,),

ing the Tss' dependence of N.), Eqs. (1) and (2) become According to Eqs. (11) and (12), Eq. (13) can be
written as

(3)

n, =Pn(Ns n—s) n—sP

Eliminating At, we obtain

p«vP vxs1——+x
PNs+v&i ro bP P

S—
PN+y«+(y-P)

(PN, +y«)n PN, +yXi
+t

(P-y) +P

X (6)
1—(v/p)+expl:(E~ —Es)/&T3

where Ep is the depth of the Fermi level below the con-
duction band. Differentiating Eq. (5) with respect to
t, setting T= To+bt, where b is the linear heating rate,
we obtain

Then we can calculate

dI P«YP (1—y/P+x) (1+N,/«+x)
dT PN, +yX, bP

1 dx dx ky'
)xd'1 dy Et x

(15)

from which it is possible to obtain x=x(T) as an im-

plicit function,

ri bE vP(Pe)'( q P ~ 1+N,/X, +x yN, Es
Xl. = —&(y), (16)

1+N,/X, +xp b

P(y) = 2g gdy

It is not necessary at this state to assume a linear heat-
ing rate, and the calculation could be carried through in
a general way for any heating program by retaining t

as the variable. Since in practice, however, a linear

heating rate is commonly used, we have introduced it
here.

The integration of Eq. (7) can be expressed formally
as

The solution of Eq. (16) substituted into Eq. (8) gives

the density of free electrons as a function of the tem-

perature; neglecting the temperature dependence of

mobility, this is then the desired solution for the TSC.

GENERAL CONSIDERATIOHS

S g
ln —=yQ —y —I=yQ —y

—ln —,
NQ SQ

where

y=Es/kT,

yo Et/~To r

x= exp

Es o
—Es P(To)

xQ= exp
&To Pno

Before considering detailed calculations in a later
section, a general discussion of the properties of the
above equations is fruitful.

Equation (16) shows that the characteristics of the
TSC curve are determined by three relationships be-

(9) tween parameters. (1) The ratio y/P, which is related to
the relative importance of recombination and retrap-

ping, (2) the ratio Ns/«, which is related to the change

in lifetime during the TSC measurement, and (3) the

(11) ratio yN, Es/bk, which determines the temperature for

the maximum TSC, since lnF (y) is almost a simple linear

function of y, If these parameters are speci6ed, together
with the initial conditions described. by xo, the solution

(12 w
is completely determined.

(xI= lnl-
&xo

P pz,
X 1 —— dT'. 13

«Pn PNs+yKg

Initial Conditions

In terms of the variable x, Eq. (6) becomes

ns pN, +yX,

Ns pNs
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TABLE I. Initial conditions for an initially 6lled trap.

+t 72+ t

P St PÃt ~o Physical description

&1 &1 &1 &1
&1 (1 &1 &1
&1 &1 &1 &1
&1 &1 &1 &1
&1 &1 &1 &1

No retrapping; constant lifetime
No retrapping; changing lifetime
No retrapping; constant lifetime
Strong retrapping; constant lifetime
Strong retrapping; changing lifetime

Since nt can never be greater than Et, a lower limit for
xp is established by the conditions of Eq. (18). If we
set nto ——Xt, i.e., the traps are initially filled,

Kt
xp= —1+—

Eg
(19)

If the result of Eq. (19) is applied to Eq. (15), it is seen
that (dx/dy)p is negative, which means that x is in-
creasing with decreasing y, such that for y less than yo,
dx/dy is always negative. Thus x is a monotonicaiiy
increasing function of temperature.

Table I summarizes the initial conditions in the case
of an initially filled trap for diferent relations between
the parameters, emphasizing the physical situation of
each case. These conditions should hold if the quasi-
Fermi level is above the trap level of interest under
excitation at low temperatures.

It is of interest to note that when y (P, the Erst-order
kinetics TSC peak can be "imitated" by a trap with
strong retrapping, simply by initially emptying the
trap sufficiently for xo to become much larger than unity.
This results because Eq. (16) does not depend on the
ratio yK, /281V„which is the only difference between
the two cases. This is the reason that Haering and
Adams' obtain the same shape for the first-order
kinetics and the strong retrapping cases. In order to be
able to integrate the system of kinetic equations, these
authors assume that strong retrapping is dominant over
recombination from the beginning; such a situation
can occur only if the trap is suQiciently empty.

If the trap is initially 6lled, the strong retrapping
curve starts as a nonretrapping case. Since the capture
cross section, and hence the thermal emission prob-
ability, is relatively high, however, the curve appears at
lower temperatures than it would for a real nonretrap-
ping situation. When the emptying of the trap has
proceeded sufficiently so that retrapping becomes im-
portant, an effect that may be thought of as equivalent
to a decrease in the eGective net thermal emission rate,
the whole curve is shifted toward higher temperatures,
thus producing a broader peak. For a trap that was
initially almost completely empty, the capture is not
affected by further emptying of the trap, so that the
effective net thermal emission depends on temperature
in the usual way and gives a 6rst-order kinetics TSC
peak.

Relevance of the Quasi-Fermi-Level

The expression for e2/E, given in Eq. (18) may be
compared with that obtained for steady-state photo-
excitation for the same trap,

n2/E2 1/——(1+x). (20)

Equation (18) gives directly the effect of recombination
on the occupancy of the trap. In the case where
y/P«1, and PX,/yX, &)1, i.e., retrapping dominant
over recombination, the quasi-Fermi-level is a useful
quantity.

If a quasi-Fermi-level Ept for traps during the TSC
is defined, '4 so that

e2/X2 ——1/(1+x'), (21)

where x'=expL(Es2 —E2)/kT), then equating Eqs. (18)
and (21), one obtains

inn =lnE, —y—lnx,

and in terms of x andy, Eq. (7) is

(23)

n= 1—1—— x 1 —x x'Gy, 24

where
PE.E,

G(y) = y 'e-p.
(P1V2/gag+ 1)bk

(25)

I.et us simplify the notation by defining

g(x)
—=x'(1—y/p+x) '(1+X,/X2+x) —'

so that
(26)

1—— = 1 '—.27

"G.A. Dussel aud R. H. Bube, J. Appl. Phys. 37, 2797 (196&),

x= —(1+—)+(1+ )x'=x,+(1+ )g'. (22)

Since all the coefEcients in Eq. (22) are positive, and
since the coefficient of x' is always larger than or equal
to 1, we may conclude that x)x', and that Ep) Ep~.
For the nonretrapping cases (y/p))1, or pK2/pX2&)1),
it is also true that Es)E2, (x)1). Since Eq. (18) is
particularly valid at the maximum of the TSC curve,
where n=0, this result is another way of showing that
the erst-order kinetics peak is characterized by a quasi-
Fermi-level for electrons lying below the trap level.
It is evident that although under various circumstances
E~ and Ept may be almost coincident, they are never
exactly equal.

Shaye of the TSC Curve

Equation (8) can be rewritten as



768 G. A. DUSSEL AND R. H. BUBE

It has been previously pointed out that dx/dy is
always negative, so that x is a monotonically increasing
function of T or t; with T increasing, therefore, g(x)
tends to 1 while G(y) increases. For sufliciently low T,
G(y)«g(x), and the Garlick and Gibson' activation
energy from the slope may be obtained by integrating
Eq. (27). Further conditions for the validity of this
approach will be discussed later.

The condition

"in g(x&
0

1n-a
C

G(y) =g(*) (28)

g(x)=x'(a+x) '(c+x) ', (30)
where —m (a—= 1—y/P(1, (31)

1(c—=1+%/&«oo ~ (32)

Fquation (3()) for g(x) has two poles at x= —a and

x= —c, a double zero at x=0, and extrema at x=0 and

x= —2ac/(a+c). The derivative of g(x) with respect

to xis
dg(x)

-=x[2ac+(a+c)x](a+x) '(c+x) '. (33)
dx

All points of physical interest correspond to the region

0

7/ Kg) c
*&x,&-~ 1+—~—= (1—a) &. —c . (34)

Pk X(i' c—1
/i3

yX,/PcV,

defines through Eq. (8) the loci of the points in the

(inn, y) plane that are solutions of n =0, i.e., the extrema
of the function n(y). Whether the extrema obtained in

this way are maxima or minima can be established as
follows. At constant y, i.e., fixed G(y), if upon increasing
x over the value corresponding to Eq. (28) [i.e.,
according to Eq. (23), decreasing n], g(x) increases,
then n)0; if g(x) decreases, ri(0. Since Eq. (28)
separates the (inn, y) plane into two regions with dif-

ferent signs of the slopes, the whole behavior of the
TSC curve will be determined by the dependence of

g(x) on x. G(y) has a simple behavior with y; changing

the parameters simply displaces the curve but leaves

the shape unchanged.
Since, according to Eq. (19),x) (y/P) (1+%,/&, ), all

points lying above the line

inn .„=in', —y —1n[(p/P) (1+%,/S, )] (29)

are not attainable with a given set of parameters,

unless of course another set of traps exists that can

maintain such a point. Thus, given a crystal, all

possible solutions corresponding to a particular trap
are restricted to the semi-plane lying below the line of

Eq. (29).
In general,

1n a 1n c
(a)

ln x

Thus the poles and zeros of Eq. (30) are excluded, but
not necessarily the extremum in g(x). There are just
three physically meaningful cases: (a) a)() and c)Q

g(x) is a monotonically increasing function of x. (b)
a(0 and (a+c))0. For small values of x, g(x) may be
a decreasing function of x [dg(x)/dx from Fq (33)(0]
The function has a minimum at x= —2ac/(a+c), and
then increases with x. (c) a(0 and (a+c)(Q. g(x) js
a monotonically decreasing function of x.

These three cases may be discussed in somewhat more
detail to get a complete picture of the shape of the TSC
curve.

(a) a)0 and c)0. I.et n~ be the value of n that
satisfies the condition of Eq. (28) (n=0) in the (inn, y)
plane. g(x) increases continuously with x, but has three
different dependences: (i) for x(a, g(x) ~x' [region I
of Fig. 2(a)]; (ii) for a(x(c, g(x) is a linear function of
x [region II of Fig. 2 (a)]; (iii) for x)c, g(x) is practically
a constant with value unity [region III of Fig. 2(a)].
Since G(y) is very nearly a simple exponential function,
n*~ exp[—(y/2) —lny] in region I, n* is nearly con-
stant in region II and e* decreases rapidly in region III.
The parameters, besides influencing the location of the
curve on the y axis, also determine the extension of

(b)

Fro. 2. (a) Plot of g(x) as a function oi x according to Kq. (3p)
for u&0 and c)0. (b) Corresponding free-electron density e in
a TSC measurement as a function of y, according to Eq. (27). e*
are those values of n for which I=0. Dashed curves 1, 2, 3, and 4
represent cases of decreasing initial occupancy of the trap. The
curves are not drawn to scale, features having been exaggerated to
emphasize the tendencies.
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Pro. 3. (a) Plot of g(x) as a function of x according to Eq. (30)
for c(0 and {a+c)&0. {b) Corresponding free-electron densityI in a TSC measurement as a function of y, according to Eq. {27).
m* are those values of I for which n=0. Dashed curves 1, 2, and 3
represent cases of decreasing initial occupancy of the trap. The
curves are not drawn to scale, features having been exaggerated to
emphasize the tendencies.

region II, which depends on the ratio u/c as shown in

Fig. 2(a).
Since g(x) is an increasing function of x, points above

n* have n(0, while points below n* have n&0. Thus
points corresponding to n* to the right of M in Fig. 2(b)
represent minima, while points corresponding to n*

to the left of M represent maxima. This means that if
an initial point lies above n~, the eGect of increasing the
temperature will cause it to move down till it crosses
n* horizontally (n =0); then n will increase with increas-

ing T until it crosses n* again to the left of point M,
after which it will decrease. The latter crossing point
is the maximum of the TSC curve under the given initial
conditions. If the initial point lies below n*, and if the
vertical distance to n* is large [xs much larger than the
value satisfying Eq. (28) for the given y], then it moves
upwards with a slope of —1 until it either comes close
to n* to the right of M, in which case the slope now
reduces to about ——', until the solution emerges to the
left of M, or if the initial value of xo is large enough, the
solution can cross n* directly without having a region
of ——,

' slope. These cases are all illustrated in Fig. 2(b).
Because of the uniqueness of the solutions, curves with

xo(1 must exhibit a region with a slope of approxi-
mately —~~. Thus a fully excited strong retrapping trap

~min
(1—a) c

(+M 1

c—1 (a+c)

or (u—c)(1+a))0. Since a(0 and c)1, this implies
1(—a, or y/P)2, which corresponds to a lifetime
dominant over retrapping situation. Since, in addition,
for this case to exist at all, (a+c))0, or Ni/Ki)[y/P —2], the lifetime must in general be not only
dominant but changing with T as well.

The lower branch of n~ below M' is contained between
the limiting values of y given by

» 4 (~/~-1)(1+N/~, )
yM 2g &M' =—

&i 7N h'/0+Ni/07 i)

4(v/0 —1)(1+N /& )
y 2p , (35)

(v/P+Ni/&i)'
and

since

bk 1 y g,—+-
EiyN. P x,

(36)

G(yM ) g(xmin) =; G(yi) =g(x —& ~)= 1. .
(c—a)'

Thus the larger the value of N,/Xi relative to y/P,

must exhibit a smaller activation energy in a Garlick-
Gibson' —type measurement than when decay of the trap
population has been permitted at a temperature close
to or above the TSC maximum before measuring the
activation energy. The shift in the temperature of the
TSC maximum following decay to different tempera-
tures should also be appreciable. In contrast, a first-
order kinetics nonretrapping trap (xs)1) can exhibit
only a single activation energy regardless of the degree
of decay since the point M now lies in the forbidden
region. Also, since the maximum of the TSC occurs in
the region of the steep decrease of n*, the shift of the
temperature of the TSC maximum should be hardly
observable.

(b) u(0 and (a+c))0. The dependence of g(x)
on x is shown in Fig. 3(a), and the general form of
n* in Fig. 3(b). For x) —2'/(a+c), g(x) increases
with x and hence n) 0 for n(n*. For x(—2ac/(a+c),
g(x) is a decreasing function of x and n) 0 for n) n*.
If the initial point lies to the right of n*, the TSC can
have only a maximum; if the point lies to the left of
n*, the TSC has no extrema at all and decreases mono-
tonically with increasing temperature.

Since a(0 implies that y/P) 1,

xmin= (p/P)[1+ (&g/Nt)]) 1 ~

This implies that the branch of n~ above the point M'
can be reached from initial points to the right of n*
only under very unusual circumstances. In fact, to
have an extremum above M' requires at least that
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FIG. 6. Variation of the shape of the
TSC curve for the case of strong
retrapping with lifetime constant, as a
function of the initial occupancy of
the traps. The ln of the ratio of n to
the value n 0 is plotted as a function
of the difference between y and y, o,
where the subindex "m,0" refers to the
maximum of the TSC for the com-
pletely ulled trap.
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tion of x, points to the right of n~ have n&0, while
points to the left of n* have n&0. This case is quite
similar to (b) except that the lower branch of the e*
curve does not exist. Thus in measurements of decayed
TSC, only shifts toward lower temperatures can be ob-
served, if detectable. The most favorable conditions to
observe such "negative" shifts are when y/P&)1 and
X&/X~((1, i.e., lifetime dominant and constant.

APPLICATION TO PARTICULAR CASES

First-Order Kinetics

The first-order kinetics case corresponds to a situa-
tion of constant lifetime (X~&&1V~) and no retrapping
(yX~/PÃ~&&1). The usual derivation neglects the term
corresponding to capture in the expression for ri& given
in Eq. (2). With this approximation

(x pX.E(
~(y),

exp bk

whereas a first-order kinetics peak derived from Eq.
(16) under the above conditions leads to slightly dif-
ferent expressions. According to Table I there are two
situations capable of producing a first-order kinetics
peak, one in which the nonretrapping arises from y&P,
and a second in which retrapping is made less than
recombination because K&))E& in spite of the fact that
p &P. The corresponding approximations are

v/p»1,
( 1+x

ln~ ——1)[[1+x) '

(1+xp p
px+g—(1+xp)—']= F(y); (38)

b

y/P«1, yXg/PXg&)1,

1+x ps,E(
+L(1+x) '—(1+xo) ']= ~(y) (39)

1+xp bk

The fact that a trap gives a first-order kinetics TSC
peak does not prove in itself that the capture cross
section of recombination centers is much larger than
that of the trap; the first-order kinetics peak could be
due to the presence of a high-density deeper trap.

In the first-order kinetics case, the temperature for
maximum TSC is almost completely independent of the
initial occupancy of the trap. A very small shift toward
higher temperatures should occur with decreasing initial
occupancy of the trap, Examples of such behavior have
been reported. "

As long as the lifetime is constant (X,/E,»1), the
shape of the curves given by Eqs. (37), (38), and (39) is
practically the same. The principal difference is a
slight rounding of the maximum, which gives a slightly
different half-width for the three cases. This is much
more pronounced for the changing-lifetime case
(X,/1V,«1; yX,/PXg&)1), in which the increase in life-
time maintains the exponential increase in n much
longer. Examples are given in I'ig. 5.

Strong Retrapping: Lifetime Constant

Applying the appropriate assumptions as listed in
Table I to Eq. (16) reduces it to

1 x
+((1+x)-'—(1+*,)-']

1+xp

p cv.E,

1+PE,/yXg bk

Since the shape of the curve is practically unchanged by
a displacement in the position of the maximum

I
corre-
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sponding to a different value of the constant multiplier
of F(y) in Eq. (40)j, a family of curves can be drawn
with xs as varying parameter, representing Eq. (40) as
a function of y—y 0, where y 0 is the position of the
maximum for the initially completely ulled trap. Such
a family is given in Fig. 6. Figure 7 shows" the way in
which the position of the maximum (y ) depends on the
value of the constant multiplier. The shift of the peak
due to different initial conditions is much larger in this
case than in the first-order kinetics case, of the order of
one unit of y [Fig. 7(a)]. The curve is also much
broader than in the erst-order case, as will be discussed
further on.

Stxong Retxayying: Lifetime Changing

This case has been treated in some detail by Boer
et u/. ,s for the case X~——0. In that case Eq. (16) reduces
to

lO
ln g go— (41)

Fro. 7. Case of strong retrapping with lifetime constant. (a)
Variation of the temperature of the maximum of the TSC with
initia, l occupancy of the traps for a value of the constant multiplier
of F(y) in Eq. (40), 3 = 10". (b) Dependence of the temperature
of the maximum of the TSC on value of A. Curve 1 is for x0= 10 4,

curve 2 for.xl)=1, and curve 3 for x0=10'. (c) Detail of (b) showing
variation of temperature for maximum TSC on the value of A for
00 &x0&10' (curve 1), x0=10 (curve 2), x0=1 (curve 3), x0=10
(curve 4), and so= 10 ' (curve 5).

Figures 8 and 9 show respectively the shape of the
curve and the position of the maximum as a function of
the constant multiplier of F(y) in Eq. (41), using the
initial occupancy of traps (xo) as a varying parameter.
The peak has broadened enormously because of the
increase in lifetime, and a large shift of the maximum
of the TSC to higher temperatures is found for decreas-
ing initial occupancy.

In actual fact the situation described by Eq. (41)
is relatively unlikely, since it assumes there are no
deeper traps in the material. The presence of some
deeper trap, however small its density, will alter the
shape of the TSC curve in a radical way. When the trap

I'IG. 8. Variation of the shape of
the TSC curve for the case of
strong retrapping with lifetime
changing without limit, as a func-
tion of the initial occupancy of the
traps. The ln of the ratio of e to
the value e 0, is plotted as a func-
tion of the difference between y
and y 0, where the subindex
"m,0" refers to the maximum of
the TSC for the completely filled
trap.

- l5—

lO l5

"pbtained bv eliminating x between Ects. (44) and (46), with the appmximations of this section.
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FIG. 9. Case of strong retrapping with lifetime changing without
limit. Dependence of the temperature of the maximum of the TSC
on the value of the constant multiplier A in Kq. {41),for different
values of initial occupancy of the trap.

has emptied to such an extent that its density of trapped
electrons becomes comparable to the density of trapped
electrons in deeper traps, the lifetime becomes constant
and the curve will terminate with a shape corresponding
to those given in Fig. 6. Figure 10 shows a family of
curves generated from Eq. (16) by changing the ratio
E&/K&, so as to go from the case of completely constant
lifetime to the case of completely changing lifetime
(%&=0). For comparison two constant-lifetime cases
with different lifetimes are also shown, these being
chosen so that one of them has the lifetime correspond-
ing to an "intermediate" changing-lifetime case at the
beginning of the TSC (determined by E&), while the
other has the lifetime corresponding to the end of the
"intermediate" case (determined by K~). Since any
"intermediate'" case must go between two constant-
lifetime cases, an estimate of the shift in the temperature

of the maximum with different initial occupancy, as
well as of the half-width of the peak, can be obtained
from Figs. 6 and 7. Evidently the half-width of such an
"intermediate" peak must be larger than that corre-
sponding to a constant-lifetime case.

Another illustration of the effect of the ratio of deep
traps to traps being observed on the properties of the
TSC curve, Fig. I1 shows six TSC curves calculated for
fixed values of all parameters except the ratio of X&
to Et The .effect of changing K,//t/t, from 107 to 10 ' is
to change the character of the peak from erst-order
kinetics, through strong retrapping with constant life-
time, to strong retrapping with changing lifetime. By
changing the ratio K&/X& by a factor of 10', the tem-
perature of the peak is increased by a factor of over 2
and the half-width is increased by a factor of about 10.
Even relatively small changes in the lifetime (one or two
orders of magnitude) such as might be quite normal in
experiments with different crystals, change the tem-
perature of the maximum by 15 to 20%. This implies
that comparison of the results of different workers on
"similar" crystals, using the temperature of the maxi-
mum as a criterion, is not a reliable procedure.

(dx/dy) „=—x„. (43)

CRITICAL DISCUSSION OF SOME METHODS

Quasi-Fermi-Level Analysis

One method that has been used to estimate the trap
depth from a measurement of TSC is to equate the trap
depth desired with the value of the quasi-Fermi level
at the TSC maximum. In a previous section we have
shown the general nature of the approximation involved
in this procedure. Now we investigate this approxi-
mation in more detail.

The maximum of the TSC curve is characterized by
the condition that ri =0. From Eq. (27).

t's =0= (N„bky„'/E&)(1+x 'dh/dy)~, (42)
or

Fzo. 10. A family of TSC curves
generated from Eq. (16) by chang-
ing the ratio Ng/X~, so as to go
from the case of completely con-
stant lifetime to the case of com-
pletely changing lifetime. Curves
are plotted for y/P =10 6 and
7$&~/bk= 10', with E~/X~ given
by (1) 10 3, (2) 10 ' (3) 1, (4)
10, (5) 10', (6) . Curves 4a
and 4b represent constant-life-
time cases with piVD&/ fp
+(pX&/yK&)gbk} =10" and 10',
respectively.
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Fxc. 14.Values of the various
half-widths of the TSC curve,
as de6ned in the inset. (a)
Solid curves are for con-
stant lifetime (r '=yX&) de-
termined for A =PpN&$&g/
E(yXr+plr)bk)= 10n, for
various values of xp. Dashed
curves are for lifetime changing
without limit (~

—'=yn&) for
various values of xp. (b) Varia-
tion of half-widths with ratio
of E'~/X~ for "intermediate"
changing-lifetime cases, [for
xp ——10 4.
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obtain
1n2=M —A[F(y„)—F(y )j,

ALE II. Calculated values for the lower "half-width" b, .

y„=E)/kr
17
22
26

1.4022&0.0003
1.4145~0.0001
1.4208&0.0001

where A =Ply, F.,/bk, . From Eqs. (45) and (50),

AF(y„)=Ay„'e " Z(y„) =Z(y ),
and(y =y„+6 ),

AF(y-) =L1+~ /y-]-'-p( —~ )~(y-),

we obtain

1n2+Z(y )=M+(1+6 /y„)'exp( —6 )Z(y ). (52)

Since Z(y ) is a slowly varying function of y, the value
of 6 is readily obtained for a given y through an
iterative calculation. Results are quite consistent with
the above described graphical determination, and the
variation of the lower half-width M with position of the
peak is quite small. Table II gives some values for 6
for selected values of y . The results indicate that the
Grossweiner value is in error by about 7%.

All these results show that the half-width of the peak
is not a reliable method for the determination of trap
depth, unless it is known by some independent means
what kind of a trap is being analyzed. Some insight can
be obtained from the ratios between any two of the
three characteristic half-widths, since these are inde-

pendent of trap depth, but these ratios do depend on
whether the lifetime is constant or changing during the
peak. A knowledge of the value of the initial position of
the quasi-Fermi-level can be of further help in this
case, since then one is able to determine what trap
depth gives a value of xo consistent with the above ratios
and the absolute values of the half-widths (as calculated
from the assumed value of trap depth and the known
temperatures). On the other hand, if the trap depth is
known from some previous analysis of another method,
a knowledge of xo and the half-widths give useful infor-
mation in determining the other trapping characteristics.

It is dB5cult to compare these results in general with
those of Halperin and Braner, ~ or Luschik. 8 These
authors express the trap depth as a function of T '/AT;
comparison would require a point-by-point calculation.

Heating-Rate Methods

These methods are based on the shift of the TSC
maximum with diferent heating rates. Three ways of
plotting the results have been proposed: (a) lno.

versus 1/T ', (b) lnT '/b versus 1/T, '" and (c)
lnb ' versus 1/T .s In each case the activation energy
is taken to be E&.

From our analysis, (a) implies via Eq. (8) that x
is independent of the position of the peak in tempera-
ture; (b) implies via Eq. (44) that a function of x
is constant, independent of the position of the peak,
which is equivalent to implying that x is constant;
(c) implies via Eq. (44) that a 'y '(1—p/P+x„)

' R. H. Bube, Photocondlctivity of Solids (John Wiley R Sons,
Inc., New York, 1960), p. 295.
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)& (1+iV,/K, +x ) is constant. Since in all real cases x
depends on the initial conditions (xo), it is essential
t at the initial occupancy be the same in applying these
methods. The simplest way to assure this is to be
certain that the traps are completely filled initially,
i.e., that the quasi-Fermi level lies above the trap level
and that steady-state conditions have been a h d

The err
n ac ieve .

e errors found in application of the heating-rate
methods are summarized in Fig. 15. The three cases can
be expressed as

f(x) = +y+8, (53)

where f(x) is lno, 1nT '/b, and lnb ' in (a), (b), and
(c), respectively; the —sign is for case (a), and the +
sign for cases (b) and (c). H 8 is a constant, the activa-
tion energy is Ef,. Otherwise the measured E ~ will be
related to E~ by

(54)

where + is for (a), —for (b) and (c). Since hb/Ay
is always greater than 0, this implies that E~)E „
for (a), while for (b) and (c), E&(E,~. The large error nrso =nba, /kT'gnat. ..,,r, (55')

et al. '
in case (c) agrees well with published result f 8"
e a. and of Dittfeld and Voigt."There is a definite
tendency for the error to decrease as the kinetics tend
toward first order (xo increasing).

Garlick and Gibson Method

Except for the strong-retrapping cases with the trap
substantially filled initially, the Garlick and Gibson'
initial activation energy of the TSC ccurve gives t e
actual trap depth. Thus decayed TSC curves should
always give the correct trap depth if decay has been
carried out at a temperature close enough to the maxi-
mum, or greater than the maximum. If there is inter-
erence from a second trap with a different activation

energy, a simple argument shows that the curve should
show two slopes, the one with the smaller activation
energy dominating at low currents and the one with the
larger activation energy dominating at high currents.
With different initial decays, these two portions should
shift with respect to one another, and it should be
possible to identify both traps from such a shift,

Equation (7) can be rewritten as
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where nTs~ is the time variation of e during a TSC
measurement (increasing T), andri~„, „,r is the varia-
tion with time of e at the given temperature T. Thus
nTgg is given as a resultant of two competing factors,
one a term corresponding to thermal excitation and the
other a decay component which is always negative.
Since the Garlick and Gibson slope appears whenever

the first term on the right side of Eq. (55) is dominant,
the slope should represent the energy of the trap depth,
as long as the decay term is negligible, even in cases in
which the lifetime is changing in a different way from
those discussed in this paper. Even under a nonlinear

heating rate, the Garlick and Gibson slope should give
the trap depth.

GENERAL DISCUSSION

From Eq. (16) for the TSC curve, it is seen that using

reasonable values for the parameters, the peak should

be defined by approximately

15&y &26. (56)

» J.T.Randall and M. H. F.Wilkins, Proc. Roy. Soc. (London)
184K, 365 (1945).

18 J. Voigt, Diplomarbeit, Berlin, 1958 (unpublished).

The estimate of y =25, given by Randall and Wilkins, "
is thus seen to be a little high. The range of Eq. (56)
is in good agreement with estimates by Voigt" and

previous publications of the authors. "
For a determination of trap depth, it is clear that the

most reliable method is that of decayed TSC. Using this

method it is possible to eliminate contributions to the

TSC from other traps, and to obtain the trap depth
correctly regardless of the trapping or lifetime kinetics.
Experimentally this method does require a good knowl-

edge of the mobility as a function of temperature if

accurate trap depths are to be obtained, as well as

reliable Ohmic contacts over the temperature ranges

needed.
The heating-rate methods, especially plotting lne

versus 1/T, give reliable results with less requirement of

knowledge of mobility dependence on temperature, and

on the temperature range over which Ohmic contacts
are required, since the shift of the peak with different

heating rates is relatively small. The presence of a
nearby TSC peak, however, can lead to completely

incorrect analysis, and in this case it is not possible to
remove the effects of the other trap by decay. Attempts

to achieve the latter change the initial conditions and the

heating-rate method is no longer applicable. Also, for

nonretrapping cases the small value of P makes it
experimentally dWcult to obtain the same initial degree

of Ailing of traps.

Once the position of the trap level is known, the other
parameters of the trap can be determined from knowl-

edge of the location of the quasi-Fermi-level at the TSC
maximum, the half-widths of the TSC curve, and the
shift in temperature of the maximum with different
initial conditions. It must be noted, however, that the
trap density never appears independently, but is
always related to the lifetime. Since the lifetime during
TSC can be different from that under steady photo-
excitation, "some uncertainty in determinations of trap
density may be present.

Although the model treated considers explicitly only
the single possibility of recombination through one set
of recombination centers, according to the definition
of lifetime in Eq. (1), the conclusions can be applied
more generally to a system involving two sets of re-
combination centers, one with a small electron-capture
cross section (sensitizing centers) and the other with
a large electron-capture cross section. As long as the
temperature is low enough so that thermal excitation
of holes to the valence band can be neglected, there are
the following possibilities within the framework of the
theory: (1) The fast recombination centers will be
filled faster by electron capture, and since (by definition)
the holes are principally in the sensitizing centers, holes
in the fast centers may be completely exhausted in the
decay period prior to the TSC heating, or at most during
the very initial states of TSC heating. (2) If the density
of holes in fast centers is comparable to or less than the
density of the traps of interest, an "intermediate"
changing-lifetime case would be observed corresponding
to the change in recombination path from fast to
sensitizing centers. (3) If the density of holes in fast
centers is greater than the density of traps of interest,
then the TSC corresponds to a constant-lifetime case.
In all these cases, if sufhcient care is taken to choose the
appropriate parameters, the TSC can be described in
terms of the theory given in this paper.
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APPENDIX

To calculate the integral

exp ( E,/k T')d T', —

'9 G. A. Dussel and R. H. Bube, J. Appl. Phys. 37, 934 (1966)~
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s ( +2)!
y"+'& s( y)

g

y' " "'dy'= (y' " "') +2
QO PO

where

~s(y) =~~(—1)"(~+1) y "j
=y' 'e "' 2 L(—1)"(~+1) 'y' "j

where the lower limit is y=Et/kT and the upper limit is by setting Fz(y) =fs(y), and obtain

ys E&/——kTs (T)Ts), integrate by parts
ap s F k

(AS)

(A6)

n=O
QO

+ (—1)s+'(k+2)! y' &"+s&e s'dy'. (A1)

After integrating by parts a sufhcient number of times,
both terms in the expression for the integral begin to
compensate one another. Thus it is possible to approxi-
mate the integral by a series, within a given accuracy,
by taking the optimum number of terms in the series.

If we define

The error decreases by increasing the number of terms
in the series until k+2& y, neglecting the dependence of

Zs(y) on k. As a matter of fact, for the ranges of interest
in y the series is close to unity as shown in Fig. 12, and
is a slowly varying function of y. An estimate of the
error in approximating the integral by the series for low
values of y is given in Table III. In our calculations we

TABLE III. Error made in approximating
P(y) by series with k terms.

and

fs(y)= yse —"P L(—1)(n+1)!y "j, (A2)

10
15
15
20
20

7
7

12
10
17

4 X10
1 5X10 4

5 X10
4 X10
3 X10

then

Fs(y) = fs(y) f—s(ys), — (A3) used Zs obtained through the series for y&15, and for
10(y&15, we used

~sF=F(y) —F.(y) = (—1)"+'(k+2) y' "+"e "'dy'

(k+2)!
& (—1)s+s e ". (A4)

For y(yp, so that fz(y)&)fz(ys), we can approximate

PO

~s(y) =

where the integral was obtained by numerical integra-
tion using a computer. For y) 15 our results checked
with the computer results to the fourth decimal.


